
Introduction: Coarse-Graining in Molecular Modeling and
Simulation

This partial special issue of theJournal of Chemical
Theory and Computationis devoted to the topic of coarse-
graining in molecular modeling and simulation. To my
knowledge, it is the first time that coarse-graining concepts
and techniques from the application areas of biomolecular,
materials, and liquid-state systems have been published
together in the same place. Not every current researcher
working on this particular problem is represented in our
partial special issue, but it contains an excellent cross-section
of much of the important work being undertaken at the
present time.

The impetus for coarse-grained molecular modeling and
simulation primarily derives from the need to bridge the
atomistic and mesoscopic scales. Typically speaking, there
are 2-3 orders-of-magnitude in length and time separating
these scales. At the mesoscopic scale, one sees the emergence
of critically important phenomena (for example, complex
self-assembly in biomolecular or materials systems). Modern
molecular simulations, especially as they seek to make
increasing contact with experimental results on complex
systems, can and will play a crucial role in the exploration
of mesoscopic phenomena and, in turn, the behavior of real
biomolecular and materials systems. Coarse-graining prom-
ises to be a large step forward for the molecular simulation
community overall, provided the many challenges faced by
the technique can be overcome.

What then are the major challenges of coarse-graining?
In many ways the answer to this question depends on the
questions one wishes to ask. For example, one common and
often legitimate approach is to develop reductionist or “toy”
coarse-grained (CG) models that reveal the essential physics
of a given class of systems. These models will of course not
be quantitative, but they are usually very computationally
efficient and informative. Another common approach is to
develop CG models using experimental, thermodynamic, and/
or average structural properties. A third approach is to bridge
atomistic information upward in scale to the CG level in a

“multiscale” fashion. All of these approaches have their
strengths and weaknesses, and they are certainly comple-
mentary to each another.

An absolutely key question for all coarse-graining meth-
odologies is the degree of transferability of the resulting CG
models between various systems and from one set of
thermodynamic conditions to another. By all rights, a CG
model cannot be completely transferable because it is a
reduced description of a complex system and some amount
of information has been effectively averaged out in one way
or another for the given conditions. On the other hand, some
aspects of the CG model will certainly be transferable. The
key goal is to understand what is and what is not transferable
in the CG model and why it is that way. This is not merely
a technical issue but instead a very deep problem rooted at
the foundations of statistical mechanics. It is a problem that
has not yet been solved, despite the many beautiful papers
published in this issue and elsewhere. There is also the issue
of CG dynamics (i.e., time-dependent behavior), which are
not the same as real molecular dynamics. How different are
the CG dynamics and why? Can a connection to real
dynamics be made? Overall, how much are we to believe
from these CG models anyway and how much can they be
used to predict and explain unknown phenomena? As I am
sure all of the authors in this partial special issue will agree,
it is very exciting to be a part of this emerging conceptual
challenge and to be able to make a contribution to finding
the answer to these critical questions. A satisfactory solution
will provide no less than a revolutionary step forward for
the field of molecular modeling and simulation.
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Abstract: In this paper, we report a new method for coarse-grained elastic normal-mode

analysis. The purpose is to overcome a long-standing problem in the conventional analysis

called the tip effect that makes the motional patterns (eigenvectors) of some low-frequency

modes irrational. The new method retains the merits of a conventional method such as not

requiring lengthy initial energy minimization, which always distorts structures, and also delivers

substantially more accurate low-frequency modes with no tip effect for proteins of any size.

This improvement of modes is crucial for certain types of applications such as structural

refinement or normal-mode-based sampling.

I. Introduction

In biomolecular simulations, normal-mode analysis (NMA)
has been playing a very important role in analyzing structural
fluctuations around a well-defined molecular conformation.
In recent years, elastic normal-mode analysis (eNMA) has
been popularized for its simplicity and wide-range applicabil-
ity.1-20 The potential function1 used in the conventional
eNMA5 is a highly coarse-grained elastic network that has
a form of

where |r ij| and |r ij
0| are the instantaneous and equilibrium

values (or initial values from the coordinates) of pairwise
distance between theith and thejth CR atoms, respectively.
The value of Heavidide step functionσij specifies the effect
of cutoff. The absolute value of force constantγ is irrelevant
to the calculation and is often set to 1.0. This elastic potential
can be applied to either representative atoms from atomic

structures such as CR traces4,5 or points placed in continuous
density maps from low-resolution experiments such as
cryogenic electron microscopy (cryo-EM).6,8 Numerous stud-
ies have shown that eNMA is effective in extracting patterns
of low-frequency normal modes (for reviews, see refs 21-
23). The success of it hinges on a very important fact that,
for compact biomolecular structures such as those of globular
proteins, the patterns of low-frequency modes, often referred
to as deformational modes, are only sensitive to the shape
of the molecules, rather than to the detailed atomic structures,
which has been quantitatively demonstrated in our recent
study.24

Another important advantage of coarse-grained eNMA is
that it does not require the initial lengthy energy minimization
because the minimum of potential function in eq 1 is the
current structure. The initial minimization almost always
significantly distorts the structure as in NMA based on
molecular mechanics force fields such as CHARMM.25,26

Despite its enormous success and widespread popularity
in application, the current version of eNMA5 has an inherent
weakness, which we refer to as the “tip effect”. In systems
with structural components, the “tips”, protruding out of the
main body, e.g., an isolated surface loop or simply a thinner
region in the density map; the tip effect can lead to patho-
logical behavior in motions of points near those regions, pre-
sumably due to an imbalance of elastic forces among
neighboring harmonic oscillators due to lighter packing
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around tip regions. In the modes tinted with the tip effect,
the magnitudes of displacement of the points in eigenvectors
at or around the tip regions are much larger than those of
the rest of the system but with more or less normal-looking
eigenvalues. Since the eigenvectors of normal modes are
normalized, the abnormally large magnitudes of displacement
in the tip regions make the rest of the system have much
less movement and sometimes even static. To make matters
worse, so far there has been no systematic method to predict
which modes have tip effect, and they can occur in even
very low-frequency modes. Although on a case-by-case basis,
one might be able to bypass such an effect, to our best
knowledge, a systematic way is unavailable for overcoming
the tip effect. In practice, if one only wants very few lowest-
frequency modes for functional interpretation, the tip effect
may not be so severe since the modes picked for functional
study may not have tip effects. But in cases when a set of
continuous low-frequency modes are needed, such as in
structural refinement, this could become a major issue
because some of the modes in the chosen set will definitely
have some degrees of tip effect.

In this paper, we report a modified eNMA for eradicating
the tip effect. Our main strategy is to make the overly soft
degrees of freedom around the tip regions stiffer. In our
recent study,24 we demonstrated that a Hessian matrix with
randomized off-diagonal elements still gives correct low-
frequency eigenvectors. The Hamiltonian used in the
conventional eNMA and molecular mechanics such as
CHARMM25,26 can be viewed just as two special cases.
Therefore, we hypothesize that somewhere between the two
extreme cases, one must be able to find a new Hamiltonian
in which the degrees of freedom around the tip regions are
stiff enough to eradicate the tip effect and yet still retain the
merit of not requiring the initial minimization. Such a
Hamiltonian should still deliver correct eigenvectors for low-
frequency modes.

The results in this paper show that it is indeed possible to
find a Hamiltonian so that the normal modes calculated from
it not only retain the merits of original eNMA but also do
not contain the tip effect. This was true for single polypeptide
proteins in their compact native states or extended denatured
states. It was also true for multisubunit supramolecular
complexes. The overall patterns of eigenvectors of modes
for the new Hamiltonian, in comparison with those of
conventional eNMA, were also found to be closer to the ones
computed by standard molecular mechanics force fields such
as CHARMM. We therefore hope that the new eNMA will
be a complementary tool to the existing ones in analyzing
protein dynamics, especially in certain applications such as
structural refinement in which a continuous set of low-
frequency modes would be needed.

II. Theory
Internal Coordinate System.The new eNMA is designed
to work with CR traces or a subset of CR traces. To keep
the length of the CR-CR pseudobond fixed, the internal
coordinate (IC) system27 was implemented (Figure 1).
Although the formalism seems to be more complex than the
original eNMA,1,5 we found it is essential to work in an IC
system because it effectively avoids the stretching of the bond

length, which is one of the major sources of the tip effect in
elastic network potential.

For simplicity, we first describe the case with a single
chain. The multichain case can be easily generalized. For a
system withN CR atoms (i ) 1,2,...,N), the degrees of
freedom in IC areN - 2 bond angles{θi} andN - 3 pseudo
dihedral angles{æi}. Note, the bonds are indexed the same
as the second CR atom, the angles{θi} as the middle CR
atom, and the dihedrals as the third CR atom. The relationship
between IC and Cartesian coordinates (CC) is given in the
following ways. From IC to CC

wherel i is theith CR-CR pseudo bond length, andei is the
directional vector for that bond. The first CR atom is at the
origin, the first bond on thex-axis, and the first bond angle
in the plane of XY. From CC to IC, we have

In IC, θi is in the range of [0,π], and its ordering in
i runs asi ) 2,3...,N - 1. Also,æi is in the range of [-π,π],
and its ordering runs as 3,4,...,N - 1. For the convenience
of further analysis, we lump the ICs into a set{φR:
θ2,æ3,θ3,æ4,θ4...æN-1,θN-1}, whereR ) 1,2,...,2N - 5. The
relation of index between CC and IC is

Figure 1. Internal coordinate system used in the new eNMA
for eliminating tip effect.

r1 ) (0,0,0)T; e2 ) (1,0,0)T; e3 ) (cosθ2, sinθ2, 0)T

ei+1 ) cosθi ei +

sin θi cosæi

(ei-1 × ei) × ei

|(ei-1 × ei) × ei||
+ sin θi sin æi

ei-1 × ei

|ei-1 × ei|

r i+1 ) r i + l i+1ei+1 (2)

{l i ) |r i - r i-1| ; ei )
r i - r i-1

l i
; θi ) cos-1(ei‚ei+1)

æi ) {cos-1(( ei-1 × ei

|ei-1 × ei|)‚( ei × ei+1

|ei × ei+1|)),
if ei+1‚(ei-1 × ei) g 0

-cos-1(( ei-1 × ei

|ei-1 × ei|)‚( ei × ei+1

|ei × ei+1|)),
if ei+1‚(ei-1 × ei) < 0

(3)

i ) [R/2] + 2 ) κ(R)

Ræ(i) ) 2i - 4(i g 3)

Rθ(i) ) 2i - 3(i g 2) (4)
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Modified Elastic Potential Function. We defined a new
potential function which has an extra term in addition to the
potential function in the conventional eNMA.1,5 The potential
is

whereHRR
0 is the diagonal element of the Hessian matrix of

the conventional eNMA potential in IC. Note the summation
in the second term goes over all the elements in the set of
{φR} (all of θ andæ). A scaling factor of 3 is chosen so that
only the smallest diagonal term is dramatically changed.

This form of potential function also has its minimum at
the current structure, thus no initial minimization is needed.
The main purpose of the modified potential is to make the
flexible degrees of freedom much stiffer so that the tip effect
is eradicated.

Generalized Eigenvalue Problem in IC.The elements
of the Hessian matrix in IC are related to those in CC as

wherer Ri ) r i - r κ(R), andhij is the submatrix of Hessian
for thei - j pair in CC. The calculation of the Hessian matrix
in IC is accelerated from the order ofn4 to n2. It uses a
recursion relationship of matrix manipulation.28

and

whereRi,j is a 6× 6 matrix, andøR
(θ), øR

(æ) are 6× 1 vectors.
When analyzing dynamics, we should eliminate external
motion by applying the Eckart Condition29

First derivatives can also be calculated accordingly

where

P is an operator in matrix form. Then, we have the kinetic
matrix

We end up with solving a generalized eigenvalue problem

After obtaining eigenvectors, we can get orthonormal vectors
in CC.

Finally, we define a quantitative localization factorT for
the “tip effect”

The larger theT, the more eminent the “tip effect”.
Multichain Analysis. To generalize the above method to

multichain molecules, we shall virtually connect the last CR

∑
i

mir i ) 0; ∑
i
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atom of the proceeding chain to the first CR atom of the
following chain. Hence, we will have 6 additional degrees
of freedom for each additional chain. Among them, 5 are
internal degrees of freedom and the sixth is for virtual bond
length. It is noted that this virtual bond is the only flexible
bond. We can make a new convention of order as

whereN1 is the number of CR atoms in the first chain. For

the virtual bond that connects the two chains, because

we only need to add an additionalø term in calculating
matrices:

Of course, with the additional degrees of freedom, the index
order is also changed accordingly.

III. Results
Proteins with Single Polypeptide Chain.Here we first show
an example of the tip effect. Lysozyme is a classic protein
for NMA as its lowest-frequency mode represents a catalyti-
cally important hinge-bending motion.30,31 Figure 2a shows
the tip effect in one of the lowest-frequency modes, the fourth
vibrational mode, calculated by the conventional eNMA.5

The amplitude of motion of a flexible loop at the lower-
right corner is abnormally large comparing with the rest of
the system. In the new eNMA, the motion of the same region
is much more realistic for this low-frequency mode (Figure
2b). Tests on various other proteins showed very similar
results.

Figure 2. Motional patterns for the fourth mode of lysozyme
(PDB code: 3lzt). (a) From the conventional eNMA, the lower-
right portion has abnormal motions. (b) From the new eNMA,
the motions for lower-right portion is much more realistic.

Figure 3. Test of the new eNMA on three different proteins (PDB codes: 3lzt, 1bvc, 1bff). (a) Fluctuation curves calculated by
the conventional eNMA (dotted lines) and the new eNMA (solid lines). The curves by the new eNMA are smoother due to the
absence of tip effect. (b) Comparison of localization factors (T values) for three proteins. The dark squares are for the conventional
eNMA and the empty circles are for the new eNMA. The results of the new eNMA are much more rational in low-frequency
regime. (c) Results of the projection of an individual mode by one eNMA method onto a subset of 50 low-frequency modes by
another method. The empty circles are for case with one new eNMA mode projected onto 50 conventional eNMA modes. The
dark squares are just the other way around.

{φR:θ2,æ3,θ3,æ4,θ4,...,æN1
,θN1

,lN1+1,æN1+1,θN1+1,æN1+2,...}
(16)

∂r i

∂lκ(R)
) eκ(R) (i > κ(R)) (17)

øR
(l) ) ( 0

-eκ(R)) (18)
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We compared the atomic fluctuation curves computed for
three different proteins by the conventional5 and the new
eNMAs in Figure 3a. The curves from the new eNMA (solid
lines) are systematically smoother than those from the
conventional eNMA as a result of eradication of the tip effect
in the eigenvectors by the new eNMA. Figure 3b shows the
comparison of the localization factorT of low-frequency
modes (eq 15) for three proteins (the larger the value ofT
in low-frequency modes, the more localized the motion in
that mode, i.e, more eminent the tip effect). In each case,
the low-frequency modes from conventional eNMA has a
much higherT value indicating the contamination of the tip
effect. In fact, theT value from conventional eNMA stays
more or less constant at higher frequency modes because of
the divergence of eigenvectors. On the contrary, theT value

for the modes from the new eNMA is small for low-
frequency modes and increases progressively as the fre-
quency increases. This is an expected behavior for normal
modes, as the higher the frequency, the more localized
motion in the modes. Figure 3c describes the projection of
an individual mode by one method onto a subset of 50 low-
frequency modes by another method. The purpose was to
compare the overall similarity of modes between two
methods. The empty circles are the results of using one mode
from new eNMA protected onto a subset of 50 modes from
conventional eNMA. It is clear that the individual mode of
the new eNMA can be reasonably expressed by the subset
of low-frequency modes of the conventional eNMA (the
lower the frequency of the mode by new eNMA, the better
in terms of linear expression). On the contrary, the other

Figure 4. Comparison of modes from the conventional eNMA, the new eNMA, and CHARMM. (a) Localization factors for modes
calculated by the conventional eNMA (dark squares), the new eNMA (empty circles), and CHARMM force field (cross). For all
three proteins, in the low-frequency modes, the values of localization factor T are very much the same between the new eNMA
and CHARMM but significantly worse in the conventional eNMA (note the vertical axes are in logarithmic scale). (b) The projection
of an individual CHARMM mode (x-axis) onto 50 low-frequency mode subspace of the new eNMA (empty circles) and the
conventional eNMA (dark squares). The projection coefficients for the new eNMA are systematically larger than those of the
conventional eNMA, i.e., the modes from the new eNMA are closer to those of CHARMM modes.
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way around gave much worse results (solid squares). This
was because some of the modes of the conventional eNMA
are contaminated by the tip effect so that they simply cannot
be linearly expressed by a subset of modes of the new
eNMA.

Figure 4a shows the comparison ofT values for modes
computed by the conventional eNMA, the new eNMA, and
the CHARMM force field. Clearly the modes by the new
eNMA are much closer to those of the CHARMM force field
in terms ofT values. The curve from the CHARMM force
field rises slower than the new eNMA because the CHARMM
force field has a much larger mode number. Figure 4b shows
the projection of an individual CHARMM mode (x-axis) onto
50 low-frequency mode subspace of the new eNMA (empty
circles) and the conventional eNMA (solid squares). The
projection coefficients for the new eNMA are systematically
larger than those of the conventional eNMA, indicating that
the modes of the new eNMA are closer to those of
CHARMM. Testing of the method on other proteins led to
similar conclusions.

Proteins with a Completely Extended Conformation.
Since the tip effect often occurs around less-packed regions
in protein such as surface loops, we tested the new eNMA
on protein conformations that were totally extended. The
purpose of doing so was for cases in which one needs to
conduct, for example, a Monte Carlo sampling of protein

conformation based on elastic normal modes.32 Figure 5a
shows the motional pattern of the first vibrational mode of
the extended lysozyme chain calculated by the new eNMA.
Figure 5b shows theT values, the black squares are for
conventional eNMA, and the empty circles are for the new
eNMA. The tip effect in the low-frequency modes by the
conventional eNMA was much more severe.

Proteins with Multiple Polypeptide Chains. We also
tested the new method on a multipolypeptide chain complex,
the molecular chaperonin GroEL,33 which is an ATP-driven
molecular motor and a supramolecular complex. The mol-
ecule has a cylindrical shape formed by two back-to-back
stacked 7-fold rings. It is known that GroEL has to undergo
huge conformational changes in order to carry out its
biological function, which is for facilitating correct folding
of unfolded or misfolded polypeptide chains.34 The system
has been a subject of many computational studies.14,35,36As
an example, Figure 6a shows the motional patterns of a
second vibrational mode by the new eNMA. This mode is a
stretching mode along a diagonal line of the molecule. The
other low-frequency modes are also similar to what was
previously observed.14 For GroEL, however, the tip effect
in the conventional eNMA (solid squares) is a few orders of
magnitude worse than that in the new eNMA (empty circles).
Figure 6b shows theT values for the first 500 vibrational
modes; note, the plot was made in the logarithmic scale in
the vertical axis.

IV. Concluding Discussion
In this paper, we have reported an improved method for
coarse-grained elastic normal-mode analysis. The Hamilto-
nian used contains the regular term used in conventional

Figure 5. Results on lysozyme (PDB code: 3lzt) with a
completed extended conformation. (a) Motional pattern of the
first vibrational mode calculated by new eNMA. (b) Tip effect,
the solid squares are for conventional eNMA, and the empty
circles are for new eNMA.

Figure 6. Results on multisubunit supramolecular complex,
the molecular chaperonin GroEL. (a) Motional pattern of the
second vibrational mode, which is a stretching mode along
diagonal line of the molecule. (b) Tip effect, the solid squares
are for conventional eNMA, and the empty circles are for new
eNMA. Note the vertical axis is made in logarithmic scale.
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eNMA1,5 and an additional term that involves pseudo bond
angles and dihedrals along the CR traces. Similar to the
Hamiltonian of conventional eNMA, the new one has its
minimum at the current structure so that no initial energy
minimization is needed. The computational procedure was
carried out in the internal coordinate system so that the softest
link in elastic potential, the bond length stretching, was
avoided. The essential idea of eliminating the tip effect was
to increase the stiffness of degrees of freedom even when
they are located in regions that are not very densely packed.

We tested our method on proteins with single polypeptide
chains in their compact native conformations and extended
denatured conformations. We also tested our method on
multisubunit supramolecular complexes. Results demon-
strated that the new method is capable of easing the tip effect
in all cases. It was found that the improvement in the quality
of modes was particularly substantial for supramolecular
complexes. Therefore, we expect such a method would be a
complementary tool to the existing methods. It should be
particularly useful in certain special applications in which a
set of continuous low-frequency modes are needed such as
in structural refinement37 and in normal mode based sam-
pling.24

The scaling factor 3 in eq 5 affects the stiffness of modes.
For larger complexes, the value of this factor may be
adjusted. In our experience, the value between 3 and 15 is
good.

The conventional eNMA was also successfully applied to
cryo-EM density maps,6,8 in which case one does not have
the knowledge of chain connectivity. Extension of our current
method to cryo-EM density maps requires certain efforts. It
may be necessary to artificially construct a pseudochain
among all the points used to represent the density maps using
methods such as the Traveling Salesman Algorithm. We will
report the results in a separate paper.
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Abstract: Two previously introduced simulation algorithms for the dynamics of elastic membrane

sheets embedded in a fluid medium are extended to account for inhomogeneous hydrodynamic

environments. We calculate the height autocorrelation function for a lipid bilayer randomly pinned

to a flat substrate and the influence of fluid confinement by the spectrin cytoskeleton on short

wavelength membrane undulations of the human red blood cell. Altering the hydrodynamic

environment of the membrane leads to significant changes in dynamics, and we discuss these

effects in the context of recent experiments.

I. Introduction
Many interesting problems in membrane biophysics, cellular
biology, and biochemistry involve length and time scales
completely inaccessible to molecular dynamics simulation.
Simple estimates1 indicate that it will be several decades
before fully atomic models will become viable tools for
studying lipid bilayers over the micron and millisecond scales
necessary to make connection with cellular scale behavior.
Recent progress in developing coarse-grained lipid models2-19

points to a more optimistic future for molecular simulation
of biomembranes and related materials; however, these
methods are still far too computationally intensive for
practical use in studying length scales exceeding tens of
nanometers and time scales exceeding hundreds of nano-
seconds. Elastic models represent the only theoretical/
computational means presently available for studying biomem-
branes and lipid bilayers over long length and time scales.

The traditional Canham-Helfrich elastic picture for mem-
brane energetics20-22 combined with overdamped dynamics
in a hydrodynamic environment23,24 has been successfully
applied to numerous biophysical questions of interest.
However such considerations are typically limited to prob-
lems simple enough to be treated analytically23,25-27 or

problems where dynamics are not explicitly considered.28-31

Recently, we have proposed two simulation algorithms for
studying the dynamics of membranes evolving under the
influence of perturbations that do not allow for analytical
treatment. The first of these methods is specific to harmonic
potentials where it is possible to numerically (but impossible
analytically) identify the normal modes of the system.32 The
second method is applicable to general anharmonic poten-
tials.33,34 We will refer to both of these methods as Fourier
space Brownian dynamics (FSBD) in this work.

Both of the previously introduced FSBD algorithms have
solved for the dynamics of elastic sheets residing in a fluid
medium of infinite extent. More realistically, biological cells
and the artificial systems developed to mimic biomembranes
reside in finite environments, which can act to constrain the
fluid flow proximal to the membrane surface. While this fact
is appreciated in the theory literature,23,35,36we are unaware
of prior simulations that have incorporated the effect of finite
sized hydrodynamic environments. It turns out that our
existing FSBD methodology may be extended to account
for impermeable walls near a dynamically evolving mem-
brane with little difficulty. The purpose of this article is to
describe the necessary extensions to FSBD to model a
dynamically fluctuating membrane near a wall impermeable
to fluid flow. Similar considerations can be applied to
semipermeable walls38 as well.

The effect of altering the hydrodynamic environment
around the membrane surface can be striking. Although the
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thermal statistics of the membrane are not altered (as the
energetics of the system do not change), the dynamics
involved in sampling configurations can be modified by
orders of magnitude. Physically, this effect is due to the
difficulty in moving an incompressible fluid around inside
a small volume and could be anticipated; however, the effect
is surprisingly large and demonstrates the importance of
including hydrodynamic effects properly in any simulation.
For the purposes of illustration, we model the height-height
correlation function of a membrane pinned to a solid support
as seen in recent experiments37,38and show that the inclusion
of an impermeable wall in the treatment slows dynamics by
several orders of magnitude relative to treatments that ignore
the presence of the solid support. Our results are in general
agreement with experiment. We also consider the effect of
hydrodynamic effects on the fluctuation dynamics of the red
blood cell and related consequences for membrane protein
diffusion. These results are compared to prior studies where
such effects were neglected and significant influence of
hydrodynamics is noted.

II. Background: Energetics and Dynamics of
an Fluid Membrane Sheet
We begin by specifying the Hamiltonian for a thin membrane
sheet. For the systems we study in this work, it is valid to
assume that the bilayer is nearly flat and height fluctuations
normal to the plane of the membrane are small. In this case,
a convenient parametrization is the Monge gauge, which
specifies the height of the membraneh(r ) in terms of the
location r ≡ (x, y) in the xy plane. The total energy is
therefore written as (Canham-Helfrich energetics)20-22

whereκ is the bending modulus,σ is the surface tension,
and A ) L2 is the projected area of a square patch of
membrane. The heighth(r) is taken to be periodic with period
L in both thex andy directions. The first two terms ofH
reflect bending energetics and energetics due to surface
tension. These terms will be present even for an isolated
membrane sheet suspended in solution. The last term allows
for arbitrary functional dependence ofH on h(r ) as dictated
by any interactions between the membrane and its environ-
ment.

In the overdamped regime appropriate to cellular scale
dynamics,39 the velocity field of the membrane is expected
to be linearly dependent upon the forces acting on the sheet.40

The relationship is generally nonlocal in space due to
hydrodynamic interactions between distant points on the
membrane surface.40 Assuming that height fluctuations away
from h(r ) ) 0 are small, the expression for membrane
velocity is24

whereF(r , t) ) -δH/δh(r , t) is the force per area on the

membrane resulting from the HamiltonianH andΛ(r - r ′)
is a hydrodynamic kernel dependent upon the boundary
conditions for the fluid medium in which the membrane
resides. Additionally, we include a (Gaussian white) thermal
random forceú(r ′, t) that satisfies the fluctuation-dissipation
theorem40

where the inverse ofΛ(r - r ′) is defined by

Although eq 2 is often quoted in the context of a membrane
suspended in an infinite homogeneous hydrodynamic me-
dium, the expression has generality beyond this case. It is
this versatility that we exploit in this work. We shall present
Λ(r ) for different boundary conditions corresponding to
various physical situations in the next section.

The above equations for the membrane are most easily
handled using Fourier modes defined by

In Fourier space, the random force obeys24

The convenience of using the amplitudeshk as dynamical
variables is illustrated in the case where there are no
additional interactions,Hint ) 0. All modes conveniently
decouple, and eqs 1 and 2 simplify to

where we define the frequencies

These equations describe an Ornstein-Uhlenbeck process41

for each modehk whose known analytical solutions lead to
the time correlation functions

H ) ∫A
dr {κ2[∇2h(r )]2 + σ

2
[∇h(r )]2 + Hint[h(r )]} (1)

Vm(r , t) )
∂h(r , t)

∂t
(2)

) ∫-∞

∞
dr ′ Λ(r - r ′)[F(r ′, t) + ú(r ′, t)]

〈ú(r , t)〉 ) 0

〈ú(r , t)ú(r ′, t′)〉 ) 2kBTΛ-1(r - r ′) δ(t - t′) (3)

∫-∞

∞
dr ′ Λ(r - r ′)Λ-1(r ′) ) δ(r ) (4)

hk ) ∫A
dr h(r ) e-ik·r (5)

h(r ) )
1

L2
∑

k

hk eik·r

〈úk(t)〉 ) 0

〈úk(t)úk′(t′)〉 ) 2kBTL2 Λk
-1 δk,-k′ δ(t - t′) (6)

H )
1

2L2
∑

k

(κk4 + σk2)|hk|2 (7)

∂hk(t)

∂t
) -ωkhk + Λkúk (8)

ωk ≡ Λk(κk4 + σk2) (9)

〈hk(t)hk′(0)〉 )
kBTL2

κk4 + σk2
e- ωkt δk,-k′ (10)

〈h(r , t)h(r , 0)〉 )
kBT

L2
∑

k

1

κk4 + σk2
e-ωkt (11)
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In the general case whereHint * 0, working in Fourier
space is still useful for removing the convolution in eq 2

The forceFk is a functional of the height fieldh(r , t) and,
in general, depends on the entire set of amplitudes{hk}. In
the case of harmonic interactions, it is possible to identify
normal modes for the system, which still allows for analytical
calculations and/or simplified simulations. Anharmonic
potentials require a true simulation approach. We discuss
both harmonic and anharmonic perturbations in the following
sections. Before proceeding, however, the hydrodynamic
kernel must be derived for the physical boundary conditions
appropriate for the system. In the next section, we specify
Λk for two different cases of interest.

III. Hydrodynamic Kernels
This section presents a brief motivation for the hydrodynamic
kernels adopted in the following calculations (eqs 22, 24,
and 26-29). Further elaboration on the calculation of these
quantities may be found in the original papers by Seifert35

and Gov et al.36

The effect of surrounding fluid flow on membrane motion
is determined by the Navier-Stokes equations for an
incompressible fluid. In cellular environments, the Reynolds
number is small,39 and inertia can be neglected so that (Stokes
equations42)

wherev is the velocity of the fluid with viscosityη, andp
is the pressure. Additionally, the incompressibility of the fluid
requires that

Boundary conditions for the system determine the solution
for the velocity and pressure due to a given deformation of
the membrane. In this work, the two cases of interest are
that of a membrane in an infinite fluid and a membrane near
an impermeable wall. Similar solutions for a membrane next
to a permeable wall may also be derived36 but will not be
discussed here.

By performing the Fourier transform (in thex and y
dimensions only as in eq 5) on the Navier-Stokes equations
and the incompressibility condition, we derive the differential
equation that (Vz)k obeys

This equation can be reduced to

where thec′i are arbitrary constants. This second order
differential equation has the solution

All of the ci are arbitrary constants to be determined by the
boundary conditions, which we specify below.

Taking the bilayer to be located atz) 0, the hydrodynamic
kernel Λk can be derived from the requirement that the
velocity of the fluid immediately adjacent to the membrane
matches the velocity of the bilayer. This condition, expressed
as Vz

((z ) 0) ) Vm, combined with eq 12 leads to an
equation involving the hydrodynamic kernel

The superscript( refers to the two fluid regions separated
by the bilayer, the upper portion (+) and the lower portion
(-). Defining the stress tensor for both upper and lower
regions

force balance between hydrodynamic stress and force on the
bilayer implies

The hydrodynamic kernel is therefore given by

where the velocity, the pressure, and the stress tensor are
found by using eq 17 for a given set of boundary conditions.

We now specify the necessary boundary conditions for
the cases considered in this work. For regions of fluid
extending infinitely far away from the membrane, it must
be the case thatv(z) ) 0 at distances far from the membrane
surface. The bilayer defines the other boundary for such a
semi-infinite region. Continuity requires that the velocities
of the fluid on either side of the membrane match atz ) 0.
This condition is expressed asv+(z ) 0) ) v-(z ) 0), where
v+ andv- are the solutions above and below the membrane,
respectively. Additionally, a membrane with infinite regions
of fluid on both sides is required by symmetry to respect
Vz

+(z) ) Vz
-(-z). This condition leads to the solution

Our main interest is that of a membrane near an imperme-
able wall, which we take to be located atz ) -d. The wall
imposes the boundary conditionv-(z ) -d) ) 0, which
forces the velocity of the fluid to vanish there. To uniquely
determineΛk, an additional boundary condition must be
specified at the membrane surface. Seifert35 has argued for
in-plane incompressibility of the membrane

which results in a solution

More recently, Gov et al.36 have argued for boundary

∂hk(t)

∂t
) Λk{Fk[h(r , t) ] + úk(t)} (12)

η∇2v ) ∇p (13)

∇·v ) 0 (14)

∂z
2[(-k2 + ∂z

2)(Vz)k] ) k2[(-k2 + ∂z
2)(Vz)k ] (15)

(-k2 + ∂z
2)(Vz)k ) c′1 sinhkz+ c′2 coshkz (16)

(Vz)k ) c1sinhkz+ c2 coshkz+
c3z sinhkz+ c4z coshkz (17)

[(Vz
()k]z)0 ) ΛkFk (18)

Tij
( ≡ η(∂iVj

( + ∂jVi
() - p(δij (19)

Fk ) [(Tzz
-)k - (Tzz

+)k]z)0 (20)

Λk )
(Vz)k

(Tzz
-)k - (Tzz

+)k
|
z)0

(21)

Λk
inf ) 1

4ηk
(22)

[∂xVx + ∂yVy]z)0 ) 0 (23)

Λk
S ) Λk

infe
2kd + e-2kd - 2[1 + 2(kd )2]

e2kd - [1 + 2(kd)2] + 2kd
(24)
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conditions reflecting the fact that a fluid membrane is not
expected to support shear stress. Mathematically, this
translates to

(and similarly forTyz) so that the shear stress is the same on
both sides at the membrane. A different solution is found in
this case

Both solutions approachΛk
inf as kd becomes large, as

expected on physical grounds. The hydrodynamics should
be unaffected by the wall if the wall is far enough away
(the magnitude of “far enough” is seen to depend on the
wavelength of the deformation). However, askd becomes
small, the limiting behavior of the two solutions differ by a
factor of 4 such thatΛk

S f k2d3/12η and Λk
G f k2d3/3η.

Using eq 9 for the noninteracting membrane as an ap-
proximate guide, we see that, in this limit, the relaxation
times are longer for the scenario of Seifert.

We discuss the case of findingΛk when the viscosities
above and below the membrane are different. The procedure
for finding these solutions is similar to the one outlined
already in this section. For notational convenience, we define
ηj ) (η+ + η-)/2, ê( ) η(/ηj, and∆ ) (η+ - η-)/2ηj. The
wall is located below the membrane where the viscosity is
η-. The solution for the membrane in the unbound fluid is

In the presence of the wall, the solution with Seifert’s
boundary condition is

while the solution for Gov’s boundary condition is

In the case ofη+ ) η-, ê( ) 1 and∆ ) 0, and we recover
the solutions in eqs 22, 24, and 26.

The general effect of the wall is to slow the relaxation of
the membrane. The confinement of water between the
membrane surface and the adjacent wall hinders relaxation
of the membrane. For an estimate of the difference between
the decay times of a bound and unbound fluid, we refer,
again, to eq 9 for the noninteracting membrane. Since the
relaxation time of the amplitudehk is given by 1/ωk, we see
that the presence of the wall slows the membrane by a factor
of ∼1/(kd)3 in the limit of small kd. The dynamics of the
membrane can be altered significantly if the wall is close

enough to the bilayer or if the dominant modes have a
sufficiently long wavelength.

IV. Independent Modes
Since we work with the amplitudeshk as the dynamical
variables, it is important to recognize that they are not all
independent (even ifHint ) 0). Sinceh(r ) is a real quantity,
the amplitudes must obey conditionhk

/ ) h-k. In addition,
we generally discretizeh(r ) to avoid handling an infinite
number of modes and to coarse-grain over microscopic
details. Let the height field be discretized as anN × N matrix
with a lattice spacingl ) L/N so that the allowed wave
vectors arek ) (m, n)2π/L with - N/2 < m, n e N/2. To
proceed with any calculations or simulations, it is first
necessary to findN2 independent variables with which to
work.

The discrete Fourier transform of a realN × N matrix
has four explicitly real modes ifN is even, and one explicitly
real mode ifN is odd. We consider only the case whereN
is even (the procedure for oddN follows in a straightforward
fashion). The explicitly real modes are (m, n) ) (0, 0), (N/
2, 0), (0,N/2), and (N/2, N/2). Note that the center of mass
hcm is related to the (m, n) ) (0, 0) mode by the equation

(In this work we always consider systems with a fixed center
of mass and the (m, n) ) (0, 0) mode is not considered a
dynamical variable.) We label the remaining three explicitly
real modes asqr: (m, n) ) (N/2, 0), (0,N/2), and (N/2, N/2).
The remaining independent modes are chosen based on the
conditionhk

/ ) h-k. We label theseN2/2-2 modesqc: (m,
n) for - N/2 < m < N/2 and 0< n < N/2, (m, 0) for 0 <
m < N/2, (m, N/2) for 0 < m < N/2, and (N/2, n) for 0 < n
< N/2. These modes are illustrated graphically in Figure 1.

Defining the real and imaginary parts of the amplitudes
to behk ≡ ak + ibk, the set ofN2 independent modes can be
listed as ({aqc},{aqr},{bqc}). We define a vector of lengthN2

- 1

as a way of indexing these independent modes. Although
the sets{qc

real} and {qc
imag} both span the same values as

{qc}, the superscript labels are used for clarity. Note thatk
is the Fourier index, whileq is just a vector for the
independent modes defined by eq 31.

All of the above also applies toú(r ). Defining úk ≡ fk +
igk, the set of independent random forces is ({fqc},{fqr},{gqc}).
Using eq 6, the fluctuation-dissipation relations become

All cross correlations are equal to zero.

V. Harmonic Interactions
We focus on a physical situation for which a harmonic form
of the interaction potential is appropriate. Specifically, we

[Txz
+ - Txz

-]z)0 ) 0 (25)

Λk
G ) Λk

inf e-2kd{e2kd - [ 1 + 2(kd )2] - 2kd} (26)

Λk
inf,general) 1

4ηjk
(27)

Λk
S,general)

Λk
inf,general e2kd + e-2kd - 2 [1 + 2(kd)2]

e2kd - [1 + 2(kd)2]ê+ + 2kdê- + ∆ e-2kd
(28)

Λk
G,general)

Λk
inf,generale

-2kd {e2kd - [1 + 2(kd)2] ê+ - 2kdê-} + ∆ e-4kd

1 - 2∆ e-2kd[1 + 2(kd)2] + ∆2e-4kd

(29)

hcm )
hk)0

L2
(30)

q ≡ ({qc
real}, {qr}, {qc

imag}) (31)

〈 fqc
(t)〉 ) 〈 fqr

(t)〉 ) 〈gqc
(t)〉 ) 0

〈 fqc
(t)fqc

(t′)〉 ) 〈gqc
(t)gqc

(t′)〉 ) kBTL2Λqc

-1δ(t - t′)

〈 fqr
(t)fqr

(t′)〉 ) 2kBTL2Λqr

-1δ(t - t′) (32)
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are interested in interactions that strongly bind the bilayer
to a height ofzi at localized positionsRi in the plane of
membrane. Such a pinning interaction is described by the
equation

with a resulting force

We discuss here and in the Appendix a method for
obtaining averages and time correlation functions without
the need for simulations. The procedure described here is
an extension of previous work.32 In Fourier space, the full
set of equations can be written as

where

and the sums excludek ) 0. In this work, we are interested
exclusively in systems with a fixed center of mass

which appears explicitly as a constant inm′k.
Since the modes in the above equations are mixed, we

use matrix diagonalization to decouple the amplitudeshk.
This procedure is somewhat complicated and is relegated to
the Appendix. After diagonalization, the equations can be
written in terms of the eigenmodesdj, the eigenvaluesωj,
and the orthogonal transformation matrixU. The completely
decoupled equations are

where nj is a time-independent constant defined in the
Appendix. The quantitiessj(t) is related to the original
random forces in eq 6 and obey the fluctuation-dissipation
relations

The above equations define a set of independent Ornstein-
Uhlenbeck processes41 for the evolution of the harmonically
pinned membrane surface. As such, it is a simple matter to
simulate the stochastic behavior of the membrane by drawing
random numbers from suitable Gaussian distributions. We
do not pursue this type of simulation in the present work
but instead calculate the average membrane shape, fluctua-
tions, and dynamics analytically from the normal mode
decomposition. Averages and time correlations for the
eigenmodesdj can be calculated in a way similar to the case
of the noninteracting membrane. The results are

whereσj
2 ≡ 〈dj

2〉 - 〈dj〉2. The equations lead to the average
height and time correlation functions

whereVj(r ) is defined in the Appendix.

VI. Nonharmonic Interactions
We now discuss the more general case in which the physical
interaction cannot be written in terms of a harmonic potential.

Figure 1. Plot of the N2 modes (for N even) in k space. The
four circled, black dots are the real modes consisting of the
center of mass mode, k ) 0, and the other three modes {qr}.
The remaining black dots are the independent, complex
modes {qc}, while the gray dots are the dependent, complex
conjugates of {qc}. Each qr contributes one independent
variable, while each qc contributes two independent variables.
The (m, n) values for the upper-right and lower-left modes
are shown in the plot to define the boundaries in kx and ky

space.

Hpin[h(r ) ] )
γ

2
∑

i

[h(r ) - zi]
2δ(r - Ri) (33)

Fpin(r ) ) -γ∑
i

[h(r ) - zi]δ(r - Ri) (34)
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(∑
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hk
*M′kk ′hk′ + 2∑
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m′khk)

∂hk(t)

∂t
) Λk(-∑
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M′kk ′hk′(t) - m′k + úk(t)) (35)
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hk)0

L2
(37)

H )
1

L2
∑

j

(ωjdj
2 + 2njdj) (38)

∂dj(t)

∂t
) -ωjdj(t) - nj + sj(t) (39)

〈sj(t)〉 ) 0

〈sj(t)sj(t′)〉 ) kBTL2δ(t - t′) (40)

〈dj〉 ) -
nj

ωj
(41)

〈dj
2〉 )

kBTL2

2ωj
(42)

〈dj(t)dj(0)〉 - 〈dj〉
2 ) σj

2 e-ωjt (43)

〈h(r )〉 ) hcm + ∑
j

Vj(r ) 〈dj〉

〈h(r , t)h(r , 0)〉 - 〈h2(r )〉 ) ∑
j

Vj
2(r ) σj

2 e-ωjt (44)
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In this situation, a simulation must, in general, be performed.
We describe a Fourier Space Brownian Dynamics (FSBD)
method33,34 for time evolving the membrane based on
standard Brownian dynamics.43 The essential difference
between the two methods is that, rather than using the
position space variables, the amplitudeshk are evolved
instead. By making this choice, the computationally expen-
sive convolution in eq 2 is avoided.

We first integrate eq 12 fromt to t + ∆t for small ∆t to
get

Exactly N2 independent random values must be chosen to
properly constructΓk(∆t). We therefore restrict ourselves to
the modesq defined eq 31. Using eq 32, it can be shown
that the real and imaginary parts ofΓqc(∆t) are both drawn
from a Gaussian distribution of mean zero and variance
kBTL2Λk∆t, while Γqr(∆t) is drawn from Gaussian distribution
of mean zero and variance 2kBTL2Λk∆t. After picking
random values forΓq(∆t), the full matrix forΓk(∆t) can then
be reconstructed.

The FSBD method is summarized below:
1. Evaluate the interaction part of the forcesFint(r ) )

-δHint/δh(r ) in position space.
2. Compute the bending forces-κk4hk and surface tension

forces-σk2hk. Evaluate the interaction forceFk
int by Fourier

transforming the result of the previous step.
3. As described above, draw random values from the

appropriate Gaussian distributions for the independent modes
only. ConstructΓk(∆t) from these values.

4. Computehk(t + ∆t) using eq 45. Inverse Fourier
transformhk to obtainh(r ) for use in the next iteration.

It is essential to choose a sufficiently small time step∆t
such that the results have converged.

VII. Application of Harmonic Dynamics:
Fluctuation Time Scales for Intermembrane
Junctions
Lipid bilayers supported by solid substrates have become
important tools for studying various membrane-related
biophysical processes.44 These bilayers are either directly
fixed to the surface or are separated from the substrate by a
thin layer of water or a polymer cushion. Membranes that
are not directly attached to the surface retain their fluid
properties,45 making them useful as model systems for
studying processes, such as the formation of the im-
munological synapse,46,47 that involve the free diffusion of
components in the bilayer.

In this section, we focus on a recent experimental study
of supported intermembrane junctions by Kaizuka and
Groves.37 In these experiments, giant unilamellar vesicles
were ruptured over a previously deposited planar supported
membrane surface. The ruptured vesicles were observed to
adhere to the underlying supported bilayer in two distinct
fashions (see Figure 2). Either the two bilayers adhere to
one another with a nearly uniform separation of a few

nanometers (“Type 1” intermembrane junction), or the two
bilayers form an irregular interface with average separation
on the order of 50 nanometers held together by a sparse
randomly distributed network of pinning sites where the two
bilayers closely approach one another (“Type 2” intermem-
brane junction). In the Type 2 junctions, an appreciable
volume of water is effectively trapped between upper and
lower bilayers, making these systems a natural realization
of hydrodynamic flow next to an impermeable wall. The
reason for the formation of these distinct structures and the
nature of the localized pinning in the Type 2 systems remain
poorly understood. Kaizuka and Groves37 have studied the
average height and dynamic fluctuations of Type 2 junctions
via fluorescence interference contrast (FLIC) microscopy,48,49

and it is these data that we discuss here.
We model this system by assuming that the upper

membrane surface is locally pinned to the supported bilayer
in a geometry directly inferred from experimental dataswe
make no attempt to account for the physical basis of this
random adhesion. This localized pinning is achieved by using
the potential in eq 33 withγ sufficiently large to fix the
membrane at heightzi ) 0 at the experimentally determined
pinning sitesRi (i.e. we define the height of the upper bilayer
to be zero (h(Ri) ) 0) where the pinning occurs). For the
purposes of this simulation, the lower bilayer is an imperme-
able wall located atz ) 0. The system sizeL ) Nl ∼ 5.4
µm, with N ) 64 andl ∼ 85 nm correspond with the size
and resolution obtained in experiment. We account for the
trapped volume of water in the junction by settinghcm to a
positive constant value. This is equivalent to a constant
volume condition for our periodic boundary condition
simulations. The distanced of the membrane from the wall
in the expression forΛk is therefore set equal tohcm. We
also assume that the interactions responsible for pinning the
membrane to the supported bilayer dictate the slope of the
membrane around the pin. To model this boundary condition

Figure 2. Illustration of the two types of junctions (adapted
from ref 37). The thick line on the bottom and directly over
the substrate represents the supported lipid bilayer. The giant
unilamellar vesicle that has been ruptured over this planar
bilayer is represented by another thick line above it. Type 1
junctions have intermembrane spacings of about 2-3 nm
compared to Type 2 junctions which can have spacings of
about 50 nm as well as localized adhesion sites.

hk(t + ∆t) ) hk(t) + ΛkFk(t)∆t + Γk(∆t)

Γk(∆t) ≡ Λk ∫t

t+∆t
dt′ úk(t′) (45)
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within our harmonic scheme, we harmonically bind the four
sites immediately adjacent to the pin location at a height of
zi ) hn using eq 33, which leads to a slopes ) hn/l. The
average shape of the junction and magnitude of fluctuations
can then be calculated using eq 44 assuming the experimental
conditions ofT ) 293 K andη ) 0.01 poise and implement-
ing either of the two hydrodynamic kernels previously
discussed.

The values chosen for the physical parametershcm, s, κ,
andσ must be obtained by fitting to the experimental data,
a process significantly complicated by the limited lateral
resolution of the FLIC technique (i.e. the experimental data
reflects a convolution in space over the point spread function
of the laser). The procedure involved is beyond the scope
of this work, so we simply quote the results for our
parameters in Table 1. A detailed account of the agreement
between experiment and theory for the average shape and
fluctuations of the junction will be presented elsewhere.50

The present work is concerned with the impact of different
hydrodynamic kernels on relaxation time scales, and we focus
on this question here. To give an idea of the shapes generated
by these simple elastic considerations we do present the shape
and fluctuations for a representative arrangement of pinning
sites (Figure 3).

Time correlation functions for height fluctuations in this
system have been measured experimentally with observed
decay times in the range of hundreds of milliseconds to
seconds38 depending on the particular junction probed and
the location of the observed fluctuation within the pinned
geometry. Since the supported planar bilayer should act as
an impermeable boundary to fluid flow, the hydrodynamic
kernels in eqs 24 and/or 26 are expected to apply.

In Figure 4, we plot the predicted time correlation function
at several locations distributed over the membrane surface
and using both suggested hydrodynamic kernels. Our results
show relaxation times in qualitative agreement with experi-
mental results. The difference between results employing
Seifert’s and Gov’s hydrodynamic boundary conditions are
appreciable but not so striking as to rule one form out in
favor of the other on the basis of available experimental data.
What is clear is that the inclusion of the impermeable wall
in some fashion is necessary to set relaxation time scales
close to experimental values. Blindly applying the standard
result in eq 22 for a membrane in an infinite fluid medium
leads to relaxation times orders of magnitude too fast relative
to experiment.

For comparison, we also plot the results without hydro-
dynamics by using a constant valueΛk ) 1/4ηk0 for all k,
where k0 ) 2π/L is the longest wavelength mode in the
system. The choice of this constant value ensures that the
longest wavelength mode evolves as it would with hydro-
dynamics. The other modes, however, evolve with a kernel
that isk/k0 times larger than the hydrodynamical value. For
concreteness and simplicity, we first study the relaxation
frequencies of the membrane without interactions in eq 9.
The decay time for each mode is proportional to 1/Λk so
that the shorter wavelength modes have shorter decay times
when the constant value of 1/4ηk0 is used. This analysis
should also be approximately true in the case where there
are interactions. The effect of faster decay by the shorter
wavelength modes can be seen over the shorter times scales
in Figure 4.

The time scales seen in our figures are in general
agreement with a more simplified approach to analyzing the

Table 1. Model Parameters for the Intermembrane
Junction

parameter description value reference

κ bending modulus 7 × 10-12 ergs a
σ surface tension 0.08 dyn/cm b
η viscosity 0.01 poise water
T temperature 20 °C c
L system size 5.4 µm d
l lattice spacing 85 nm d
s slope around pinned site 0.29 b
hcm center of mass 46 cm b
γ pinning constant 108 ergs cm-2 e

a Personal communication with Kaizuka and Groves.37 b Fit to data
of ref 37. c Reference 37. d From data provided by ref 37. e Sufficiently
large to fix the membrane at the pinning site. Simulations with larger
values of γ give identical results.

Figure 3. Average bilayer shape and fluctuations for a representative configuration of pinning sites in a Type 2 intermembrane
junction. The results were obtained using the diagonalization procedure of section V with the physical constants listed in Table
1. The left panel shows the results for the average height 〈h(r)〉. Note that the bottom of the wells are pinned at a height of 0

(outside the range of the plot). The right panel shows the size of the height fluctuations σh(r) ≡ x〈h2(r)〉-〈h(r)〉2. Both left and
right panels display the data with z axis significantly expanded relative to x, y to show detail.
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data suggested by Kaizuka and Groves.38 In that work, Gov’s
form for the hydrodynamic kernel was employed, but an
empirical Hamiltonian was introduced to constrain the upper
membrane at a fixed height from the support. As far as the
dynamics are concerned, the two methods produce similar
results. The present study has the advantage of fitting all
available experimental data to an elastic model that is
physically motivated (albeit with an unexplained pinning
interaction). We stress that the difference between the
predicted relaxation rates for theΛk with and without the
wall is several orders of magnitude. The presence of a wall
slows the dynamics of the membrane significantly and must
be included for proper modeling of experiment.

VIII. Application of Anharmonic Dynamics:
Red Blood Cell Protein Mobility
In previous work,33,34,51we have studied the effect of thermal
membrane undulations on the lateral diffusivity of band 3
protein over the surface of the red blood cell. Band 3 is
known to diffuse freely over length scales less than∼100
nm, but its motion is hindered over larger distances.52-56 The
reason for the slower diffusion on longer length scales is
the presence of the cell’s cytoskeleton, which consists of
roughly triangular corrals formed by spectrin filaments57,58

attached to the membrane in a quasi-regular geometry. The
microscopic diffusion constant,59 D ) 0.53µm2 s-1, on scales
smaller than the size of the corrals,59 Lc ∼ 110 nm, is in
good agreement with estimates for protein diffusivity in a
viscous quasi-two-dimensional environment.60 However the
macroscopic diffusion constant, relevant over longer length
scales, takes on a value,Dmacro ) 6.6 × 10-3 µm2 s-1, 2
orders of magnitude smaller.59,61-66

Although the cytoskeleton hinders protein motion, band
3 does manage to escape confinement as evidenced by the
finite macroscopic diffusion coefficient. One possible mech-
anism for this escape process is that thermal membrane
fluctuations may help the protein to escape local confinement

by lifting the cytoplasmic domain of the protein over the
top of the cytoskeletal barriers.33,34,51Using methods similar
to those of our prior studies, we calculate the expectedDmacro

resultant from fluctuations in bilayer shape. In contrast to
previous work we include in this study a hydrodynamic
kernel that approximately accounts for the hampered flow
of cytoplasm (and hence slowed motion of the bilayer) due
to the presence of spectrin filaments.

We model the interactions of the membrane with the
cytoskeleton with a combination of two potentials. First, the
bilayer is pinned to the membrane at discrete points using
eq 33 to mimic the attachment of the membrane to the
spectrin filaments. Second, the steric interaction between the
membrane and the cytoskeleton is modeled with the repulsive
hydration potential67

whereaix + biy + ci ) 0 specifies a particular linear segment
of spectrin between pinning sites. The repulsive interaction
is localized to this set of lines with a width of aboutl ) 7
nm. The physical parameters used for this system are shown
in Table 2.

Since the repulsive interaction in eq 46 is not harmonic,
we must perform a simulation of the membrane to compute
averages of interest, as detailed in section VI. In Figures 5
and 6, we show sample configurations of two different
geometries generated using the FSBD simulation method.
Since altering the hydrodynamics of the system only affects
dynamics and not thermal statistics, these configurations are
consistent with what was seen in our prior studies without
the inclusion of hydrodynamic effects imposed by spectrin
(see below).

We develop a model of protein mobility that incorporates
thermal fluctuations of the lipid bilayer. Band 3 protrudes
into the cellular interior a distance ofh0 ) 6 nm69 and

Figure 4. Plot of typical time correlations functions 〈δh(r, t)δh(r, 0)〉, where δh(r, t) ≡ h(r, t) - 〈h(r)〉, for different boundary
conditions. The results are shown for Seifert’s boundary condition in the left panel and Gov’s boundary condition in the middle
panel. The three curves indicate roughly the range of decay times for different locations on the membrane away from the pinning
sites. In the right panel, a typical correlation function for a hydrodynamic kernel assuming an infinite fluid environment (no wall)
is shown. For comparison, results without hydrodynamics are also plotted. In that case, we use a constant value Λk ) 1/4ηk0,
where k0 ) 2π/L is the longest wavelength mode in the system. The time scales for relaxation when there is no wall are orders
of magnitude faster than the observed experimental decay times of hundreds of milliseconds to seconds.38 Incorporation of the
proper hydrodynamic kernel is necessary to model the experiment.

Hrep[h(r )] ) ε e-h(r )/λ∑
i

exp{-(aix + biy + ci

l /4 )2} (46)
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interacts sterically with the cytoskeleton as it diffuses within
the corral. The first requirement for band 3 escape from the
corral is that the separation between spectrin and bilayer
locally exceedh0, so that there is a large enough gap for the
protein to slip through. Second, the height fluctuation should
persist long enough for the protein to diffuse a distance equal
to the width of the spectrin filament (approximatelyl ) 7

nm). On average, the time to diffuse this distance is
tD ) l 2/4D ) 23 µs. An escape probability along the corral
edge can be calculated by using FSBD to find correlated
probability thath(r ) > h0 at both times 0 andtD. Knowledge
of this escape probability leads to the macroscopic diffusion
constantDmacro as detailed in our previous studies.33,34

In previous work,32-34,51 we assumed that the red blood
cell membrane was fluctuating in an unbound fluid charac-
terized by the viscosity of the red cell cytoplasm. In recent
work by Gov et al.,26 it was proposed that the cytoskeleton
acts as a source of confinement of hydrodynamic flow. The
use of the hydrodynamic kernel with a wall in eq 26 provided
improved fits to experimental dynamic membrane fluctuation
data relative to models incorporating infinite hydrodynamic
boundaries. Since we choose to use the valued ) 35 nm
determined using the hydrodynamic kernel proposed by Gov
et al.,26 we use that version of the kernel (eqs 26 and 29) in
our simulations.

We illustrate the effect of the wall by studying the
probability that the membrane height lies aboveh0 at timet
given that it was aboveh0 at time 0 defined by

whereP(r ) is the equilibrium probability thath(r ) > h0 given
by

andΘ is the Heaviside step function. The escape probability,
and thereforeDmacro, depends on the value ofP(r )C(r , tD).
In Figure 7, we plot a comparison ofC(r , t) for two different
hydrodynamic kernels. As expected, the membrane relaxation
is slowed in the presence of an impermeable wall.

Historically, we have calculatedDmacrousingP(r )C(r , tD)
because analytical results are available for harmonic poten-
tials. Using FSBD however, it is possible to calculate the
probability that the membrane remain aboveh0 for the entire
time intervaltD, defined to be

In our case, we require thath(r , t) > h0 at each time step∆t

Table 2. Model Parameters for the Red Blood Cell

parameter description value reference

κ bending modulus 2 × 10-13 ergs a
σ surface tension 0 b
η+ water viscosity 0.01 poise water
η- cytoplasm viscosity 0.06 poise a
T temperature 37° C body temp
h0 depth of cytoplasmic domain of band 3 6 nm c
D band 3 diffusion constant 0.53 µm2 s-1 d
Lc corral size 112 nm d, e
l lattice spacing 7 nm e
tD random walk time step 23 µs e
γ pinning constant 100 ergs cm-2 e
ε repulsive potential energy scale 8.7 × 10-4 ergs cm-2 f
λ repulsive potential length scale 0.2 nm g

a Reference 23. b Reference 68. c Reference 69. d Reference 59. e Reference 32. f References 33 and 34. g Reference 67.

Figure 5. Sample configuration for a membrane with square
pinning and cytoskeletal repulsion. The pinning sites are
indicated by spheres and the repulsive interaction due to
spectrin is localized along the black lines which connect
between the pinning sites. The z-axis is expanded to help
visualize fluctuations in the membrane.

Figure 6. The same plot as in Figure 5, except for a triangular
geometry.

C(r , t) )
〈Θ(h(r , t) - h0)Θ(h(r , 0) - h0)〉 - P2(r )

P(r ) -P2(r )
(47)

P(r ) ) 〈Θ(h(r ) - h0)〉 (48)

Popen(r , t) ) 〈δ(tD - ∫0

tDdsΘ (h(r , s) - h0))〉 (49)
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in our simulation. It should be emphasized that, in the
absence of detailed modeling of the interactions between the
membrane, cytoskeleton, and protein, bothP(r )C(r , tD) or
Popen(r , t) serve as approximations for the calculation of
Dmacro. It is not clear a priori which approximation should
serve as a closer mimic to experiment.

The values of the macroscopic diffusion constant for
various scenarios are shown in Table 3. We note several
observations for the different scenarios listed. First, as a result
of the increased temporal persistence of fluctuations due to
the wall, the macroscopic diffusion constants are larger
relative to the case of a membrane in an unbound fluid.
Second, using the viscosity of water forη+ so thatη+ < η-

(a more realistic scenario for the case of a red blood cell in
a biological environment) decreases the relaxation time for
the membrane and therefore decreasesDmacro. Finally, the
use ofPopen(r , tD) is a more restrictive condition and decreases
the macroscopic diffusion constant as compared to the value
obtained usingP(r )C(r , tD) (in generalPopen(r , tD) < P(r )-
C(r , tD)).

In previous studies, we have only obtained the results in
the top two rows of Table 3. The last two rows represent
the most accurate scenario assuming that the hydrodynamic
flow is confined on the length scales in our system (the
original study by Gov et al.26 showed better fits to fluctuation
data for length scales in the range of hundreds of nanometers
to microns, a range larger than for our relevant length scale
of ∼Lc). In the case whereP(r )C(r , tD) is used, the increase
in decay times due to the wall is roughly canceled by a
decrease due to the smaller viscosity of water. The final
values for the last two rows is approximately the same as
for the first two rows. For the case where we usePopen(r ,
tD), the values in the last two rows are about 3 or 4 times
smaller than the first two rows. This decrease results from
the fact that usingη+ * η- has a more drastic effect than in
the previous case and is not canceled by the presence of the
wall. Short time fluctuations are important in the case where
we require the membrane to be aboveh0 for the entire
interval, and therefore it is not surprising that decreasing the
viscosity above the bilayer leads to a larger reduction in the
value of the macroscopic diffusion constant. In the scenario
of the last two rows, as for the results of the previous study,
the experimental value,Dmacro ) 6.6 × 10-3 µm2 s-1, lies
between the values obtained using the two different methods.
In this sense, the contributions of the wall and unequal
viscosities largely cancel one another.

IX. Conclusion
The computational limitations of molecularly based simula-
tion schemes dictate that simpler models be developed to
study phenomena over the length and time scales relevant
to cellular biology and related physical systems. In this work
we have extended the generality of the FSBD approach for
modeling elastic membrane sheets by incorporating the
possibility of noninfinite hydrodynamic environments. Al-
though the resulting equations and algorithms are largely
unaltered from the original FSBD methodology, the observa-
tion that generalized hydrodynamic kernels may be incor-
porated within this approach greatly enhances the practical
utility of FSBD. We have presented two applications that
clearly demonstrate the considerable influence of hydrody-
namic conditions on membrane dynamics. Given the finite
size and complex structures inherent to cellular systems, it
is clear that noninfinite boundary conditions are a necessity
to properly model most dynamics relevant to biology at the
cellular scale.
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Appendix
We describe in more detail the diagonalization procedure
used in the Harmonic Interactions section. The first step is
to write eq 35 in terms of theN2 independent modes
({aqc},{aqr},{bqc}) defined in the section Independent Modes.
All quantities in the new equations are explicitly real. It is

Figure 7. Plot of C(r, t) in eq 47, the correlated probability
that the membrane height is greater than h0 at time t given
that it was greater than h0 at time 0. The results shown are
for the point r ) (Lc/2, 0) in a square geometry. The relaxation
of the membrane in the presence of the wall is slower than
that of a membrane in an unbound fluid.

Table 3. Results for Dmacro for Various Casesa

1000Dmacro

(µm2 s-1)
using P(r)C(r, tD)

1000Dmacro

(µm2 s-1)
using Popen(r, tD)

experiment 6.6
square, η+ ) η-, no wall 37.8 ( 2.0 2.83 ( 0.25
triangle, η+ ) η-, no wall 18.8 ( 5.3 2.02 ( 0.38
square, η+ ) η-, wall 188 ( 3 20.3 ( 1.2
triangle, η+ ) η-, wall 155 ( 3 18.0 ( 0.9
square, η+ * η-, no wall 7.40 ( 1.7 0.151 ( 0.048
triangle, η+ * η-, no wall 6.12 ( 0.17 0.0560 ( 0.0283
square, η+ * η-, wall 43.5 ( 1.9 0.859 ( 0.102
triangle, η+ * η-, wall 20.5 ( 2.2 0.490 ( 0.105

a The FSBD simulations were performed over a time of t ) 30 ms
using a time step of ∆t ) 1 ns. When the viscosities above and below
the membrane are the same, we use the cytoplasmic viscosity η )
η- (see Table 2) consistent with our prior work.32-34,51
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then necessary to rescale the modes such that both the
Hamiltonian and the equation of motion can be simulta-
neously diagonalized. The appropriate set of variables is

with a new random force is similarly defined as

where each component obeys

In terms of these new variables, the equations become

where matrix multiplication is implied. The vectorm is
defined by

where

The matrixM is defined to be

where indices along each dimension are as defined in eq
31. For example, the block defined byP + Q has dimensions
of (N2 - 4)/2 by (N2 - 4)/2 and indices running through{

qc
real} and {qc

real}, the block defined by- R + S has
dimensions of (N2 - 4)/2 by (N2 - 4)/2 and indices running
through {qc

real} and {qc
imag}, the block defined byP has

dimensions of 3× 3 and indices running through{qr} and
{qr}, and the block defined byx2P has dimensions of (N2

- 4)/2 × 3 and indices running through{qc
real} and {qr}

(for the block in the first row, second column inM ). Note
that the matrixM is a symmetric matrix resulting from the
fact thatP, Q, andS are symmetric andR is antisymmetric.

Diagonalization ofM yields a transformation matrixU, a
set of eigenmodesd ≡ U1-c, and a set of eigenvaluesω.
Rewriting the equations in terms of these quantities and
definingn ≡ U-1m ands≡ U-1p, we derive eq 38. Finally,
to compute averages, an expression forh(r ) in terms of the
eigenmodes is required. By definingv(r ) ) w(r )U, we can
write the height ash(r ) ) v(r )d. This definition ofv(r ) is
used in eq 44.
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Abstract: Sampling rare, short-time, and reactive trajectories is of considerable interest in

molecular simulations. These trajectories, which are also called “activated”, hop between stable

states separated by energy or entropy barriers. Simulations of activated trajectories with random

sampling of initial conditions are inefficient, since most initial conditions lead to trajectories that

do not pass the barrier in short times. A boundary value formulation is proposed that selects

these rare trajectories, making the sampling of point-to-point reactive trajectories more effective.

Earlier boundary value formulations by one of us focused on computations of approximate

trajectories. In the proposed method, trajectories are accurate even when we employ a relatively

large integration step (by a factor of about 100 compared to initial value methods). The boundary

value solutions to short-time reactive trajectories tend to be unique and have significant statistical

weights compared to other reactive trajectories of the microcanonical ensemble. Three numerical

examples are considered: a transition in the Mueller potential, a conformational change in alanine

dipeptide, and an isomerization in a Lennard-Jones cluster.

I. Introduction
Molecular dynamics simulations are powerful tools in the
analysis of microscopic phenomena. Kinetic and thermody-
namic properties of matter are studied on the computer by
solving microscopic equations of motions. While highly
successful in many cases, significant limitations remain. One
of these limits is of sampling rare events. In numerous cases
only a tiny fraction of the trajectories are “productive” after
time t (reaching a desired final state). Because of the rarity
of these reactive processes the overall rate of an ensemble
of these trajectories (or the average time of reaction) can be
very long even if the actual transition is rapid. Therefore,
sampling of rare transitional events is computationally
demanding. This paper focuses on this challenge and suggests
a method for efficient sampling of rare, short-time, and
reactive paths. We restrict the discussion to Newtonian’s
trajectories.

We describe the dynamics of the system with the
coordinate vectorX(t)sthe (Cartesian) position of the system
at a time instantt. We divide the coordinate (conformational)

space into three states. The system can be in the reactant
state (R), the product state (P), or in a transitional state (Tr)
(Figure 1).

We determine the characteristics of trajectories that started
in R at time zero and found inP after total timeT.

The most straightforward way to compute reactive trajec-
tories is to sample initial conditionsX(0),Q(0) from a starting
probability densityF0(X,Q) (Q is the momentum). The
probability density we have in mind is either of the
microcanonical ensemble-(F0(X,Q) ) δ(E(X,Q) - E0))
whereE is the total energy andE0 is a predetermined value
of the energy) or of the canonical ensemble (F0(X,Q) )
exp[-âE(X,Q)/Z] whereâ is the inverse temperature andZ
is the partition function (Z ) ∫exp(-âE(X,Q))dXdQ)). With
the initial conditions at hand we integrate the equations of
motions up to the specified timeT (m is the diagonal mass
matrix andU is the potential energy).

If the system is ergodic, and if it reaches equilibrium, then
an ensemble average of a functionf(X,Q) - - 〈f(X,Q)〉 )* Corresponding author e-mail: ron@cs.cornell.edu.

dX
dt

) m-1Q and
dQ
dt

) - dU
dX

(1)
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∫F0(X,Q)f(X,Q)dXdQcan be performed as an average over
time and a single long trajectory〈f(X,Q)〉 ) 1/T ∫0

T f(X-
(t),Q(t))dt. Here we do not require ergodicity or equilibrium,
which means that averages must be done with respect to the
initial distribution F0(X,Q). A trajectory with a final coor-
dinate vector,X(T) ∈ P, is reactive. If the end configuration
is not inP, then this trial failed and produced a nonreactive
trajectory (nevertheless, the calculations of nonreactive
trajectories is not a complete loss, since nonreactive trajec-
tories can be used to estimate the fraction of reactive versus
nonreactive paths). It is obvious that if only a tiny fraction
of the trajectories initiated according toF0(X,Q) reacts, then
a large fraction of straightforward trial trajectories would
be a miss. The actual fraction can be so small that
straightforward sampling of reactive trajectories may not be
practical.

In light of the difficulties in straightforward sampling of
reactive trajectories it is desirable to use a less straightforward
approach and bias the sampling of the initial conditions to
produce trajectories that spend less time in the reactant state
and cross the barrier more readily than typical trajectories.
This is in the spirit of the “biased sampling” of individual
configurations1 in computational statistical mechanics. In-
stead of configurations this time we bias the sampling of
trajectories. Such biases are used at different levels:

(i) Generation of approximate or average trajectories from
R to P to study qualitative reaction mechanisms.2 Examples
of subsets of “approximate” trajectories include minimum
energy or free energy paths3-8 and trajectories with filtered
high-frequency modes9-12 (of course, free energy paths have
more uses than qualitative studies of mechanisms).

(ii) Generating exact trajectories fromR to P but without
accurate knowledge of their statistical weights. These New-
tonian trajectories model better kinetic energy and inertial
effects compared to option (i). The probability of the reactive
trajectories that are sampled this way is assumed to be
significant (see also Figure 1). However, because of the lack
of exact weight, it is difficult to compute the reactive flux
and the rate. Therefore, additional calculations are necessary
to compute the rate in this way.

(iii) The third option computes reactive trajectories and
their corresponding statistical weights. The weights enable,
for example, the calculations of the rate of the reaction.
Option (iii) is the most demanding computationally.

Significant progress was made in the direct application of
option (iii) for large molecules in the condensed phase.13,14

Of considerable theoretical interest is the transition path
sampling approach.13 Nevertheless, rate calculations are
limited to systems in equilibrium and to reactants and
products that are strong attractors. Trajectories are initiated
in the transition region, and the equations of motion are
integrated in the backward and forward directions toR and
P, respectively. With the additional restriction of equilibrium
the weights of the “patched” trajectories can be computed.
If R andP are only weak attractors, trajectories initiated at
Tr are unlikely to terminate at the desired reactants and
products. For the last case this approach is not necessarily
better than the straightforward method in which the trajec-
tories are initiated simply atR.

Another important group of rare, short-time, and reactive
paths is of nonequilibrium trajectories. The distribution
F0(X,Q) can be a product of an external perturbation (absorp-
tion of a photon, temperature jump, etc.) that prepares the
system in an initial nonequilibrium state and then is turned
off. Typically, we follow the relaxation of the system to a
new state either computationally or experimentally. For this
class of problems equilibrium considerations apply only
asymptotically at the long time limit. It is necessary to
directly initiate trajectories according to the above distribu-
tion. If our interest is focused on a small fraction of these
nonequilibrium trajectories that end at a known desired
product (e.g. Figure 1), then the selection of reactive
trajectories is difficult.

Here we propose an alternative approach for the sampling
of reactive trajectories that is not based on initial value
formulation. Instead we solve a boundary value problem and
compute a whole trajectory from reactant to product as a
single minimization task. The proposed approach can be
classified as an intermediate between methods (ii) and (iii).
The computed trajectories are exact, but the precise calcula-
tion of the weight can be expensive. In section VI we
consider the computations of relative rates.

Studies of activated trajectories with boundary value
formulation have a number of advantages compared to initial
value solvers. Most importantly, boundary value formulation
selects only reactive trajectories that end at the desired
products, while initial value solvers are likely to have many
misses. Nevertheless, there are also some negative aspects
to the use of boundary value formulation. First, the optimiza-

Figure 1. (a) A schematic drawing of an activated trajectory
going from R to P. The system is initially trapped in a minimum
R and is undergoing a rapid transition to minimum P, making
the transition a rare event. Here we are primarily interested
in the (short) time in which the trajectory is not in R or in P.
(b) A schematic drawing of a rare transition due to geometrical
factors. A nonequilibrium distribution is prepared at the state
R. This state which is of high energy is relaxed rapidly to P
and to A. Since the channel to A is much broader than the
channel to P, most trajectories end at A. The transition to P
is therefore rare (but fast).

Point-to-Point Short-Time and Rare Trajectories J. Chem. Theory Comput., Vol. 2, No. 3, 2006485



tion of the whole trajectory (many time slices) is demanding
in computer memory and expensive in terms of CPU time.
These difficulties are to be contrasted with the calculation
of a single frame at a time in initial value formulation that
requires less memory and CPU per step. For a fixed time
step and system size the boundary value formulation is
considerably more expensive computationally. In practice
boundary value calculations of exact classical trajectories are
limited to short-time trajectories for which the cost of the
calculation is not high. An estimate of the computational
efficiency of boundary value calculations compared to initial
value studies is provided in section VII.3

The limitation to short-time trajectories is not a significant
restriction for the problem at hand since both of the processes
that we are interested in: (a) passage over a large energy
barrier, and (b) rapid relaxation to rare products, are quick
(if we remove from trajectories of type (a) the “incubation”
period, which is the (typically long) time spent at the reactant
state prior to crossing the barrier).

Another nontrivial problem with the boundary value
formulation is of uniqueness. In contrast to initial value
formulation that generates a single unique trajectory (when
the initial velocities and coordinates are given), the boundary
value formulation (the initial and final coordinates and the
total time are fixed) can have more than one solution. In
section III.1 we illustrate numerically that the usual boundary
formulation, based on Lagrangian mechanics, is ill posed.
Numerous (and different) trajectories solve the same bound-
ary value problem. The multiplicity of solutions needs to be
addressed to ensure the proper convergence of the calcula-
tions to a unique solution and in order to estimate the weight
of a particular boundary value. We introduce in section VI
an algorithm to compute relative rates in which we sample
trajectories, compute averages, and avoid the absolute weight
problem.

The multiplicity of boundary value solutions should not
come as a surprise. Consider a long time ergodic trajectory
that reaches the “statistical-mechanics” limit in which a single
trajectory samples extensively the coordinate space. In this
case the probability of “hitting” the end point is independent
of the initial conditions or the total time of the trajectory.
This means that for a sufficiently large number of trials and
long times more than one solution for the prespecified end
point is likely to be observed.

II. Minimal Time, Point-to-Point Calculation of
Classical Trajectories
The problem is formulated as follows: Given the two states
R and P and two coordinate setsXi ∈ R and Xf ∈ P of a
reactive trajectory, compute a classical mechanics trajectory
with a minimal timeT and a bias to low energies. More
specifically, we seek the stationary path of the classical
action,15 S ) ∫0,Xi

T,XfLdt, for which T is a minimum. The bias
to low energies is added to a Monte Carlo procedure that
searches for the classical path. The minimal time requirement
removes a significant incubation period and, as we demon-
strate below, makes the problem better posed.

Boundary value formulations (without the minimal time
condition) were proposed by Gillilan and Wilson16 in the

context of a rubber band model of trajectories, by Cho, Doll,
and Freeman17 using Fourier space, and by Olender and
Elber9 in the context of the Onsager-Machlup action.18

Recently, Passerone et al. studied activated trajectories using
another boundary value formulation.19

As mentioned in the Introduction the application of the
boundary value approach to computelong time and exact
dynamics is difficult because of the following: (a) The
optimization of an accurate long trajectory (including incuba-
tion time) is demanding in computer memory and CPU time
compared to the calculation of a single frame at a time in
initial value formulation. (b) We illustrate below that the
solution for a long time boundary value problem is not
unique. The above two problems are addressed by the
minimal time condition that selects trajectories that are (i)
nearly unique and (ii) more direct and therefore easier to
compute. Hence besides focusing on the most interesting
component of the transitions, these trajectories are more
accessible to boundary value calculations.

For computational purposes it is convenient to write a
discrete version of the classical action. The action becomes
a function of the set of intermediate coordinates

The discrete coordinate sets provide a “basis-set” for the
trajectory.Xi is the vector of (Cartesian) coordinates of time
slice i. The condition that the action is stationary provides a
set of equations for the intermediate coordinates, whileX0

andXN are kept fixed.

These equations are solved iteratively as follows:
1. Use a guess to interpolate between the two minima. In

the examples below a straight line interpolation was used.
Pick an initial time for the trajectory that should be small
based on some knowledge of the system properties (e.g. a
transition time in peptides is less than a picosecond). Use a
small number of time slices (e.g. 20-40) to describe the
trajectory.

2. Solve the second-order system of Verlet’s equations (eq
3) with fixed boundaries. From (3) the residual vectors for
the internal pointsi ) 1,...,N - 1 areri ) Xi+1 + Xi-1 - 2Xi

+ m-1∆t2 ∂U/∂Xi. The goal of the solution is to reduce allri

to 0. This is accomplished by point-by-point iterations either
by simulated annealing (SA) that minimize the sum ofri

tri

or by Kaczmarz iterations20 (the simple Gauss-Seidel itera-
tions21 do not converge). In Kaczmarz iterations, in contrast
to Gauss-Seidel’s, changes are made not only to a single
point (e.g. pointi) but also to all its neighboring points as
well. The neighboring points are all those points appearing
in the equation for theith point. The coefficients of the
neighboring points in theith point equation determine the
weights of the changes of these points. While iterating on
the ith equation, the positionsXi, Xi-1, andXi+1 are updated
so that ri vanishes. A global minimizer (like simulated

S) ∑
i)1

N

Li∆t ) ∑
i)1

N (m2(Xi - Xi-1

∆t )2

- U(Xi))∆t (2)

1
∆t

∂S
∂Xi

) m
Xi+1 + Xi-1 - 2Xi

∆t2
+

dU(Xi)

dXi
) 0 i ) 1,...,N - 1

(3)
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annealing) is necessary since elimination of local minima is
required. The observation that the residuals sometimes
increase before decreasing suggests that the system was
trapped in a local minimum. A global minimizer also enables
the search for multiple solutions. Convergence is assumed
when the norm of residuals||r|| ) 1/N ∑i)1

N-1 |ri| falls below
a cutoff value (e.g. for the Mueller potential the cutoff is
10-9) and the energy is conserved up to a few percents. A
typical convergence plot for a simulated annealing run is
shown in Figure 2.

3. Gradually decrease the total timeT and use the spatial
coordinates obtained with the largerT of the previous time
as an initial approximation for the smallerT. Solve the
resulting system as described in step 2.

4. When T becomes small enough in step 3, either
convergence fails because of a sudden and significant change
in the shape of the trajectory or some other significant
changes occur in the system, such as an abrupt rise in the
energy. The process stops at thatT, and the solution of the
previous total time is kept. We locate alocal minimum of
time in the neighborhood of the initial guess (of the minimal
time) and in the neighborhood of a given energy. We do not
search for a global minimum (which is a straight line and of
high energy). A search bias toward lower energies can be
added in the annealing process by a penalty functionEpenalty

which, at the time slicei, is equal to 0 if the energyEi is
below a given valueE and toλ(Ei - E) whenEi > E. λ is
a positive constant that determines the relative weight of the
penalty. In the examples presented in this work such a bias
was added in the calculations of alanine dipeptide trajectories
and in the trajectory calculations of the Lennard-Jones cluster.

III. Numerical Experiments on the Mueller
Potential
To examine a number of alternative solutions that satisfy
the same boundary value conditions, we perform an extensive
sampling of trajectories using initial value formulation on

the Mueller potential22

We choose the Mueller potential since it is simple and
accessible to detailed analysis. It was used extensively in
the past to study reaction paths, and many of its properties
are well understood. Below we describe both initial and
boundary value calculations of trajectories on the Mueller
potential.

III.1. Initial Value Calculations To Solve the Boundary
Value Problem.The Verlet integrator23 is used with a time
step of 0.0001. The mass was set to 1. The starting
coordinates were at the lowest energy minimum (-0.5,1.5),
the initial velocities were sampled with a random direction,
and the total energy was fixed at-40.5 which is just above
the barrier height. If the coordinate vector at any time slice
during the trajectory was found within a distance of 0.01
from another minimum (0.5,0) we consider the computed
trajectory a solution of the boundary value problem, and the
time T of the trajectory was recorded (the end point can be
determined only approximately within the neighborhood of
the second minimum). We have repeated the calculation
using two radii to check the convergence of our calculations
and obtained similar results. Below we show a histogram
plot (Figure 3) of the probability of finding a trajectory with
the prespecified end points as a function of the total time of
the trajectory.

The most striking feature of this plot is that trajectories
obtained by the boundary value formulation are far from
unique (at least in the numerical sense). The trajectories so
computed are even “overdetermined” since the energy (in
addition to total time and end points) was also fixed. In
practice, depending on the calculation history, different
trajectories may be obtained. The abrupt decay of the
probability at time≈ 400 is a reflection of the limited sample
that we used rather than a property of the true distribution.

Since the directions of the velocities were sampled at
random, it is possible that some of the sampled trajectories
considered in Figure 3 are very similar. A question of interest
is how different are computed trajectories that made it from
reactant to product at the same total time and energy.

In Figure 4 we measure the similarity of 32 alternative
trajectories with the same end points, energy, and total time
T. The coordinates are sampled at three time slices:τ )
T/4, T/2, 3T/4 of each trajectory. At each time slice the
varianceσ2(τ) ) 〈(Xi - 〈Xi〉)t(Xi - 〈Xi〉)〉 of the coordinates
Xi, i ) 1,...,32, is computed from the trajectories. The shortest
time trajectories converge to a very small variance (about
zero), while at somewhat longer times a rapid increase in
the variance (suggesting distinct trajectories) is evident.

Figure 2. The convergence of the target function R2, which
is the sum of the square of the residuals as a function of the
simulated annealing step. Note the initial increase in the value
of the target function before the calculations settle into
approximate linear decay of the residuals. The example is
from a calculation for the Lennard-Jones cluster (see section
V for a more detailed discussion).

U(x,y) )

∑
i)1

4

Ai exp[ai(x - xi)
2 + bi(x - xi)(y - yi) + ci(y - yi)

2]

A ) (-200,-100,-170,15) a ) (-1,-1,-6.5,0.7)
b ) (0,0,11,0.6)

c ) (-10,-10,-6.5,0.7) x ) (1,0,-0.5,-1)
y ) (0,0.5,1.5,1) (4)
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Figure 5a shows three trajectories satisfying the same
boundary conditions that are clearly different. Figure 5b
shows three trajectories at the short time limit that (within
our numerical accuracy) correspond to essentially the same
path.

III.2. Boundary Value Calculations. Here we used our
proposed boundary value algorithm (section II). Trajectories
were computed between the two energy minima of the
Mueller potential that were studied with initial value
formulation (see the previous section). Since the time step
used for the discretization of the functional (eq 2) is
significantly larger than the time step of the initial value

formulation (0.01 versus 0.0001), it is desirable to use a
refinement procedure. The refinement should convert the
coarse grained boundary value trajectories to trajectories with
the same time step as the initial value formulation, enabling
a meaningful comparison of algorithm accuracies. We note
however that for numerous other applications (like the
calculation of the relative rate in section VI) the refinement
is not necessary.

The proposed refinement is using iterations; i.e., given a
coarse grained trajectory with time step∆T, every iteration
generates a new finer trajectory with half the time step (∆T/
2). The boundaries of the finer trajectory are fixed to the
same values as the coarse trajectory. Intermediate points are
added using linear interpolation between points of the coarser
trajectory as an initial approximation and followed by several
Newton-Raphson steps that minimize the residuals of the
equations of motion (eq 3). At each of the Newton-Raphson
steps the unknown correctionsδxi andδyi to the coordinates
are calculated by solving simultaneously for all internal
points i ) 1,N - 1 the system of equations consisting of
δxi+1 + δxi-1 - (2 - ∆t2 ∂2U/∂xi

2)δxi + ∆t2 ∂2U/∂xi∂yi δyi

) -rxi and their equivalent in they direction.

Figure 3. The distribution of the total time of the trajectories
that are satisfying spatial boundary condition: The trajectories
start at the lowest energy minimum (-0.5,1.5) and arrive at
the second lowest minimum at (0.5,0). The total energy was
fixed at -40.5, and the direction of the velocity was sampled
at random. The drop of the probability density near 400 is
due to limited statistics. The radius at the product was taken
to be 0.01.

Figure 4. The variance of the alternative trajectories that
solve the same boundary condition. As in Figure 3 the
trajectories started from the same energy minima, and the
total energy was the same. In contrast to Figure 3 we consider
trajectories with the same total time and measured the
variance of these trajectories as described in the text. It is
evident that the variance is small for the shortest time
trajectories, while the variation between the trajectories
increases rapidly as a function of the trajectory time.

Figure 5. Sample of trajectories that satisfy the same
boundary conditions as described in the text and the legends
of Figures 3 and 4. (a) Three solutions of the same boundary
value problem that are clearly different. (b) Three solutions
of the same boundary value problem that seem to converge
to the same solution.
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In Figure 6 we show a coarse grained and a highly refined
trajectory. The coarse grained trajectory, which includes 21
points, is a minimal time trajectory obtained by the procedure
described in section II. The initial guess was a straight line
between the two end points. The initial total time was 0.5,
and Kaczmarz iterations20 were used until the residuals
dropped to below 10-9. The total time was gradually
decreased until convergence stopped at total time 0.375. The
coarse grained trajectory is the one obtained by the end of
this process. The refined trajectory is very close to the exact
Verlet trajectory. Even the coarse grained trajectory with a
time step 30 times larger is quite accurate. This example
demonstrates the benefit of working with short-time trajec-
tories. The particle does not spend much time in oscillatory
motion near the minima and focuses instead on executing
the more interesting type of motion (the transition). We argue
below that these trajectories have significant statistical weight
in the microcanonical ensemble. Therefore they are worthy
of investigation, even when the overall time scale is slow.
Of course it is easier to compute exact trajectories if their
total time is short, and if they are less curved and more direct.

IV. Molecular Example I: Transitional
Trajectories in Alanine Dipeptide
We have repeated the boundary value computation also for
the considerably more complex system of a conformational
transition in alanine dipeptide. We consider the conforma-
tional transition from a helix to an extended chain. The coarse
grained description of the trajectory includes 20 points. The
time step was 0.00875 ps, making the total trajectory time
0.175 ps (which is the minimal time required for the
transition as we confirmed using the procedure described in
section II). This minimal time was also observed by extensive
sampling of initial value solutions and recording the time of
arrival to the product. The initial guess for the path was a
straight-line interpolation, and a simulated annealing algo-
rithm was used to minimize the norm of the residuals, defined
identically to the Mueller problem. The starting residual norm
was 105, and the cooling continued until the residuals dropped

to about 10-5 where changes in space coordinates for the
Metropolis algorithm were about 10-7 Å. In Figure 7 we
show boundary value trajectories for several total times. All
these trajectories are similar to the minimal time trajectory
found by extensive sampling of initial value trajectories. The
sampling of initial value trajectories was performed in a
similar spirit to the calculations described for the Mueller
potential. The alanine dipeptide system is considerably more
complex than the Mueller potential, and it is possible to find
new converged trajectories while making the total time
shorter and shorter. However, as we decrease the total time,
we obtain an abrupt rise in the total energy, shifting to a
different class of trajectories. We terminate the process as
described in section II when such a sharp change in the
energy is observed.

V. Molecular Example II: An Isomerization
Process in a Lennard-Jones Cluster
A more complex molecular example is the isomerization of
a Lennard-Jones cluster. The potential energy of the system
is given byU ) 4∑j>k[[1/qjk)12 - (1/qjk)6] whereqjk is the
distance between any two particles. The masses were set to
one. A 38 atom LJ cluster has two minima with nearly the
same lowest energy: the first is at the MacKay icosahedra
and the other at a face-centered-cubic truncated octahedron24

(Figure 8). In the following calculations the two boundaries
are set to minima in the basins of the two distinct conforma-
tions.

To provide a rough estimate of the minimal time of the
trajectory the period of oscillation of a Lennard-Jones term
is computed by harmonic analysis as∼0.85. The expectation
is that the minimal transition time will correlate with the
vibrational time. The total time of the transition in the
calculation was therefore set toT ) 2.0. The number of slices
was 33, and the uniform time step was set accordingly to
∆T ) T/32. The time was decreased in the optimization
following section II until it was impossible to conserve the
energy. The energy conservation was used as a stopping
criterion.

The solution of the boundary value problem was done by
Monte Carlo simulated annealing, minimizing the functional
R2 ) ∑i)1

N-1ri
t‚ri. The term on the right-hand side is an inner

product of the residual vector at each nonboundary time slice
i. The slices are numbered between 0 andN. The initial
approximation of the coordinates at nonboundary slices is
obtained by linear interpolation from the boundaries.

The simulated annealing starts at a temperatureTinit ) 5.0e-
4. The cooling protocol is linear, decreasing the temperature
by a constant∆T at each cooling step. The number of
temperatures wasNT ) 1000 and∆T ) T/NT ) 5.0e-7. The
process ends when the temperature reaches its final value,
∆T. To avoid trapping in a local minima the values of all
space coordinates were discretized with a small mesh size
HSA ) 1.0e-4. The initial coordinates are rounded to the
nearest value which is an integral multiple ofHSA. The
changes to coordinates in the Metropolis algorithm are
always in integral multiples ofHSA. For each temperature,
200 Monte Carlo sweeps were done. A single sweep consists
of a Metropolis step for each coordinate in the internal time

Figure 6. Coarse grained and highly refined boundary value
trajectories on the Mueller potential. The refined trajectory is
essentially identical to the short-time solution of the Verlet
algorithm. The coarse grained trajectory (using a time step
larger by a factor of 30) is quite accurate.
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slices. The value of the functionalR2 was monitored to
ensure that it decreases linearly with the temperature (Figure
2). At the initial temperature the maximum step size in the
Metropolis algorithm was 400HSA, and the attempted
changes to coordinates in the Metropolis algorithm were
distributed uniformly between-400HSA and 400HSA. At later
temperatures, the maximum allowable step size was de-
creased by a factor of 0.8 if the acceptance rate of the
Metropolis algorithm fell below 0.4 in the previous temper-
ature. The residuals decrease in the annealing process from
a starting value of about 0.8 to a final value 0.002.

Figure 9 displays the total, potential, and kinetic energies
at convergence as a function of time. The maximum of the
potential energy is near-150 which is consistent with low
kinetic energy when passing transition states. The total

energy is nearly conserved, and the small fluctuations are
likely to be due to the discretization.

VI. Calculations of Relative Rates
Here we show how the short-time trajectories can be used
in the calculation of rates and relative rates at short times.
The restriction for short times is of particular interest for
downhill but rare events and for activated processes (Figure
1).

In initial value formulation the reaction probability from
R to P between timeT andT + dT is given by

whereYRP(X,Q,X(T),Q(T)) is the probability density (in phase
space and time) that a trajectory that starts in the phase space
point (X,Q) in R will make a transition toP at timeT. We
used the shortcut (X,Q) to denote (X(0),Q(0)). For the
(deterministic) Newton’s equations of motion,YRP(X,Q,X-

Figure 7. (a) A short-time trajectory for a conformational
transition in alanine dipeptide. The calculations include all the
36 degrees of freedom of this molecular system. However,
the projection onto the two soft degrees of freedom (the
torsion angles æ and ψ) and one stiff degree of freedom (ω)
is shown. A sequence of three times is shown to demonstrate
our convergence criterion (shown in part b). (b) The energetic
of the conformational transition in alanine dipeptide for three
different trajectories of short time. Note the significant jump
in the total energy and the kinetic energy when the time of
trajectory is shortened from 0.1575 to 0.1050. We use this
as an indicator that the minimal time trajectory (of low energy)
converged at 0.1575.

Figure 8. The initial structure of the conformational transition
in the Lennard-Jones cluster (MacKay icosahedra). For the
complete transition check http://www.cs.cornell.edu/ron/mov-
ies/lj_img.gif.

Figure 9. The energetic of a transition in 38 atoms of a
Lennard-Jones cluster. Note that the total energy is clearly a
constant for a total time of 2.00 but is fluctuating significantly
for shorter times.

p(T)dT )

[ ∫
X∈R

X(T)∈P

YRP(X,Q,X(T),Q(T))F0(X,Q)dXdQdX(T)]dT
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(T),Q(T)) is either one or zero. Estimating the above integral
there are two functions that require accurate and efficient
sampling - - YRP and F0. In initial value formulation we
sampleF0 exactly, but the calculation ofYRP can be difficult.
If the process is rare,YRP will be zero most of the time. In
the boundary value formulationYRP is always one, but the
sampling is not done according toF0 which complicated the
calculation of the weight of the trajectories.

In the point-to-point approach we do not have the initial
momentum as input. We sample configurations at both the
reactants and the products sitesX(0) ∈ R andX(T) ∈ P and
compute trajectories of fixed time lengthT between any pair
of sample points. The initial momentum is an output that
we can compute by a finite difference formula from the
calculated trajectory (i.e.Q(0) = m(X1 - X0)/∆t), once it is
available.

Here we show how the relative rates of two different
systems can be estimated, relying on a set of reactive
trajectories only. Calculation of relative rates of similar
systems is widely used in computational chemistry and
biophysics. For example, we may consider changes of rates
following the replacement of a hydrogen by a deuterium atom
or a single residue mutation of a reacting protein. The time
itself can also be a perturbation (e.g. by changing the size
of ∆t keeping the number of time slices fixed).

A concrete case is of a reaction at constant temperature.
In the corresponding canonical ensemble, we have (E is the
total energy)

Consider two systems with reactants and productsR,P and
Rh,Ph, respectively, the ratio of the reaction probability
densities is

The ratio of the partition functions (Z/Zh) can be computed
with standard methods in equilibrium statistical mechanics
such as the umbrella sampling, free energy perturbation,
dynamic integration, and more (for a recent discussion on
alternative ways to compute free energy see ref 25).

The above integration is restricted to the reactant stateR.
Assume that a trajectory is found by the point-to-point

approach. The weight of the initial structure is exp(-âEh).
This trajectory is perturbed to a new trajectory with a new
energy,E. Since thetotal energyis not expected to vary
violently from a trajectory to a trajectory, the average below
should not be too difficult to perform.

The second ratio of integrals is called RR for “Relative
Rates”.

The existence of a corresponding point-to-point trajectory
with a slightly different Hamiltonian is tested first (in our
experience we were always able to find a nearby perturbed
trajectory with a different energy), and the average of the
energy differences is performed explicitly. This is an
important difference from the initial value formulation in
which the ratio of theYscan be zero most of the time.

The algorithm to compute the RR is therefore as follows:
(i) Sample start and end configurations inR andP.
(ii) Compute a trajectory according to the “sampling”

Hamiltonian using total fixed timeT that is short but not
minimal with the point-to-point approach,

(iii) Compute a trajectory for the perturbed Hamiltonian
starting from the trajectory in (ii) as an initial guess. If
convergence fails add zero to the average and go to (v). It is
also possible to compute the change in energy by perturbation
theory with no need to reoptimize the reference trajectory.

(iv) Estimate the difference in energy of the two trajec-
tories and add to the RR.

(v) Check for termination conditions (convergence of the
average or maximum number of allowed trajectories, etc.).
Return to (i) if not terminating.

An example of a calculation of relative rates on the
Mueller energy surface is sketched below. The original
Mueller potential was used for sampling, and the perturbation
was linear in the coordinatey, i.e., the perturbed potential is
U + 5y, where U is the Mueller potential of eq 4. The
reactant and product were defined with a radius of 0.2 around
the location of the corresponding minima. The reactant was
the minimum at the upper left corner of the Mueller potential.
The total time was set to 0.38, slightly longer than the
minimal time of 0.375 observed earlier. We first computed
initial value trajectories with the Verlet algorithm (the time
step was 0.001) and estimate the absolute rate for the two
Hamiltonians (the absolute reaction probability of the
unperturbed Hamiltonian was 0.0012). We then use a coarse
grained trajectory with 38 points and estimated the perturba-
tion. The rate difference was 10% in both the boundary and
initial value approaches.

VII. Discussion
VII.1 Why Is It Possible To Use a Larger Time Step in
Boundary Value Formulation? Equation 3, which is a
discrete version of the Newton’s equations of motion, is
similar in accuracy to initial value algorithms. Rearranging
eq 3 we can recover an initial value algorithm:

F0(X,Q) ) w/Z

w ) exp(-âU(X)) ‚ exp(-âQ2/2m) ≡ exp(-âE)

Z ) ∫exp(-âE)dXdQ

pj(T)

p(T)
) Z

Zh
‚
∫X,Q∈Rh

wj (X,Q)YhRP(X,X(T))dXdQdX(T)dQ(0)

∫X,Q∈R
wj (X,Q)YRP(X,X(T))dXdQdX(T)dQ(0)

Zh
Z

)
∫X∈R

exp(-â(Eh - E)) exp(-âE)dX

∫X∈R
exp(-âE)dX

≡

〈exp(-â(Eh - E))〉 exp(-âE)

RR )

∫ exp(-â(E - Eh))
YRP(X,X(T))

Yh RP(X,X(T))
exp(-âEh)YhRP(X(T) - XP)dXdX(T)

∫YhRP(X,X(T)) exp(-âEh)dXRdXP

) 〈exp(-â(E - Eh))
YRP(X,X(T))

YhRP(X,X(T))〉YhRP(X,X(T))exp(-âEh)
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If the coordinates atX0 andX1 are given, we can use the
above formula to propagate the solution to its final config-
uration atXN. A solution of the discrete boundary value
problem is also a solution of the discrete initial value
problem. This relationship is particularly intriguing in light
of the observation on stability and accuracy made in the
present study. We stated that the boundary value formulation
is accurate and considerably more stable numerically com-
pared to initial value formulation. Given that a solution of
the boundary value formulation is identical to a solution
obtained with initial value formulation, as discussed above,
the statement seems false.

Therefore we have performed the reverse numerical
experiment in which we start with initial value description.
We sample different initial values (X0 andX1) and use eq 5
to generate trajectories of the same characteristics as in the
boundary value formulation. If we employ the large time
step that was used in the boundary value formulation, most
of the initial value trajectories lose stability and “explode”
in accord with the usual observations. Nevertheless, it is
possible to find rare initial value trajectories with large time
steps that maintain their stability (and accuracy). These are
the trajectories that are picked by the boundary value
formulation. Since the end structure in the boundary value
formulation is sound (by construction) all the “exploding”
unstable trajectories are eliminated at the start. Only the stable
trajectories remain. This explains the observed stability of
the approach proposed here. The enhanced stability of the
boundary value formulation also supports the Stochastic
Difference Equation approach10-12 which focuses on generat-
ing approximate long-time (or length) trajectories that
qualitatively describe reaction mechanisms. The present
approach is centered on an accurate calculation of short-
time trajectories.

VII.2. Are Minimal-Time Activated Trajectories Sig-
nificant? We have invested considerable effort to show that
the minimal time trajectories are nearly unique and as such
can be computed accurately and efficiently with boundary
value formulation. However, typical calculations of physical
observations (such as calculations of rate) rely on an
ensemble of trajectories and not on a unique path. Therefore
the significance of minimal time trajectories and their
contribution to the ensemble of reactive paths require
examination.

A first impression suggests that these trajectories are not
significant. Since all initial values (coordinates and momenta)
in the microcanonical ensemble have the same statistical
weight, a single trajectory cannot be representative (in this
section we consider trajectories with fixed energy and time).

A more subtle argument focuses on the transitional
component of the trajectories. Consider reactive trajectories
of total timeT. We will divide this long-time trajectory into
two components: (i) an incubation part of length (T - τ) in
which the system spends some time either inR or in P and
(ii) a transient component (lengthτ) in which the system is
in Tr. Since bothR and P are attractive states we expect

thatτ , T. A transitional trajectory is initiated at the interface
betweenR and Tr, calledRTr, and is terminated at the
interface between Tr andP called TrP. A transitional
trajectory spends all its time (τ) in Tr without “touching”
RTr nor TrP at any time after initiation or before termination.
A sample of such boundary value transitional trajectories
makes it possible to compute,P(τ), the probability of
observing a transitional trajectory of time-length τ. The
details of the distribution will depend on the underlining
energy surface, and we cannot be more specific. However
we expect (due to the assumed transient nature of the
trajectory) thatP(τ) is a rapidly decreasing function ofτ.
Moreover, at very short timesP(τ) must go to zero. Therefore
it has at least one maximum.

Experiments rarely measure properties of transient times
and trajectories. More often the overall timet (including the
incubation time of component (i) of the trajectory) and rate
are available. We therefore need to extend our argument to
trajectories of total lengtht and transient timeτ (com-
municated to us by Cristopher Dellago).

We now consider a discrete (numerical) representation of
the trajectory. The numerical trajectory of total fixed time
is described by a sequence of coordinates separated by a
time step of∆t: X1,X2,...,Xn,Xn+1,...,Xm,Xm+1,...,Xk. Similarly
to the continuous trajectory the discrete path is divided into
three parts,X1,...,Xnsa set of configurations that reside in
the reactants,R, Xn+1,...,Xmsa set of configurations that reside
in the transition state, Tr, andXm+1,...,Xksa set of configura-
tions in the product,P. The transitional trajectory that we
have in mind is the middle piece (fromXn+1 to Xm, or to
make the transition complete perhaps fromXn to Xm+1, we
ignore this small difference). Assuming that we use eq 5,
then with the initial pair of coordinates- X1 andX2, we can
generate the whole trajectory fromX1 to Xk. Note however
that we are not interested in the whole trajectory. We are
only interested in the transitional component fromXn+1 to
Xm. The statistical weight of this trajectory is the number of
initial conditions in the reactant space that results in the same
transitionaltrajectory. Similarly to the reptation mechanism
of polymer transport we now remove the first coordinate set
and create a new coordinate set at the end of this trajectory
(creating a trajectory fromX2 to Xk+1, Xk+1 is uniquely defined
sinceXk and Xk-1 are known). This is a trajectory of the
same total length and exactly the same transitional trajectory
(for n > 1). However, it has different initial conditions in
the reactant state (they are nowX2 andX3). We can repeat
this process and move the first coordinate to the end of the
trajectory, keeping the same transitional trajectory,n times.
Since we consider a trajectory of total fixed length of time,
a larger n means a smallerm-n. The shorter is the
transitional trajectory the larger isn, and more initial
conditions provide the same transitional trajectory.

Typically all initial conditions will have the same weight
if sampled from the microcanonical ensemble; however, the
above argument, restricted to an ensemble of trajectories with
fixed energy and total time, suggests that shorter transitional
trajectories have larger statistical weights that skew the
original P(τ) to short times. The degree of skewing will
depend on the particular energy surface.

Xi+1 ) 2Xi - Xi-1 - m-1∆t2
dU(Xi)

dX
(5)

492 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Bai and Elber



To illustrate the above argument we computed the
distribution of the transitional times for the Mueller potential.
The probability density of transitional times for the Mueller
potential is highly peaked at the shortest time (shown in
Figure 10).

Note that for more diffusive transitions, and trajectories
that cross slowly and/or many times the barrier, the argument
above is not valid.

VII.3. Efficiency of the Calculation. The boundary value
calculations of this manuscript are reasonably efficient. The
basic unit for cost evaluation is the cost of energy calculation
which is roughly proportional to the number of particles in
the system,N. The cost of a single action evaluation is
proportional toL × N whereL is the number of time slices.
The number of relaxation steps depends on the system but
(in practice) is no worse than another factor ofL × N.
Nevertheless, this factor is perhaps the major source of
uncertainty in the formula provided below, and in some cases
it can be larger. Accepting this estimate, the total cost is
proportional to (L × N)2. This is similar to earlier boundary
value calculations9-12 in much larger systems, producing
approximate trajectories.

For comparison, the computational cost for a single initial
value trajectory is proportional toLh × N, whereLh is the
number of time slices we require in an initial value solver.
We denote the probability of an initial value trajectory to be
reactive byp. The computational cost for a reactive trajectory
is therefore proportional top-1(Lh × N). The ratio of costs
of the two approaches is

wherea is a numerical constant which is estimated to be of

order of 10. In the most complex example of this manuscript
(the Lennard-Jones cluster)L is 33 andLh is about 100 times
larger. The number of degrees of freedom,N, is 38× 3. We
can estimate what is the reaction probability in which the
cost of computing a reactive trajectory using an initial value
or the boundary value approach is roughly the same (ratio
of costs equal one). 1) 332 × 38 × 3 × 10/p-1 × 3300p
≈ 0.001, which is a process that is only marginally activated
(i.e. not so rare). The above formula also suggests that as
the system becomes larger the reaction probability better be
smaller to make the boundary value calculations of the type
described here more effective. Indeed the reaction prob-
abilities of complex systems at short times are significantly
smaller than 10-3.

Parallelization does not change the above conclusions in
an obvious way. Let the number of processors ben. Since
the time slices can be distributed between the processors with
limited communication overhead we can replace one of the
L by L/n in eq 5 (the required number of minimization steps
is reduced from the original cost ofL × N, but the extent is
not clear). Initial value trajectories can be parallelized in a
trivial way (launching independent trajectories on separate
processors), and we therefore replacep-1 by (np)-1. The cost
ratio for n processors is therefore unchanged or perhaps
slightly favors the boundary value formulation.

Finally we note that the calculation of the perturbed
trajectory for the study of relative rate takes little effort within
the boundary value formulation. In initial value formulation
it takes the same effort as the generation of the unperturbed
trajectory.
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FOM Institute for Atomic and Molecular Physics, Kruislaan 407,
1098 SJ Amsterdam, The Netherlands

Received December 31, 2005

Abstract: We present a numerical study of the effect of DNA translocation on the ionic current

through a nanopore. We use a coarse-grained model to solve the electrokinetic equations at

the Poisson-Boltzmann level for the microions, coupled to a lattice-Boltzmann equation for the

solvent hydrodynamics. In most cases, translocation leads to a reduction in the ionic current.

However, at low salt concentrations (large screening lengths) we find ionic current enhancement

due to translocation. In an unstructured pore, translocation of the helical charge distribution of

the DNA has no effect on the ionic current. However, if a localized charge probe is placed on

the wall of the nanopore, we observe ionic current modulations that, though weak, should be

experimentally observable.

1. Introduction
The subtle and often counterintuitive effects underlying many
electrokinetic phenomena, and their relevance in the behavior
of many synthetic and biological complex fluids, make their
study one of both practical and fundamental interest.1,2

Electrokinetic effects such as electro-osmosis and electro-
phoresis can be used to control the transport of small
molecules and colloids;3 as microfluidic devices become ever
more prevalent, there is an increasing number of electroki-
netic effects that can be exploited for selective molecular
transport.4 An important example is the translocation of
highly charged biopolymers such as DNA and RNA through
biological or synthetic nanoscale pores. This topic has excited
much experimental and theoretical interest5-9 not only
because of its potential implications for DNA sequencing
but also because of the importance of biopolymer translo-
cation in living organisms. Biopolymer translocation is
involved, for example, in the transport of transcribed RNA
out of the cell nucleus and viral injection of DNA into a
host cell. The idea behind DNA sequencing using translo-
cation through nanopores is to use biological or synthetic

pores such as nanosensors to characterize very locally the
spatial extent and charge distribution of the translocating
polymer. This is done by measuring electric current fluctua-
tions under a constant voltage bias.8

Experiments9 and atomistic simulations10-12 have been
used to gain insight in the factors that determine the relation
between the local structure of the translocating biopolymer
and the associated ionic current. However, the interpretation
of the experimental data in terms of a microscopic model is
often not unique. Fully atomistic simulations make it possible
to relate macroscopic observables, such as current modula-
tions, to microscopic properties of the system under study,
but such simulations are computationally very expensive.
This makes them less suited for a systematic study of the
effect of the different parameters (such as pore size and ionic
strength) that affect the translocation current. In virtually all
cases of practical interest, electrokinetic phenomena occur
in confined systems of a rather complex geometry; as a
consequence, the analytical solution of continuumsin par-
ticular, electrokineticsequations can usually not be obtained.
In addition, the dynamics of translocation is determined by
a number of distinct characteristic lengths and times that may
differ by several orders of magnitude: ionic radius, Debye
screening length, channel/pore size and polyelectrolyte size,
time of formation of the electrical double layer (EDL), and
the transient time for the onset of convective currents. The
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need to span these scales may render atomistic simulation
unpractical.

Mesoscopic (‘coarse-grained’) models for fluid dynamics
can offer an alternative to atomistic simulation in the study
of electrokinetic phenomena. To be more precise, coarse-
grained models are useful to study phenomena on length and
time scales where the details of a fully atomistic description
can be represented by a small number of parameters. There
exist several coarse-grained, mesoscopic methods to model
hydrodynamics. Most notable among these are Dissipative
Particle Dynamics (DPD), Stochastic Rotation Dynamics
(SRD), and Lattice-Boltzmann (LB) methods. Dissipative
Particle Dynamics can be viewed as a coarse-grained version
of Molecular Dynamics, whereby mesoscopic particles
representing elements of solvent move under the influence
of conservative, friction, and stochastic forces.13-15 Stochastic
Rotation Dynamics16,17 models the solvent as a viscous gas
that undergoes stochastic many-body collisions. The interac-
tions among solutes and between solute and solvent are
described by conservative forces. Finally, the Lattice-
Boltzmann (LB) method employs a coarse-grained lattice-
gas cellular automaton model for a fluid which approximately
solves the (continuum) Boltzmann transport equation, which
in turn describes hydrodynamics (for details, see e.g. refs
18-20).

The relative merits of the different coarse-grained ap-
proaches to mesoscopic fluid dynamics depend not only on
the nature of the problem but also on the state of development
of the various techniques. At present, there are versions of
the Lattice-Boltzmann method that can be used to model
electrokinetic effects. For the study reported in the present
manuscript, we employ the approach described in ref 21.
The LB scheme of ref 21 integrates a Boltzmann transport
equation for the solvent to a local diffusion equation for the
charge dynamics. In ref 21 it is shown that this approach
provides an excellent description of the sedimentation of
charged colloids.

There also exists a version of DPD that takes charge
transport into account.15 However, unlike the LB method,
DPD introduces an additional length scale into the description
of electrolyte solutions, namely the size of the charged
mesoparticles. These mesoions are larger than simple ions
yet must be much smaller than the Debye screening length
in order for charge modulations not to become obscured by
spurious structural correlations. This makes it nontrivial to
achieve a proper separation of length scales in DPD
simulations of electrolytes. The LB method also has advan-
tages when compared with more macroscopic approaches,
such as a direct solution of the Navier-Stokes equation: the
LB scheme tends to be numerically more stable, and it is
straightforward to impose complicated boundary conditions.
To our knowledge, there exists no viable version of SRD
for electrolyte solutions.

The LB method that we use in the present paper treats
electrostatics at the level of the nonlinear Poisson-Boltz-
mann equation, thus allowing us to model electrokinetic
effects at high surface-charge densities. It should be noted
that the Poisson-Boltzmann description does not account
for correlation effects associated with the finite sizes of the

salt ions nor for explicit charge correlations. Hence, physical
phenomena that are sensitive to the discrete nature of the
individual ions, such as like-charge attraction33 or ion
adsorption to highly charged polyelectrolytes (see e.g. ref
34), will not be captured by this formalism. However, our
aim is to model electrokinetics at the simplest possible level
in order to explore to what extent a purely continuum
description can be used to describe the rather complex
electrokinetic effects associated with DNA translocation. In
this respect, our calculations can be considered as a “base-
line” for more detailed (atomistic) simulations.

Explicit description of the individual ions is of course
possible in more atomistic simulations (see e.g. ref 22), but
the latter approach is computationally more expensive. Of
course, the description of the fluid motion by hydrodynamics
is also an approximation. However, one of the surprises in
the study of the dynamics of simple liquids is that continuum
hydrodynamics provides a good description of motions in
fluids, even at the nanoscale. This is illustrated, for example,
by the success of the Stokes-Einstein relation that connects
the diffusion coefficient of microscopic particles to the
hydrodynamic friction coefficient. This relation works
extremely well for small colloids and even (to within a factor
two) for atoms.

The remainder of this paper is organized as follows. In
section II we present our model for a translocating DNA
oligomer, and we discuss the equations that govern charge
and mass transport. In section III we validate the numerical
solution of the electrokinetic equations for the given bound-
ary conditions (translocating rod) by (a) comparing the
computed equilibrium profiles for the electrical double layer
with the corresponding analytical solutions, in the low-charge
regime, and (b) by showing that, in the low-salt and high-
charge regime, the model correctly reproduces Manning
condensation. In section IV, we show that DNA translocation
may lead to both reduction and enhancement of the ionic
current. Current enhancement is a low-salt and high-charge
effect. We give a simple analytical estimate for this effect
that matches well with our numerical calculations. In section
V we address the possibility of detecting a signature of the
DNA charge distribution in the ionic current. We show that
current modulation during translocation should be observable,
provided that there is a localized charge placed just inside
the wall of the pore. In that case, we find that upon moving
both single-stranded and double-stranded DNA through a
nanopore, the ionic current undergoes modulations as a result
of the overlapping of the electrical double layer of the DNA
with that of the “probe” charge.

II. The Model
The length of nanopores, be they synthetic or biological, is
usually less than the persistence length of most biopolymers.
Hence, for a local description of the pore plus translocating
biopolymer, it is reasonable to approximate the biomolecule
by a rigid rod. This approximation is certainly justified for
double-stranded DNA, a semiflexible polymer with a per-
sistence length of ca. 50-100 nm. In what follows, we
simplify the description even further by modeling the DNA-
pore system as a nondeformable cylinder that is concentric
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with a cylindrical pore in an electrically neutral, rigid slab
(see Figure 1). We studied two charge distributions on the
surface of the cylinder: (a) homogeneous and (b) helical
line charge on a single and a double helix.

In some of the experiments that probe the modulation of
ionic current by DNA translocation, one end of a DNA
oligomer is attached to a microbead that is trapped by an
optical tweezer; the DNA chain is then straightened by the
applied electric field. The position of the DNA in the pore
can be varied at will. When the DNA is kept fixed, an applied
electric field will first induce a transient current that then
settles down to a steady-state value. In our simulations, we
reproduce this scenario by positioning the charged cylinder
at a fixed position close to or in the pore. We then let the
surrounding electrolyte relax to steady state under the applied
electric field.

The electrolyte solution in which the cylinder is immersed
contains two oppositely charged microion species of con-
centrationFk, k ) +, -, and negligible molecular size. The
ions diffuse in a solvent of number densityF. We assume
that the flow of the solvent obeys the Navier-Stokes equa-
tion for incompressible fluids. The electrolyte can undergo
two types of dynamics: (a) short-range, diffusive mass
transport and (b) long-range, driven transport. To maintain
charge neutrality of the total system (DNA+ electrolyte
solution), the electrolyte must contain an excess charge of
counterions that matches the total charge on the cylinder.

Before applying an external uniform electric fieldE
parallel to the longitudinal axis of the DNA, we allow a
period of time for the formation of the electrical double layer,
at which the electrolyte reaches electrostatic equilibrium.
Once the external field is switched on, it exerts a force on
those fluid elements that carry a net charge, thus creating
an electro-osmotic current.

We considered several values of the cylinder diameter,
salt concentration, and charge density. The uniform external

electric field is kept constant at a value small enough to
guarantee that the system is within the linear-response
regime.

The Electrokinetic Equations.We utilize the hybrid LB
scheme of Capuani et al.21 to solve the electrokinetic
equations on a lattice and with discrete time steps. We refer
the reader to ref 21 for further details on this approach.

For the flows that we are considering, the Reynolds
numbers are typically very small. Moreover, we can assume
that local thermodynamic equilibrium holds, i.e., the micro-
ions become thermally equilibrated within the hydrodynamic
time scale,thydr ≡ L2/ν, whereν is the kinematic viscosity
of the solvent andL is a characteristic length over which
the velocity of the solvent varies.

The electrostatic potential is computed by solving the
Poisson equation

whereφ ≡ âeφ̂ is the electrostatic potential,φ̂, in units of
kBT/e, e is the fundamental charge,â ≡ (kBT)-1, lB ≡ e2â/
(4πε) is the Bjerrum length, andzkFk andzkFk,W are the charge
densities of the microions (in solution) and of the embedded
in solid objects, respectively.zk is the valence of speciesk.
We solved this equation in real space on the same lattice
that was employed to solve the solvent hydrodynamics, using
a successive over-relaxation method.24 This approach allows
great flexibility in the choice of the boundary conditions as
long as they can be resolved on the lattice.

The time evolution of microion densities are governed by
a convection-diffusion equation

where the ion fluxes (i.e. the number of ions crossing a unit
area per unit time) arej k ≡ - Dk∇Fk + µkFkFk (Dk andµk )
âDk are the relevant diffusion and mobility coefficients,
respectively), andu is the solvent velocity. The first term
corresponds to Fickian diffusion, the second to drift under
the influence of a local electric forceFk ≡ - (ezk)∇φ̂. In
our simulations, we impose strict local mass and charge
conservation.21 The Poisson-Boltzmann approximation pre-
scribes that, in the absence of external forces, the ion
densities relax to a canonical thermodynamic equilibrium,
Fk,eq ) F0 exp(-zkφ), whereF0 is the salt concentration in
the bulk. In fact, in our model, the stationarity implied by
the equilibrium distribution is automatically satisfied as we
impose thatj k vanishes forFk ) Fk,eq.

We assume that nonslip boundary condition for the flow
field u on both the colloidal surfaces and the walls. The
assumption of no slip is reasonable as all surfaces involved
in our study are, in fact, rough on an atomic scale. As has
been shown by Bocquet and Barrat,32 a very small amount
of roughness is enough to cause no-slip behavior on solid
surfaces that are wetted by the fluid. For reasons of
computational convenience, we choose a kinematic viscosity
of ν ) 1/6 (in lattice units, l.u.). We choose the solvent
densityF ) 1. The external (electric) field is chosen to be
10-6 (in reduced units). This value is well inside the linear-

Figure 1. Sketch of the geometry of a rodlike polyelectrolyte
of length L and diameter d translocating through a hole of
height h and diameter D. The surface charge density of the
polyelectrolyte is denoted by σ. The applied electric field E is
parallel to the axis of the rodlike polymer.

∇2
φ ) -4πlB[∑

k)(
zk(Fk + Fk,W)], k ) +, - (1)

(∂t + u‚∇)Fk + ∇‚j k ) 0 (2)
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response regime. The diffusivity of all microions is set toD
) 0.19, a value for which spurious diffusion due to lattice
advection (see ref 21) is negligible.

III. Tests for Weakly and Highly Charged
Rods
Before discussing the transport properties of our model, we
briefly describe a few tests that we carried out to verify that
our numerical scheme correctly reproduces the equilibrium
profile of the electrical double layer in the limit of both a
weakly and a highly charged rod of finite length. For the
weakly charged case, we can compare the profiles to the
analytical solution of the linearized Poisson-Boltzmann
equation around an infinite cylinder. For the highly charged
case, we verify that our model reproduces Manning con-
densation.

For an infinite cylinder of radiusa and linear charge
densityê, the linearized Poisson-Boltzmann equation∇2φ

) κ2φ can be solved analytically. Hereκ-1 ≡ λD ≡
(8πlBz2F0)-1/2 is the Debye length. In cylindrical coordinates,
this equation reduces tor-1∂r(r∂rφ) ) κ2φ, with the boundary
condition 2πa∂rφ|r)a ) ê/ε. Its solution isφ(r) ) (2πε)-1Cf(r),
whereC ≡ ê/κa and f(r) ≡ K0(κr)/K1(κa), while K0 andK1

are the modified Bessel functions. Inserting this solution into
the expression for the equilibrium densitiesF(,eq and expand
to lowest order inφ , 1 (“weak charging”), we obtain

This symmetric form aroundF(,eq(r) ) F0 is a signature of
the Debye-Hückel (linearized Poisson-Boltzmann) regime.

Figure 2 shows the computed density profiles of co- and
counterions near a weakly charged cylinder (êlB/e ) 0.07).
As can be seen from the figure, the numerical results are in
excellent agreement with the results obtained of the linearized
theory (eq 3). Of course, the accuracy of the lattice model
improves as the lattice resolution is increased. However, the
good match of Figure 2 was obtained with a fairly coarse-
grained description (the diameter of the cylinder cor-
responded to 8 lattice units).

Manning Condensation.For higher line-charge densities
(as is the case for DNA with a bare line-charge density of
-2e/0.34 nm), the system enters a nonlinear regime where
the deviations of ion profiles from their bulk values are no
longer antisymmetric under charge reversal. As our simula-
tions solve the nonlinear Poisson-Boltzmann equation,∇2φ

) 8πezF0ε
-1sinh(zφ), we should expect to reproduce Man-

ning condensation, an intrinsically nonlinear phenomenon
that arises for highly charged cylinders in the limit of low
salt concentrations,λD . a.25-27

The Manning parameter is defined as the number of
charges in a lengthlB on the rod,q0 ≡ êlB/e. There exists a
critical valueqc ) 1 above which the cylinder exerts such
strong force on the counterions that these segregate into a
condensed-phase layer close to the cylinder, plus a mobile,
gaslike phase outside of this layer. The radius of this
“Manning cloud” isRM ) A(aλD)1/2, whereA depends only
weakly onq0.28 The effect of the counterions is to renor-
malize the bare charge of the rod to a universal value e/lB.

In Figure 3 we show the computed charge density profiles
for different line charges: note the symmetry in the profiles
for distances abover/λD ≈ 1. In Figure 4 we report the values
of the counterion concentration, both within and outside the
Manning layerr < RM, as a function ofq. (Here,q is the
Manning parameter resulting from redefiningê as the linear
charge density observed at a distancer from the rod.) Within
the Manning layer, the counterion concentration increases
roughly quadratically withq, in agreement with analytical

F(,eq(r) ) F0(1 - 2
lB
e

Cf(r)) (3)

Figure 2. Ion density profiles near a uniformly charged
cylinder of finite length, as a function of radial distance to the
surface of the cylinder. The reduced charge density per unit
length is êlB/e ) 0.07 (small positive charge density). Both
charge density profiles are measured far away from the
endpoints of the cylinder, and charge densities are normalized
to their value in the bulk (salt concentration). Radial distances
are expressed in units of the Debye screening length. The
symbols denote simulation results (λD/d ) 0.15) for counter-
ions (spheres) and co-ions (squares); solid curves are solu-
tions to the linearized Poisson-Boltzmann equation for an
infinite cylinder, see eq 3.

Figure 3. Ionic density profiles near a highly charged cylinder
for different values of the Manning parameter q, namely 0.07
(circles), 0.7 (squares), and 2.8 (triangles). Curves are guides
to the eye: solid curves represent counterions, dashed curves
co-ions. Densities are normalized by their value in the bulk
(salt concentration); the distance is normalized by the Debye
screening length, λD/d ) 1.5. The Manning radius is RM/λD ≈
1. The inset shows the density profiles for r > RM.
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predictions, whereas outside the Manning layer the counter-
ion concentration is less sentitive to charge increase forq >
1. This saturation effect is one of the signatures of Manning
condensation. The fact that we do not reach a complete
saturation in the counterion concentrations is consistent with
the fact that our simulations are performed at small but finite
salt concentrations, whereas Manning condensation is a low-
salt effect.

IV. Current Modulation during Translocation:
Symmetric Pore
Next, we consider the effect of the translocation of a charged
rodlike polymer on the ionic currents through the pore. In
our simulations, we placed a charged polymer at various
positions in or near the translocation pore. We then first
equilibrated the charge distributions around the charged
polymer. Subsequently, we applied an electric field in a
direction parallel to the polymer axis. Immediately after the
field is switched on, we observe the onset of electro-osmotic
currents. We let the system evolve until these current had
reached their steady-state value. We then measure the ionic
current,I, as the superposition of conductive plus convective
contributions (in the remainder, we assume monovalent ions,
z ) 1, with the same mobility,µ, and we use the elementary
charge as our unit of charge: e) 1)

whereµ is the ion mobility andux(y, z) is the component of
the flow velocity parallel to the symmetry axis. Since mass
and charge are conserved to machine precision, and since,
in steady state, the total ionic current is a constant along
axis Ox, the integral can be taken over any section
perpendicular to Ox. To increase precision, we averaged
over all planes Oxy. It is worth noting that, for the electric
fields used in these simulations, the convective contribution
to the current becomes negligible compared to the conductive
term.

We measuredI for several values of the rod’s position,
x/lc, for two values of the screening length,λD/d ) 1, 50,
and four values of the surface charge densities,σ/(e/d2) )
0, 0.1, 0.5, 1. We fixed the rod-to-pore diameter ratio at a
value of 1/3. We chose the rodlike polymer to be twice as
long as the pore. In Figure 5 we show how the ionic current
varies with the position of the translocating polymer. Not
surprisingly, we find that if the polymer is uncharged,I
invariably decreases as the polymer enters the pore. In other
words: the polymer simply blocks part of the current flow.
The situation changes when we consider charged polymers.
In the high-salt case,λD/d ) 1, Figure 5 left, the presence
of the polymer in the pore leads to a reduction of the ionic
current, but the effect is smaller for highly charged polymers.
However, in the low-salt case,λD/d ) 50, Figure 5 right,
the ionic currentI is actually increasedwhen a charged
polymer is introduced into the pore.

This counterintuitive behavior has recently been observed
in experiments9,29 and large-scale atomistic simulations10 of
DNA ‘unsteady’ translocation, i.e., electrophoretic translo-
cation of one free DNA oligomer in solution. The advantage
of the current approach is that we can separate true steady-
state effects from transients that are also present during rapid
translocation. In fact, in the atomistic simulations of ref 10
the current enhancement is interpreted as a transient that
occurs when DNA leaves the pore: it was attributed to the
release of co- and counterions that had accumulated while
the DNA was blocking the pore. However, even in ref 10
there is indirect evidence for the effects that we report here,
as Figures 4 and 5 in ref 10 also show current enhancement
just beforedouble-stranded DNA enters the pore.

Figure 6 shows the computed electric current for a neutral
polymer with different diameters. The figure shows that the
current is proportional to the accessible cross section of the
pore. As a consequence, the drop in the current intensity
due to the cylinder entering in the pore (defined as the ratio
of the currents measured as the cylinder is respectively far
from and inside the pore) is proportional to (d/D)2.

This rather trivial effect is nevertheless of practical
importance as it is at the basis of experimental techniques

Figure 4. Counterion concentration for different values of the Manning parameter q. Left, within the Manning layer, r < RM;
right, outside the Manning layer, r > RM. Symbols are simulation results; curves are guides to the eye. Densities are normalized
by the value in the bulk. λD/d ) 1.5 and RM/λD ≈ 1.

I ≡ ∫∫
x)const

dydz [-µ(F+ - F-)∇φ + (F+ - F-)ux(y, z)]

(4)
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to detect the translocation of rodlike macromolecules through
a pore. This effect becomes more pronounced as the diameter
of the pore becomes comparable to that of the cylinder, which
is often the case of in the case of DNA translocation in vivo.

The behavior shown in Figure 5 is due to a competition
between these two opposing effects. At low charge, the
geometrical effect dominates. But when the cylinder is highly
charged and the Debye screening length is large, the
electrostatic effect is larger than that due to geometry, and
the ionic current is enhanced with respect to the case where
the nanopore is empty.

To understand the dependence of the ionic currentI on
the charge of the translocating polymer, we can use the
following rough estimate. We assume that the electric field
E and the charge densitiesF+ andF- are constant inside the
pore. If the gap between the cylinder and the pore wall is
small, we can approximate this gap by a flat slit. This allows

us to use a simple analytical approximation30 to estimate the
total ionic concentration,F+,W + F-,W, at the pore wall

Here,F0
- ) F0

+ ) F0 is the concentration of the two species
at infinity, and F0 is the salt concentration in the solution
bulk.

Using this approximation, we can estimate the relative
variation of the current intensity due to the surface charges,
by using eq 5, and obtain

Hence, recalling thatλD ≡ (8πlBF0)-1/2 and lB ≡ e2â/(4πε),
we obtain

We can combine the effects of geometry and surface
charge in one single (approximate) expression

whereI0 denotes the current through the unobstructed pore.
Note that sign of∆I can be either positive or negative,
depending on whether translocation enhances or decreases
the current through the pore. Equation 7 shows that the ionic
current increases with increasing Debye screening length.
On the other hand, the partial blocking of the nanopore by
the translocating polymer tends to decrease the electric
current.

Figure 7 shows the relative variation of the current∆I/I0

as a function of the dimensionless parameterσλDlB/e. As can

Figure 5. Diffusive ionic current measured at steady state
as a function of the cylinder’s position X from the pore.
Intensities are normalized by the current measured when the
cylinder is far from the pore. Results are shown for λD/d ) 1
(left) and λD/d ) 50 (right) and for different cylinder’s surface
charge σ. Symbols denote simulation results, while curves are
guides to the eye.

Figure 6. Drop of the conductivity of a nanopore as a function
of the cylinder-to-pore cross-section ratio, for an uncharged
cylinder. Symbols denote simulation results, and the line is
described by the function 1 - (d/D)2. The conductivity is
proportional to the cross-section of the gap between the pore
and the rod.

(F+,W + F-,W) ) (F0
+ + F0

-) + âσ2

2ε
) 2F0(1 + â σ2

4εF0
) (5)

I(σ, F0)

I(σ ) 0,F0)
) 1 + â σ2

4εF0

∆I
I0

≡ I(σ, F0) - I(0,F0)

I(0,F0)
) 8π2 (σλDlB

e )2

(6)

∆I
I0

)
I(σ, F0) - I0(0, F0)

I0(0, F0)
)

(D - d
D )2(1 + 8π2 (σλDlB

e )2) - 1 (7)
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be seen from the figure, the numerical data reproduce the
quadratic dependence predicted by eq 6.

Of course, in experiments on polyelectrolyte translocation,
the (bare) surface chargeσ of the polyelectrolyte is dictated
by its chemical composition and will usually not be varied.
However, it is possible to vary the geometry of the nanopore
and, more easily, the concentration of added salt. If we
consider typical salt concentrations in the range from 10 mM
to 1 M, then our simulations apply to nanopores with typical
widths in the range 5< D < 20 nm and heights between 10
< h < 40 nm.

V. Current Modulation during Translocation
Past a Charged Probe
The holy grail of experiments on DNA translocation is to
extract sequence information from the modulation of the
ionic current. Although progress in this direction is certainly
being made (see, e.g. ref 31), the generation and interpretation
of a DNA translocation “signals” is not straightforward. To
study current modulation during DNA translocation, we
considered a model polyelectrolyte with constant thickness
but a helical (rather than uniform) charge distribution.
Translocation of such a helical polyelectrolyte through a
symmetric nanopore does not give rise to any current
modulation. The reason is that shifting the cylinder by an
arbitrary distanceh along its axis is equivalent to a rotation
of angleθ ) 2πh/p, wherep is the pitch of the helixsand
simple rotations of a charged helix in a cylindrically
symmetric pore do not change the total current. We therefore
considered the interesting case of nanopore with a charged
patch that acts as a probe, embedded in the tube wall.

Current nanofabrication techniques allow the production
of synthetic pores of the diameter comparable to the thickness
of the DNA oligomer (2 nm). Biological pores such as
R-hemolysin have similar internal diameters. The design of

a nanopore with a charged probe in the wall of the channel
is therefore not beyond what is currently feasible. A charged
patch acts as a probe because the overlap of the electrical
double layers around the patch and the DNA affects the ionic
current.

To obtain an estimate of the possible magnitude of such
current modulations, we considered single- and double-helix
charge distributions on the rod as models for ss- and dsDNA,
respectively. As for ssDNA, we placed an infinite cylinder
with a single helix charge distribution in the pore and
measured the steady-state ionic current in response to a
constant voltage for different displacements of the cylinder
along its longitudinal axis. The surface charge of the patch
was chosen to have the same sign and magnitude as that of
the charges on the cylinder, but this assumption is not
essential.

Figure 8 shows that, with such an asymmetrically placed
probe, the total electric current is indeed modulated upon
translocation (or, equivalently, rotation) of the ssDNA rod.
In our (discretized) model, the helix pitch was equal to 8
lattice units (l.u.), and hence eight values for the current are
reported in Figure 8.

In the case of ssDNA, one might argue that the fact that
such molecules have a rather short persistence length (1.5-3
nm) would render the rigid rod model inadequate. However,
flexibility would not affect the order of magnitude of the
predicted modulations. Moreover, one might envisage situ-
ations where the ssDNA is prestretched by linking it to
optically trapped colloidal beads on both sides of the pore.

This problem does not occur with the much more rigid
double-stranded DNA. We model dsDNA as a cylinder of
constant thickness covered by a double helical charge
distribution (see Figure 9). We computed similar setups to
those for the ssDNA, using the same charge patch inside
the pore. To compare the effect of changing configuration

Figure 7. Relative variation of the ionic current, with respect
to the ionic current measured for σ ) 0, as a function of the
surface charge squared on the cylinder. The surface charge
σ is normalized by the length scales λD and lB and the
elementary charge e, resulting in a Manning parameter (see
text). Symbols denote simulation results for λD ) 1.5 and D
- d ) 2 (l.u). The dotted curve shows a quadratic fit to the
numerical data, in good agreement with our analytic ap-
proximation (see text).

Figure 8. Modulation in the ionic current as ssDNA of radius
5 (l.u.) translocates through a pore of radius 10 (l.u.) at position
X, shown as the relative variation ∆I/I0 of the ionic current
with respect to the ionic current I0, measured for σ ) 0. We
normalized this variation to the dimensionless parameter Q
≡ (σλDlB/e)2 s this should correct for the explicit dependence
of the current on the average charge density of the cylinder
(eq 6). The diameters of the ssDNA and the pore are 10 and
20 l.u., respectively, and p ) 8 l.u. is the helical pitch. Symbols
denote simulation results, and the curves are guides to the
eye.
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(from single to double helix), we divide the current modula-
tion by Q ≡ (σλDlB/e)2, which should describe the effect of
a smeared out charge densityσ on the ionic current (eq 6).
Our simulations again indicate that the ionic current is
modulated upon translocation of the dsDNA (see Figure 10).
The period of the modulations is now half the pitch of one
helix. The screening length was chosen to be smaller than
the pitch and comparable to the size of the charged patch.
This choice maximizes the inhomogeneity of the electric
potential. For dsDNA, these conditions can be achieved with
a 1 M monovalent salt in water at room temperature, which
is in the range of experimental parameters. This yields a
screening-length of 0.3 nm for a pitch of 3 nm.

The amplitude of the scaled current modulation during
translocation is larger (approximately seven times) for the
single helix than the double helix. The value of this ratio
suggests that the scaled current modulation is not simply
proportional to the variance in the surface charge density.
We have not attempted to quantify this dependence. Both
for ssDNA and dsDNA, the unscaled current modulation is
small (typically, between 1:102 and 1:104). In experiment,
such a signal might still be detectable if the position of the
DNA is modulated periodically.

We have not attempted to optimize the conditions for
maximal modulation of the translocation current. Within the
current model, there is certainly room for improvement. For
instance,∆I/I0 increases with increasing ratio of the diameter
d of the DNA to the diameterD of the pore. In our
simulations, the maximum value ofd/D was determined by
the lattice resolution. By increasing this resolution, larger

d/D ratios can be studied. However, for DNA fitting snugly
in the pore, it would not be justified to ignore the corrugation
(grooves) of the DNA surface. Hence, we have not attempted
to study this limit.

Conclusions
In summary, we have presented Lattice-Boltzmann simula-
tions of the modulation in ionic current associated with the
translocation of charged oligomers through nanopores under
an applied electric field. Our first observation is that,
depending on the conditions (charge of the polyelectrolyte,
ionic strength of the solution), translocation may either
decrease or, more surprisingly, increase the ionic current.

In addition, we have presented simulations that indicate
that the modulation of the ionic current during translocation
can be made sensitive to the microscopic charge distribution
of the DNA by placing a localized charged “probe” on the
wall of the nanopore. We argue that this effect should be
experimentally observable, even though the predicted current
modulations are small. Of course, thermal (“Nyquist”) noise
in the electrical current may partially obscure such measure-
ments. However, unlike the thermal noise, the translocation-
induced current modulation increases with increasing current.
Moreover, if the DNA is connected to a colloidal bead that
is moved periodically, then the signal-to-noise problem can
be reduced by employing phase-sensitive detection.
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Figure 9. Schematic drawing of the translocation of dsDNA
past a charged probe. On the dsDNA, two helical line charges
form a double helix. The black area in the pore denotes the
charged “probe”. X denotes the position of the cylinder and p
is the pitch of the helix. The ionic current is measured at
steady state with a constant voltage bias. The overlap of the
electrical double layer around the patch with that around the
double helix locally increases the charge density, thus
increasing the ionic current with periodicity p/2 as the cylinder
translocates. A second patch on the opposite side of the pore
would enhance the modulations in the current; however, this
is only true for radially symmetric charge distributions, such
as that of dsDNA.

Figure 10. Modulation in the ionic current as dsDNA trans-
locates through a pore at position X, shown as the relative
variation of the ionic current with respect to the ionic current
I0, measured for σ ) 0. We normalized this variation to the
dimensionless parameter Q ≡ (σλDlB/e)2 s this should correct
for the explicit dependence of the current on the average
charge density of the cylinder (eq 6). The diameters of the
dsDNA and the pore are 10 and 20 l.u., respectively, while p
) 8 l.u. is the helix pitch. The period of the modulations is
half of that for ssDNA. Symbols denote the simulation results,
and curves are guides to the eye. The actual modulation is
much smaller (10-4) than the average current. Hence, small
discretization errors show up clearly in this figure: in the
absence of such errors the modulation would be perfectly
periodic with a period p/2.
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Abstract: A multiscale coarse-graining procedure is used to study carbonaceous nanoparticle

assembly. The computational methodology is applied to an ensemble of 10 000 nanoparticles

(or effectively 2 million total carbon atoms) to simulate the agglomeration of carbonaceous

nanoparticles using coarse-grained atomistic-scale information. In particular, with the coarse-

graining approach, we are able to assess the influence of nanoparticle morphology and

temperature on the agglomeration process. The coarse-graining of the interparticle force field

is accomplished applying a force-matching procedure to data obtained from trajectories and

forces from all-atom molecular dynamics simulation. The coarse-grained molecular dynamics

results show rich and varied clustering behaviors for different particle morphologies. They are

shown to reproduce accurately the structural properties of the nanoparticles systems studied,

while allowing for molecular dynamics simulations of much larger self-assembled nanoparticles

systems.

Introduction
In combustion environments, soot formation (particles with
an average size of thousands of nanometers) is a fascinating
multiscale problem of nanoparticle growth, both in length
scale and in time scale. Figure 1 shows the chemical and
physical processes for the formation of nanoparticle ag-
glomerates starting from simple molecules, going through
the formation of polycyclic aromatics and particle inception,
and ending up with particle coagulation and agglomeration
leading to primary particles (50 nm in diameter).1 The
processes involved in the formation of particles exhibit a
wide range of time scales, spanning pico- or nanoseconds
for intramolecular processes to milliseconds for intermo-
lecular reactions. At the same time, the length scale also
undergoes significant changes, going from a few angstroms
for small polycyclic aromatic hydrocarbons to hundreds of
nanometers for particle aggregates.

When the nanoparticles are able to reach a critical size
(which is not always the case), they begin to aggregate on

two separate length scales. The assembly on the smallest of
these scales seems to be governed by the strongest interpar-
ticle interactions, so interesting patterns reminiscent of a
spinodal decomposition process become evident. These
smaller assemblies will, in turn, aggregate on an even larger

* Corresponding author phone: (734) 615-6448; fax: (734) 647-
9379; e-mail: avioli@umich.edu.

† Permanent address: Department of Chemistry, University of
Utah, Salt Lake City, UT 84112.

Figure 1. Particle formation in flames.
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length scale through a process that resembles colloidal
nucleation. Thus, the molecular science of the nanoparticles
bridges with the statistical mechanics of nonequilibrium self-
assembly and nucleation over two disparate length and time
scales in a truly fascinating way.

These nanoparticles are quite robust and, in fact, stabilize
a remarkably large number of radical sites on their surfaces.
The high concentration of radical sites, along with the small
size of the nanoparticles, leads to serious health implications
when a person breathes these particles into their lungs.

This paper reports on a new multiscale coarse-graining
simulation approach for bridging the time and length scales
in the growth of the carbon nanocluster self-assembly. After
a description of the methodology, results are shown for the
assembly of carbonaceous nanoparticles of different mor-
phologies in the temperature range 1100-1600 K.

Computational Methodology
Carbonaceous nanoparticle agglomeration is influenced by
large length- and time-scale motions that extend to mesos-
copic scales, that is, one micrometer or more in length and
one microsecond or more in time. To increase the time and
length scales accessible in simulations and to be able to
simulate nanoparticle assembly, it is necessary to describe
the particles on a more coarse-grained (CG) level. The
strategy of these CG approaches is generally the same: to
achieve a simpler description of the effective interactions in
a given system while not losing the ability of the resulting
models to predict the properties of interest. The existing
approaches for obtaining effective CG potentials target the
reproduction of a few average structural properties seen in
atomistic simulations or experiments, for example, using an
iterative adjustment of potential parameters starting from an
approximation based on potentials of mean force,2,3 or the
Inverse Monte Carlo technique,4 or they may be parametrized
to match thermodynamic properties.3-8 These approaches
rapidly become computationally expensive and less reliable
for systems with an “aggressive” coarse-graining, such as
the nanoparticles systems. Recently, a novel approach for a
reconstruction of CG potentials from an underlying explicit
atomistic molecular dynamics (MD) simulation has been
proposed.9-11 The method, which is called “multiscale coarse-
graining” (MS-CG), is built upon the force-matching (FM)
technique developed in ref 9. The MS-CG method exploits
the fact that an application of the FM procedure to the CG
images from underlying atomistic trajectory/force data should
produce the effective interaction between CG structural units
as it seen in the atomistic dynamics. The most obvious way
to map an atomic group into a CG site is to associate it with
its center of mass (CM) because the force acting on the CM
of the atomic group can be straightforwardly evaluated from
the atomistic MD data.

The algorithmic development of the MS-CG method is
presented elsewhere.9,12-14 In the MS-CG framework, the
site-site forcef i

p(rij) ) fp(rij)nij (acting from sitej on sitei),
whererij is the modulus of the vectorr ij ) r j - r i connecting
two sites andnij ) r ij/r ij, was represented by the cubic splines
connecting a set of points{rk} with rkmax equal to the cutoff,
was used to represent thef(r)

with r ∈ [ri,ri+1].
In eq 1,A, B, C, andD are known functions ofr and{rk},

and {fk} and {f′′k} are tabulations off(r) and its second
derivative on a radial mesh{rk}. The parameters{fk,f′′k} are
to be obtained from the fit. The choice of spline is
advantageous for two reasons. First, it preserves the continu-
ity of fi

p(rij) and its first two derivatives and gives the
flexibility of fitting arbitrary pairwise forces. Second, a spline
is a linear form of its parameters{fk,f′′k} and therefore
permits a reduction of the least-squares problem in the force-
matching procedure15 to an overdetermined system of linear
equations.11,16

A linear dependence of the force on the fitting parameters
permits a splitting of the least-squares fit into two phases,
making the whole procedure computationally much less
expensive. Practically, the MS-CG method is implemented
as follows. All sets of atomic configurations recorded along
the trajectories of the reference MD simulation are partitioned
into blocks, each containingL configurations. For each block,
the reference total forceFRil

ref which acts on theith atom of
kind R in the lth atomic configuration of the block and the
same force predicted using the representation in eq 1 are
required to be equal

with respect to{fRâ,k,f ′′Râ,k} which are force parameters. In
eq 2,rRil ,âjl is the distance between atoms{Ri} and{âi} in
the lth atomic configuration of the block;Nâ and K are,
respectively, the number of atoms of kindâ and the total
number of atomic kinds in the systems, and{rRâ,k} is a spline
mesh which might be for different{Râ}. The sizeL of each
block should be large enough to ensure that eq 2 overde-
termines the force parameters. Standard equations which are
linear with respect to{fRâ,k,f ′′Râ,k} must be included into eq 2
for the f(r)’s first derivative,f ′(r), to be continuous across
the boundary between two intervals.17

The solutions of eq 2 need to be averaged over all of the
blocks to get the effective force field. More discussion of
the MS-CG methodology is given in ref 9.

As a result of this new approach, the effective phase space
of the system is significantly reduced in size, as is the number
of costly force calculations. In the MS-CG approach, the
CG parameters are therefore developed “on the fly” from
the actual atomistic-level forces coming from a full MD
“presimulation”. Hence, the term “multiscale” is used for
the MS-CG method, meaning that changes at the atomistic
level of the force field will systematically propagate upward
via the force-matching algorithm to the CG representation
of the system. The MS-CG model will allow the simulations
of the nanoparticle systems in this project to bridge upward
in both length and time scale, so as to better access the
properties influenced by those scales.

f(r,{rk},{fk},{f′′k}) ) A(r,{rk})fi + B(r,{rk})fi+1 +
C(r,{rk})f′′i + D(r,{rk})f′′i+1 (1)

- ∑
â)1,K

∑
j)1,Nâ

[f(rRil ,âjl,{rRâ,k},{fRâ,k},{f′′Râ,k})]nRil ,âjl ) FRil
ref

R ) 1, ..., K; i ) 1, ...,NR; l ) 1, ...,L (2)
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The capability of the MS-CG approach to develop the
CG parameters “on the fly” from the actual atomistic-level
forces coming from a full MD is very important in the study
of particle formation in combustion. The newly nucleated
particles grow by coagulation and coalescent collisions as
well as surface growth. All these processes happen at the
same time, and while the CG approach can describe particle
coagulation,the surface growthneeds to be carried out at
the atomistic level. The changes that can occur on single
nanoparticles because of surface growth at the level of the
atomistic MD will propagate upward to the MS-CG
effective force field via the force-matching algorithm in a
multiscale fashion.

The MS-CG method has been successfully applied to
several complex condensed-phase and biological systems.9

The method proved to be workable for systems of carbon-
aceous nanoparticles.18 This is an important result because
the coarse-graining of nanoparticle systems presents a special
challenge because of their shapes, that is, ranging from the
highly symmetric C60 to more amorphous and irregular
shapes. They also generally interact through the sum of many
weaker interactions rather than via strong electrostatics in,
for example, an aqueous environment.

The MS-CG method is computationally efficient, and this
is an important feature of the approach because the coarse-
graining of the system interactions may greatly reduce the
transferability of the resulting models between different
thermodynamic conditions. MS-CG allows fast parametri-
zation of the CG force fields at the thermodynamic conditions
of interest instead of using “universal” models that increase
the reliability of the CG simulations.

Results
Molecular Models. The initial configurations of the carbon-
aceous nanoparticles chosen for this study are obtained using
a combination of kinetic Monte Carlo and MD methodologies
(Atomistic Model for Particle Inception, or AMPI code).
The AMPI code has been developed to study the transforma-
tions that occur during the transition from the gas phase to
particle inception,19-21 providing information on both the
chemical structure and the configuration of the nanoparticles.
The capability of the AMPI code has been validated in
different conditions, and nanoparticles have been character-
ized in terms of chemical structure and components, and
relationships between the structure and pathways, structure
and properties, and structure and reactivity population of
active sites have been addressed. In particular, computed
properties of nanoparticles have been compared with ex-
perimental data in terms of H/C trends, particle morphology,
depolarization ratio, and free radical concentration.

Figure 2a,b shows two representative structures obtained
with the AMPI code in different combustion environments.
These results, in turn, correlate with the curvature of carbon
layers seen in high-resolution transmission electron micros-
copy images of combustion-generated nanoparticles produced
in flames, which show a different curvature of the carbon
nanoparticles containing an amorphous, graphitic, or fulle-
renic nanostructure.22-24

The particle in panel (a), named “round”, has an aspect
ratio close to unity with a formula of C188H53, while the
compound in panel (b) (the “flat” particle) has a composition
of C202H90. Both round and flat nanoparticles have a size of
around 17 Å in the longest dimension. The round precursor
consists of a network of 5-8-membered fused rings such as
buckyballs, whereas the flat one has four planar aromatic
moieties connected by freely rotating bonds.

CG Procedure. To construct and validate an effective
force field for CG unit interactions (force-matching algo-
rithm), the following steps are required:

(1) Atomistic MD simulations of the particle ensembles
(2) Partitioning of the systems in CG sites and a buildup

of the CG interactions
(3) Comparison between the CG results and the fully

atomistic data
1. Atomistic MD Simulation of the Particle Ensembles.

To address the importance of particle morphology on the
assembly behavior, three ensembles are considered in this
study: (1) 32 round nanoparticles, (2) 32 flat nanoparticles,
and (3) 16 round and 16 flat nanoparticles.

The CHARMM force-field parameters25 are utilized to
describe the interactions between nanoparticles in a constant
NVT ensemble. Figure 3 reports the snapshots from MD
simulations at 1100 K for the three ensembles. It is important
to note that the radical chemistry is not included in these
simulations, and all dangling bonds of the carbon atoms on
the nanoparticles have been hydrogen-terminated.

The round particles tend to cluster, and they show a
preferred orientation that is back-to-back (left panel). Some

Figure 2. Atomistic and coarse-grained representations of
two carbonaceous nanoparticles: (a) round (one-site and
three-site representations) and (b) flat (three-site representa-
tion).
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of the sheetlike particles do cluster in small agglomerates
(middle panel), while the third panel shows a snapshot of
the mixed systems in which some of the particles drift away
from the ensemble and some form subclusters. In addition,
the clustering behavior for flat-flat particles is quite different
from that for the round-round ones: the orientation is more
edge-to-edge or stacking, and the interacting particles are
tightly constrained.

The current models present in the literature report a
simplified notion of the coagulation process, in which two
particles coagulate after collision if the kinetic energy of the
particles is lower than their interaction potential, which
depends on van der Waals attraction and Born repulsion
forces.26 The results presented in Figure 3 show a much more
complex process in which particle morphologies play an
important role. This information is necessary to build a
realistic model for particle formation.

2. Partitioning of the System.Carbonaceous nanoparticles
can be coarse-grained into a different number of sites.
Generally, a larger number of interaction sites is advanta-
geous because the CG simulation yields a better resolution.
However, a higher computational cost and a lower accuracy
of the MS-CG procedure as well as a more expensive CG
simulation are major drawbacks of such models.

As reported in ref 18, the one- and three-site models of
the particles perform very well in reproducing the structural
properties of the carbonaceous nanoparticles obtained in an
all-atom MD simulation. Figure 2 shows the CG sites for
the two nanoparticles studied here. The three-site model
accounts for orientational degrees of freedom of the particles
themselves, which are very important when dealing with
complex processes, such as self-assembly or structural
transitions of nanoparticles. For the first two ensembles (32
particles of the same morphology), a three-site CG repre-
sentation is used. The “round” particles were mapped into a
three-site geometry by slicing each of them into three
segments of approximately equal weight by planes perpen-
dicular to the opening plane of the particle. The CG

interaction sites are associated with the CM of the corre-
sponding segments as shown in Figure 2 (sites A, B, and
C). Similar to the round particle, the flat nanoparticle is
divided into three segments in accordance with its three
“wings”. The CG sites were associated with the CM of the
corresponding segments as shown in Figure 2 (sites A, B,
and C).

For the third system composed of 32 mixed particles, the
one-site model is used for the round particles, in which the
CG site is associated with the CM of the whole particle,
and the three-site model for the flat particles. This choice
allows the reduction of the computational time without losing
accuracy.18 In particular, for the 32-particle system, the
acceleration of the simulation is about 2000-5000 times.

2.1. Buildup of the CG Site Interactions.MS-CG models
with such an “aggressive” coarse-graining as those of one
and three sites are expected to have a low transferability
among different phases (e.g., at different temperatures and
different densities). As an example, a MS-CG model
generated from the all-atom simulation at a temperature of
1600 K to study particle aggregation at a lower temperature
could be questionable. Ideally, the CG model has to be
parametrized at the same thermodynamic conditions as those
at which a simulation of the phenomena of interest is
intended.

To assess the issue of transferability, MS-CG force fields
for ensembles 1 and 2 of round and flat particles are
computed at two temperatures (1100 and 1600 K) and two
particle densities. The sizes of the supercells used for the
simulations are 10.5 nm (“high” density) and 12.0 nm (“low”
density), respectively. For the mixed systemsensemble 3s
the MS-CG force field is calculated at 1600 K and for a
single density (size of the supercell of 10.0 nm).

Data from the all-atom simulations are collapsed into
trajectories and forces of the CG sites, and the resulting CG
trajectory and force data are used as input to the FM
algorithm. The trajectory and the force data from the
atomistic simulations are sampled at an interval of 0.1 ps.

Figure 3. Snapshots from MD simulations of three ensembles of 32 nanoparticles (panel a, “round”; panel b, “flat”; and panel
c, “round/flat”) at 1100 K.
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For the simulation at 1600 K and low density, the overde-
termined system of linear FM equations is solved repeatedly
for 15 000 sets of atomic configurations from 3.0 ns MD
trajectory data, with each set consisting of two configurations
(L ) 2 in eq 2) and then averaged over all of the sets. For
the other cases, the all-atom simulation is increased to 6.0
ns with a proportional increase in the number of sampled
all-atom configurations.

The force field is represented by a spline over a mesh with
a grid spacing of approximately 0.01 nm. The potentials are
calculated by integrating out the respective terms in the force
fields and then shifting them to zero at the cutoff radius.
The classical MD simulations with the new CG models were
performed using the DL_POLY 2.9 computer code.27

The tabulated force fields and potentials for the systems
investigated in this paper are available in a DL POLY code
format.

Figure 4 reports the diagonal effective potential profiles
for the system of round particles at two temperatures and
different densities. The effective forces appear to be less
sensitive to a change in the average particle density than to
variations in the temperature. As a consequence, the differ-
ence between the two force fields can be attributed mainly
to a change in the temperature.

At 1600 K (Figure 4c,d), the strongest interactions are
between the A-A and C-C pairs of sites, and the potential

shows a minimum at-3.1 kJ/mol that is smaller thankBT
) 13.3 kJ/mol at that temperature. At 1100 K, the binding
energies of the A-A and C-C pairs dramatically increase
to about-13 kJ/mol (kBT at 1100 K) 9.1 kJ/mol), with
the equilibrium distances shifted toward long separation
distances suggesting a possibility of aggregation. The
similarity of potential profiles for different pairs of sites is
just a manifestation of the high symmetry of the round
particles.

An analogous tendency is observed for the system of flat
particles. However, the binding energies are smaller at both
temperatures (1100 and 1600 K) than those of the system of
round particles and at the same time are below the values of

Figure 4. Effective pairwise forces (left) and potentials (right) for selected pairs of CG sites as a function of the intersite separation
calculated by the force-matching method. Panels a and b: round particles at 1100 K, “high” density. Panels c and d: round
particles at 1600 K, “low” density.

Figure 5. Effective pairwise forces (left) and potentials (right) for the MS-CG model of the mixed system of round (one-site
representation - O) and flat (three-site representation - A, B, and C) nanoparticles.

Table 1. Properties of the Gas-Phase Dimer from
Atomistic and CG Models of the Nanoparticles
Parameterized at T ) 1600 K and Low Densitya

model R0 (nm) Upot (kJ/mol) θ (deg)

round atomistic 1.34 -105.4 50.3
round one-site 1.23 7.5
round three-site 1.35 -16.74 44.5
flat atomistic 0.92 -156.4 21.1
flat three-site 0.97 28.2 23.7
a Shown are R0, the distance between centers of mass of particles;

Upot, the interaction energy; and θ, the angle between the planes
through CG sites (for three-site models).
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kBT. These results indicate some difficulties for the MS-
CG flat particle ensemble to aggregate even at low temper-
atures.

For the mixed systemsensemble 3sFigure 5 shows the
effective interactions of one-site round particles with three-
site flat particles at 1600 K. The round particle tends to bind
strongly to the A site of the flat particle, and the binding
energy is comparable to the one obtained for the system of
round particlessensemble 1 (see Figure 4)ssuggesting a
stronger ability of the mixed system to aggregate compared
with the system of flat particlessensemble 2.

Because the all-atom simulation of the mixed system
yielded poor statistics for the MS-CG procedure because
of the small number of sites contained in the reference system
compared with the system of flat particles, for the simulations
reported below, we replace the interactions between flat
particles with those from ensemble 2 obtained at 1600 K
and low density.

3. Validation of the MS-CG Models.To test the MS-
CG model, we first examine the properties of nanoparticle
dimers in a vacuum. The results for the MS-CG model
parametrized at 1600 K and low density are summarized in
Table 1. The computed CG geometry of the dimers matches
very well the data obtained from the atomistic model.

For the many-particle systems (ensembles 1-3), the MS-
CG simulations are carried out using the same geometries
and thermodynamic conditions as those of the reference all-
atom system.

To check the transferability of the MS-CG models
between different thermodynamic conditions, the structural
properties obtained through the MS-CG model at different
temperatures were compared with the results obtained at the
all-atom level. The MS-CG simulations were initiated using
the configuration which was final in the reference all-atom
MD simulations. In Figure 6, some comparisons for the
systems of interest are presented.

The MS-CG models perform very well in reproducing
the reference structural properties: some discrepancies
observed for the 1100 K simulations and for the high density

Figure 6. (a) Comparison between selected RDFs of the all-atom MD simulations (blue lines) and those obtained from the
MS-CG MD simulation (red lines) for ensemble 1sround particlessat 1100 and 1600 K. The green line represents the RDFs
obtained using the force field computed at 1600 K (left panel) and 1100 K (right panel). (b) Comparison between selected RDFs
of the all-atom MD simulations (blue lines) and those obtained from the MS-CG MD simulation (red lines) for ensemble 2sflat
particlessat 1100 and 1600 K.

Figure 7. Comparison between RDFs of the all-atom MD
simulations (blue lines) and those obtained from the MS-
CG MD simulation (red lines) for ensemble 3sround and flat
particles.
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simulations at 1600 K are due to the limited simulation time
that caused the radial distribution functions (RDFs) in the
all-atom simulations not to be fully converged. This con-
jecture is supported by a comparison of RDFs from the MS-
CG simulations at early stages of the dynamics. Figure 6a,
panel a, reports the RDF from the MS-CG simulation of
the system of round particles at 1100 K: a first peak at the
AA RDF recorded after 3 ns shows a better agreement with
the atomistic value than the peak recorded after 20 ps. This
suggests that the all-atom RDFs were indeed not fully
converged.

It should be noted that, because the dynamics in the MS-
CG MD simulation are significantly accelerated, a fair
comparison of time scales between the MS-CG and all-
atom simulations is difficult. Similar conclusions can be
drawn looking at the RDFs from different simulations of the
system of flat particles shown in Figure 6b, panels c and d.

In Figure 6aspanel (a)sthe RDFs computed using the
force field generated at 1600 K are shown as green lines,
and the structure is dramatically different from that of the
MS-CG model generated at 1100 K. The RDFs from the
1600 K model bear a memory of the structure at that temper-
ature which is very different form the low-temperature case.

A similar comparison is reported in Figure 6aspanel
(b)swhen the MS-CG model parametrized at 1100 K is
used to compute the RDF at 1600 K.

The failure of the MS-CG models to correctly reproduce
the structure at temperatures different from those at which
they were parametrized unequivocally points toward a very
poor transferability of the MS-CG models of the nanopar-
ticles.

The RDFs from the 1100 K simulations as well as those
from the simulation at 1600 K and high density exhibit a
significant number of peaks, which indicates the formation
of particle agglomerates. The peaks tend to amplify as the
simulations proceed, thus, further supporting the aggregation
behavior in these systems.

Figure 7 shows the RDFs from the MS-CG simulation
of the mixed system. Some mismatch between atomistic and
MS-CG RDFs is, partly, due to the use of the MS-CG

model derived from the flat particle simulation, to describe
interactions of flat particles with each other. Relatively well
pronounced peaks in the AO and OO RDFs indicate a
significant tendency to aggregate for these pairs of sites.

Behavior on Large Scales.To study the formation of
bigger agglomerates (soot primary particles), the MS-CG
MD simulations are then conducted on a system of 10 000
CG particles (or effectively 2 million atoms) for 500 ns. The
density chosen for these runs is 5× 1015 particles/cm-3.
Experimental data report a number concentration of around
1 × 1014 for slightly sooting flames of ethylene.28 However,
the measured value is an average, and there are pockets inside
the region of interest with higher density. The simulations
reported in this paper are relative to those areas because
higher density will increase the collision frequency and
reduce the computational time required to form the first
nuclei. Three ensembles are considered: (1) 10 000 round
particles; (2) 10 000 flat particles, and (3) 5000 flat and 5000
round particles.

Figure 8 shows snapshots from the end points of the
simulations for ensembles 1 and 2. The system of round
nanoparticles clearly exhibits the presence of clusters at 1100
K, which are observed to persist for the entire length of the
simulation. The cluster size was identified to be around 15-
20 nm. The system of flat particles shows a much lower
degree of clustering for the same temperature and density.
These results confirm what had been observed in a more
limited fashion at the microscale level and described earlier.

A fusion of two clusters of round particles as well as a
split of the cluster into several fragments (typically two) has
been frequently observed during the simulations, as well as
an absorption of the “gas-phase” particles and an evaporation
of nanoparticles from clusters.

A snapshot from the simulation of ensemble 3 of round
and flat particles at 1600 K is shown in Figure 9. This system
shows a better ability to aggregate compared with the flat
particle system, but worse than that in the pure round particle
system. The agglomerates are of small size and contain either
flat and round particles or only round particles. Flat particles
tend to agglomerate through the A-A or A-B interactions,

Figure 8. Snapshots from CG MD simulations for 10 000 round (panel a) and 10 000 flat (panel b) nanoparticles at 1100 K.
The CG modes were fitted to all-atom MD simulations at the same temperature.

510 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Izvekov and Violi



which are the strongest. The round particles agglomerate
primarily among each other and then to the A and B sites of
the flat particles. Figure 10 shows the RDFs of the round
system (a) reported in Figure 8a and the RDFs for the round/
flat system (b) reported in Figure 9. From the width of the
peaks, it is possible to derive information regarding the
cluster sizes formed during the simulations. For the 10 000-

round-particles system, the average cluster size is around 16
nm, and for the round/flat system, clusters of 6 nm are
identified between the sites A, B, and C-O.

Conclusions
The recently developed MS-CG method for obtaining
effective pairwise CG force fields from atomistic force and
trajectory data has been shown here to be very successful in
developing CG models for systems of nanoparticles. The
methodology presented is quite general, and in this paper,
we applied it to an important real world example, that is,
particle formation from combustion sources.

This approach provides a connection between the various
time and length scales in the nanoparticles self-assembly
problem, together with an unprecedented opportunity for the
understanding of the atomistic interactions underlying nano-
particles aggregation and self-assembly. The MS-CG meth-
odology indeed provides an ideal multiscale route for
bridging the explicit atomistic representation of the nano-
particles produced by the AMPI simulation method with a
more coarse-grained representation necessary to study the
agglomeration of the nanoparticles, which in the end can
effectively involve millions of carbon atoms.

The agreement in the structural properties is an important
result of this methodology because it reveals that even a
simple MS-CG model with one or three interaction sites is
able to accurately reproduce the structural properties for a
system of particles having such a large size and complex
geometries. The MS-CG methodology allows rapid param-
etrization of the CG force fields at the thermodynamic

Figure 9. Snapshot from the CG MD simulation for a system of 5000 round and 5000 flat nanoparticles at 1100 K (one-site
representation for the round particles and three-site representation for the flat particles).

Figure 10. RDFs of the MS-CG MD simulations for en-
semble 1sround particles (a) and for ensemble 3sround and
flat particles (b). In the upper panel round particles have a
three-site representation, A, B, and C and in the lower panel
round particles have a one-site representation, O; flat nano-
particles have a three-site representation, A, B, and C.
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conditions of interest instead of using “universal” models
that increase the reliability of the CG simulations.

Future work will be conducted on mixed systems with a
large variety of particles of different sizes and morphologies.
Also, the results reported in this paper are relative to the
early nucleation of the particles. Once the first nuclei are
formed, the process becomes much faster than the one
reported in the figures.
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Abstract: Three algorithms, namely, a replica exchange method (REM), a replica exchange

multicanonical method (REMUCA), and a replica exchange multicanonical method with replica

exchange (REMUCAREM), were implemented with the coarse-grained united-residue force field

(UNRES) in both Monte Carlo and molecular dynamics versions. The MD algorithms use the

constant-temperature Berendsen thermostat, with the velocity Verlet algorithm and a variable

time step. The algorithms were applied to one peptide (20 residues of alanine with free ends;

ala20) and two small proteins, namely, an R-helical protein of 46 residues (the B domain of the

staphylococal protein A; 1BDD) and an R+â protein of 48 residues (the Escherichia coli Mltd

Lysm Domain; 1E0G). Calculated thermodynamic averages, such as canonical average energy

and heat capacity, are in good agreement among all simulations for poly-L-alanine, showing

that the algorithms were implemented correctly and that all three algorithms are equally effective

for small systems. For protein A, all algorithms performed reasonably well, although some

variability in the calculated results was observed, whereas for a more complicated R+â protein

(1E0G), only replica exchange was capable of producing reliable statistics for calculating

thermodynamic quantities. Finally, from the replica exchange molecular dynamics results, we

calculated free-energy maps as functions of the RMSD and radius of gyration for different

temperatures. The free-energy calculations show correct folding behavior for poly-L-alanine and

protein A, while for 1E0G, the native structure had the lowest free energy only at very low

temperatures. Hence, the entropy contribution for 1E0G is larger than that for protein A at the

same temperature. A larger contribution from entropy means that there are more accessible

conformations at a given temperature, making it more difficult to obtain an efficient coverage of

conformational space to obtain reliable thermodynamic properties. At the same temperature,

ala20 has the smallest entropy contribution, followed by protein A, and then by 1E0G.

1. Introduction
Efficient sampling algorithms have been an essential com-
ponent of methods for studying protein structure and dynam-
ics in structural biology and theoretical chemistry. A variety

of sampling algorithms have been used in our laboratory,
and depending on whether the goal is global optimization
or folding simulations, they can be be categorized in the
following way.

For successful prediction of the three-dimensional structure
of a protein (based solely on its amino acid sequence), several
classes of algorithms have been used. The first class includes
modifications of the Metropolis Monte Carlo procedure,1,2

such as Monte Carlo with minimization,3,4 electrostatically
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driven Monte Carlo,5,6 conformational family Monte Carlo,7

and replica exchange Monte Carlo with minimization.8 The
second class includes deformation-based methods, such as
the diffusion-equation method,9 the distance-scaling method,10

and the self-consistent basin-to-deformed-basin method.11,12

The third class includes genetic algorithms such as the
conformational space annealing (CSA) method.13-15 For the
study of protein-folding pathways, recently applied molecular
dynamics (MD) with the united-residue (UNRES) force
field16-19 have been shown to be particularly effective. To
evaluate thermodynamic properties, another class of sampling
methods is necessary. This is because minimization-based
methods violate the condition of microscopic reversibility
required for producing Boltzmann statistics, and although
methods such as molecular dynamics or Metropolis Monte
Carlo can be used for estimating thermodynamic properties
as well as for a global search, they easily become trapped
for complex systems and, thus, are not the most effective
methods for studying large systems.

The origins of one of the most popular advanced sampling
methods, the replica exchange method (also known as
exchange Monte Carlo20 or parallel tempering21), can be
traced back to the work carried out by Swendsen and Wang22

for spin-glass systems, and the more familiar form of the
algorithm was developed by Geyer23 with his use of
Metropolis-coupled Markov chain Monte Carlo. In the replica
exchange method, several copies (replicas) of the system are
simulated with standard Metropolis Monte Carlo1,2 or mo-
lecular dynamics procedures (each replica differing from the
others in a particular way, usually in temperature), while
permitting an exchange among the replicas, and thus
surmounting barriers in the rugged conformational energy
landscapes. This method has been applied extensively in
protein-folding simulations using both lattice24-27 and off-
lattice models.28-32

Recently, much attention has been paid to generalized
ensemble algorithms whose advantage is efficient sampling
of the conformational energy landscape. In this approach,
efficient sampling does not mean locating the global
minimum as quickly as possible but rather covering the
landscape in such a way as to provide accurate statistics.
Two well-known methods are the multicanonical algo-
rithm33,34(also known as entropy sampling35,36) and simulated
tempering37 (also referred to as the method of expanded
ensembles38). The multicanonical algorithm performs a one-
dimensional random walk in energy space, while simulated
tempering follows a random walk in temperature space,
thereby inducing a random walk in the space of potential
energy. Although these algorithms are generally too expen-
sive for locating global minima,39 they are useful for
producing accurate statistics for thermodynamic averages of
observed variables. However, the application of these
algorithms is nontrivial and very tedious; in particular, the
need to obtain the proper sampling weights often limits the
use of generalized ensemble techniques.40

Due to the fact that the replica exchange method alleviates
the problem of the tedious estimation of weight factors in
the multicanonical algorithms, combinations of replica
exchange with generalized ensemble methods have been

developed, for example, REMUCAREM,41 that is, replica
exchange multicanonical algorithm with replica exchange;
others include replica exchange simulated tempering or
simulated tempering replica exchange.42 Other modifications
of replica exchange include replica exchange with solute
tempering,43 model hopping,44 Hamiltonian replica ex-
change,45 and the replica-exchange method using a general-
ized effective potential.46

Having demonstrated that the coarse-grained UNRES
protein model is helpful in surmounting problems with all-
atom models,18,47 we apply the replica exchange method
(REM), the replica exchange multicanonical method (RE-
MUCA), and the REMUCAREM method, in both Monte
Carlo (MC) and molecular dynamics versions, to the UNRES
model in the present work. The advantage of replica
exchange lies in its simplicity, and in contrast to other
methods, it is not very sensitive to the few parameters
involved therein (such as the cooling schedule in simulated
tempering or the successful estimation of weight factors in
multicanonical algorithms). The power of REMUCA lies in
the effective estimate of the multicanonical weight factors
from replica exchange simulations. REMUCAREM further
exploits the idea of running several replicas of multicanonical
simulations with different sets of multicanonical weights. The
motivation behind the present work is to test the applicability
of these algorithms to determine the thermodynamic proper-
ties of large systems. The ability to compute thermodynamic
properties will thereby enable us to improve our UNRES
model and, consequently, improve protein-folding simula-
tions, that is, bring our simulated results closer to experi-
mental ones.

2. Methods
2.1. UNRES Force Field.All the above-mentioned algo-
rithms were implemented with the united-residue force field;
hence, in this section, the UNRES model of polypeptide
chains and the corresponding force field are described briefly.
First, the UNRES model used with Monte Carlo procedures
is described, followed by a description of the UNRES force
field for molecular dynamics.

In the UNRES model,48-58 a polypeptide chain is repre-
sented by a sequence ofR-carbon (CR) atoms linked by
virtual bonds with attached united side chains (SC) and united
peptide groups (p). Each united peptide group is located in
the middle between two consecutiveR-carbons. Only these
united peptide groups and the united side chains serve as
interaction sites, theR-carbons serving only to define the
chain geometry. All virtual bond lengths (i.e., CR‚‚‚CR and
CR‚‚‚SC) are fixed; the distance between neighboring CR’s
is 3.8 Å, corresponding to trans peptide groups, while the
side-chain angles (RSC and âSC) and virtual-bond (θ) and
dihedral (γ) angles can vary. The UNRES force field has
been derived as a restricted free-energy (RFE) function of
an all-atom polypeptide chainplus the surrounding solVent,
where the all-atom energy function is averaged over the
degrees of freedom that are lost when passing from the all-
atom to the simplified system (i.e., the degrees of freedom
of the solvent, the dihedral anglesø for rotation about the
bonds in the side chains, and the torsional anglesλ for
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rotation of the peptide groups about the CR‚‚‚CR virtual
bonds).52,53,59 The RFE is further decomposed into factors
arising from interactions within and between a given number
of united interaction sites.53 Expansion of the factors into
generalized Kubo cumulants60 facilitated the derivation of
approximate analytical expressions for the respective terms,52,53

including the multibody or correlation terms, which are
derived in other force fields from structural databases or on
a heuristic basis.61 The theoretical basis of the force field is
described in detail in ref 53. The energy of the virtual-bond
chain for Monte Carlo simulations is expressed by eq 1.

The termUSCiSCj represents the mean free energy of the
hydrophobic (hydrophilic) interactions between the side
chains, which implicitly contains the contributions from the
interactions of the side chain with the solvent. The termUSCipj

denotes the excluded-volume potential of the side-chain-
peptide-group interactions. The peptide-group interaction
potential (Upipj) accounts mainly for the electrostatic interac-
tions (i.e., the tendency to form backbone hydrogen bonds)
between peptide groups pi and pj. Utor, Utord, Ub, andUrot are
the virtual-bond dihedral angle torsional terms, virtual-bond
dihedral angle double-torsional terms, virtual-bond angle
bending terms, and side-chain rotamer terms, respectively;
these terms account for the local propensities of the polypep-
tide chain. The termsUcorr

(m) representcorrelation or multi-
bodycontributions from the coupling between backbone-
local and backbone-electrostatic interactions, and the terms
Uturn

(m) are correlation contributions involvingm consecutive
peptide groups; they are, therefore, termed turn contributions.
The correlation contributions were derived52,53 from a
generalized-cumulant expansion60 of the RFE of the system
consisting of the polypeptide chain and the surrounding
solvent. The multibody terms are indispensable for reproduc-
tion of regularR-helical andâ-sheet structures.

The internal parameters ofUpipj, Utor, Utord, Ucorr
(m) , andUturn

(m)

were derived by fitting the analytical expressions to the RFE
surfaces of model systems computed by quantum mechanics
at the MP2/6-31G** ab initio level,57,58while the parameters
of USCiSCj, USCipj, Ub, and Urot were derived by fitting the
calculated distribution functions to those determined from
the PDB.51 Thew’s are the weights of the energy terms, and
they were determined (together with the parameters within
each cumulant term and the well depths of the side-chain
pairwise interaction potentialUSCiSCj) by hierarchical opti-
mization62 of the potential-energy function.

Molecular dynamics with UNRES requires an extra degree
of freedom, namely, the vibrations of the virtual bonds, which
are treated with an additional harmonic potential. The
complete UNRES potential-energy function for molecular
dynamics is then expressed by the following equation:18

where UMC is the Monte Carlo UNRES potential energy
described above (eq 1) andUvib(di), di being the length of
the ith virtual bond, are the simple harmonic potentials
defined asUvib(di) ) (1/2)kdi(di - d°i)

2, where kdi is the
force constant of theith virtual bond, currently set at 500
kcal/(mol Å2), andd°i is the average length (corresponding
to that used in the fixed-bond UNRES potential) of theith
virtual bond; for example,d°i ) 3.8 Å for a CR‚‚‚CR virtual
bond corresponding to a trans peptide group. As in previous
work,18 the weightwvib was arbitrarily set at 1.

2.2. Replica Exchange Method (REM).The replica
exchange method is an extension of the Metropolis Monte
Carlo, or molecular dynamics, methods. The underlying idea
is to run different copies (replicas) of the system at different
levels of a certain property (such as temperature). Although
different properties have been considered in published
work,45,46 the property of change across different replicas
(i.e., how replicas differ from one another) in the present
context is temperature. To summarize the method, a MC or
MD simulation is carried out on each selected conformation
at its assigned temperature for a determined number of MC
or MD steps, after which, the neighboring replicas undergo
an exchange with the acceptance criterion described below
(in eq 4). Let

whereâm is the inverse temperature defined as 1/(kBTm) and
E(X) is the energy of conformation X. If one adopts the
Metropolis method, the replica-exchange transition prob-
ability can be expressed as

That is, if ∆ is less than or equal to 0, the exchange is
performed (since the probability is 1); otherwise, a random
number between 0 and 1 is generated and compared to the
factor exp(-∆). If the value of this factor is smaller, the
exchange is performed; otherwise, the exchange is rejected.

To evaluate thermodynamic quantities at any temperature,
it is essential to extract maximum information from all
replicas. For this purpose, a multihistogram reweighting
technique63,64can be used. For a replica exchange simulation
with M replicas atM distinct temperatures, a set ofM energy
histogramsNm(E) is obtained. The densities of states [n(E)]
are then obtained self-consistently from the following
WHAM63,64 equations:

and

UMC ) ∑
i<j

USCiSCj
+ wSCp∑

i*j

USCipj
+ wel ∑

i<j-1

Upipj
+

wtor∑
i

Utor(γi) + wtord∑
i

Utord(γi,γi+1) + wb∑
i

Ub(θi) +

wrot∑
i

Urot(RSCi
,âSCi

) + wcorr
(3) Ucorr

(3) + wcorr
(4) Ucorr

(4) + wturn
(3) Uturn

(3) +

wturn
(4) Uturn

(4) (1)

UMD ) UMC + wvib∑
i

Uvib(di) (2)

∆ ≡ [(âm - ân){E(Y) - E(X)}] (3)

W(X,âm|Y,ân) ) {1 for ∆ e 0
exp(-∆) for ∆ > 0

(4)

n(E) )

∑
m)1

M

gm
-1 Nm(E)

∑
m)1

M

gm
-1nm exp(fm - âmE)

(5)
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where Nm(E) is the histogram at temperatureTm, âm )
1/(kBTm) is the inverse temperature,nm is the total number
of samples in themth replica,gm ) 1 + 2τm, andτm is the
integrated autocorrelation time at temperatureTm. In bio-
molecular systems,gm is approximately constant64 and,
therefore, can be canceled in eq 5. The WHAM eqs 5 and 6
are evaluated self-consistently, and the resulting densities
of states are used to evaluate the expectation value of any
observableA in eq 7:

2.3. Multicanonical Algorithm (MUCA). A single ca-
nonical simulation (MC or MD) by definition samples a very
restricted energy region. Furthermore, when sampling the
conformations of the protein in low-energy regions, the
multiple-minima problem is usually encountered and the
simulation can be trapped in a particular local energy
minimum, making it difficult to obtain a reliable estimate
of the density of states of proteins. In determining the density
of states of a large system by simulation procedures, a clear
criterion is needed about the stage of simulations at which
all of the conformational space of the protein has been
sampled sufficiently. Traditional MC or MD procedures do
not provide such a convergence criterion. For these reasons,
a multicanonical algorithm33,34 (also known as entropy
sampling35,36) has been used for protein studies. In Section
2.4, we show why MUCA is combined with REM to produce
REMUCA, whose efficiency is explored in the present work.
For this purpose, we first outline MUCA. In the next
paragraph, we present the background of entropy sampling
and tie it together with the multicanonical algorithm notation.

In the present work, we use the term “conformation” to
indicate a particular structure and the term “state” to denote
all the conformations that either have a given energy or are
within a small energy interval. The probability of occurrence
of a conformation x with energyE, denoted asP(x), and the
probability of occurrence of a state with energyE, denoted
asP(E), are related to each other in a canonical ensemble
by the following relations, withE being written forE(x):

wherekB is the Boltzmann constant,â ) 1/kBT with T being
the temperature,n(E) is the number of conformations with
energyE (i.e., density of states), andS(E) ) kB ln[n(E)] is
the entropy of the state with energyE.

The entropy sampling method is based on an artificial
distribution of states, in which the probability of occurrence
of a state with energyE is scaled by the exponential of the
negatiVe of the entropy of the state,S(E). In entropy
sampling, the probabilities of occurrence of a conformation
x and a state with energyE, respectively, are defined as

wheren(E) and S(E) have similar meanings as described
above. Equations 10 and 11 can be related to eqs 8 and 9 by
first settingâ ) 0 (i.e., temperature to infinity) in eqs 8 and
9 and then multiplying the resulting probabilities by the
weight factor exp[-S(E)/kB]. The physical meaning of this
modification is that the larger the conformational entropy
of a state, the smaller is the weight given to the state. In this
way, the probabilities of occurrence of all states with different
energies are constant in the new distribution; that is,P(E)
of eq 11 is a constant, taken as 1.

To connect the entropy sampling formalism to the com-
monly used multicanonical algorithm, we can define a new
variable, the multicanonical energyEmu, in the following way

where T0 is the reference temperature andS(E) is the
microcanonical entropy as above. The reference temperature
is the temperature at which the MC or MD multicanonical
simulation is carried out. It should be noted that the reference
temperature theoretically plays no role in calculating ther-
modynamics, because the formula for obtaining thermody-
namic quantities (eq 7) is independent ofT0; however, in
practice, the value chosen forT0 affects the sampling
efficiency of numerical simulations. Equations 10 and 11
then become

and

Consequently, the multicanonical Monte Carlo simulation
is carried out with the following modified Metropolis
acceptance criterion:

whereâ0 ) 1/kBT0, T0 being a reference temperature, and
∆Emu ≡ Emu[E(Y);T0] - Emu[E(X);T0].

The multicanonical molecular dynamics simulation is
carried out by integrating the following modified Newton
equation;65-67 see eq 21 of ref 65:

wherep̆k is the momentum,qk is the generalized coordinate
of the kth atom, andfk is the force on thekth atom.
Specifically, the UNRES MD equation of motion (eq 32 of
ref 16) is modified as

whereU [beingU(x)] is the UNRES potential energy (UMD

of eq 2),q(t) are the generalized coordinates at timet, and

exp(-fm) ≡ ∑
E

n(E) exp(-âmE) (6)

〈A〉T )

∑
E

A(E) n(E) exp(-âE)

∑
E

n(E) exp(-âE)

(7)

P(x) ∝ exp(-âE) (8)

P(E) ∝ n(E) exp(-âE) ) exp[S(E)/kB - âE] (9)

P(x) ∝ exp{-S[E(x)]/kB} (10)

P(E) ∝ n(E) exp[-S(E)/kB] (11)

Emu(E;T0) ) T0S(E) ) kBT0 ln[n(E)] (12)

P(x) ∝ exp{-Emu[E(x);T0]/T0kB} (13)

P(E) ∝ n(E) exp[-Emu(E;T0)/T0kB] (14)

W(X|Y) ) {1 for ∆Emu e 0
exp(-â0∆Emu) for ∆Emu > 0 (15)

p̆k ) -
∂Emu(E;T0)

∂qk
)

∂Emu(E;T0)

∂E
fk (16)

q̈(t) ) -G-1
∂Emu(U;T0)

∂U
∇qU[q(t)] (17)
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G is the mass matrix (eq 26 of ref 16). In practice, one can
use cubic splines to approximate∂Emu(U;T0)/∂U.

Because the density of states is usually not known a priori,
the multicanonical weights are usually obtained by iterating
short runs;36,68-70 that is,Emu is obtained such that eq 14 is
constant for all energiesE. For this purpose, one uses the
single histogram reweighting technique to obtain a new
estimate of the densities of states after each iteration:

whereNmu is the histogram obtained from the multicanonical
simulation (either MC or MD) and exp[-â0Emu(E;T0)] )
1/n(E) are the input multicanonical weights. The new
estimates of the density of states are then used in eq 12 to
obtain new values ofEmu and, hence, new input weights.
This procedure is repeated until the histogramNmu obtained
from the multicanonical simulation is sufficiently flat (i.e.,
the probability of visiting any part of the energy space is
constant). The resulting weights are then used for a long
multicanonical simulation, from which thermodynamic quan-
tities can be calculated.

To obtain expected averages from a multicanonical
simulation, the single histogram reweighting technique (eq
18) is first used to obtain a new estimate of the densities of
states. The new estimates of densities of states are then used
in eq 7 to obtain the thermodynamic averages.

2.4. Replica Exchange Multicanonical Algorithm (RE-
MUCA). MUCA without REM converges very slowly and
consequently is inefficient.71-73 Therefore, we have explored
the use of REMUCA, which differs from MUCA in how
the starting weights for the simulation are obtained. While
MUCA requires short iterative multicanonical simulations,
REMUCA obtains the starting weights from a short replica
exchange simulation, by first obtaining the densities of states
from REM, which are then used to estimate the multica-
nonical weights{exp[-Emu(E;T0)/kBT0]} with eq 12. In
practice, the values for the multicanonical potential energy,
Emu(E;T0), obtained from replica exchange, are reliable only
in the range of〈E〉Tmin e E e 〈E〉Tmax, whereTmin andTmax are
the lowest and highest temperatures in REM, respectively,
and Emin ) 〈E〉Tmin and Emax ) 〈E〉Tmax are the canonical
expectation values at those temperatures; that is, we use
multicanonical sampling only in the region betweenEmin and
Emax and canonical sampling outside of this region. The
reason the weights are reliable only betweenEmin andEmax

is becauseTmin and Tmax (which determineEmin and Emax)
are chosen arbitrarily for the REM simulation, such that the
region sampled by overlapping replicas betweenEmin and
Emax contains both the native structure and the most probable
non-native structures. Therefore, the best region sampled by
REM is the one betweenEmin and Emax, which determines
that the multicanonical input weights should be reliable only
betweenEmin and Emax. In principle, any sampling can be
used belowEmin and aboveEmax as long as the simulation
returns back to the multicanonical region which should
contain both the native structure and the most probable non-
native structures; in practice, this calculation has been carried
out with canonical sampling.

The only reason to explore the canonical region is to force
a random walk from the multicanonical region, which may
have wandered out of the multicanonical region, to return
to the multicanonical region. In essence, by sampling for
thermodynamic data only in the multicanonical region, it is
being assumed that the multicanonical region is large enough
to encompass both the native structure and the more probable
(i.e., lower-energy) parts of the ensemble of non-native
structures. In addition, at the upper (Emax) and lower energy
(Emin) boundaries between the multicanonical and canonical
regions, the constant probability in the multicanonical region
decreases in the canonical region.

The canonical sampling is carried out by extrapolating the
multicanonical energies [Emu(E;T0)] linearly.71 It should be
noted that only data from the multicanonical region (between
Emin and Emax) are used for calculating thermodynamic
properties. Hence, the energy space in REMUCA is divided
into three regions as follows:

whereεmu
0 (E) is substituted forEmu(E;T0) in eqs 15 (for MC)

and 17 (for MD) andT0 is the reference temperature for the
Monte Carlo and molecular dynamics simulations (the
temperature at which the MC or MD simulation is carried
out). Again, the reference temperature bears no significance
in the results of the thermodynamic quantities (because eq
7 is independent ofT0). The rest of the simulation for both
MC and MD proceeds as in a traditional MUCA simulation
(eq 15 for MC and eq 17 for MD) withεmu

0 replacingEmu.
2.5. Multicanonical Replica-Exchange Method (MU-

CAREM). We also explore the use of the REMUCAREM
algorithm, whose core is the same as that of the MUCAREM
algorithm. Therefore, we first present the theoretical back-
ground of MUCAREM and later extend the discussion to
REMUCAREM. Just as REM consists of several replicas
of canonical MC or MD simulations, MUCAREM consists
of several replicas of multicanonical simulations. The dif-
ference between REM and MUCAREM is that the replicas
in REM are associated with different temperatures whereas,
in MUCAREM, the replicas are associated with different
energy ranges over which multicanonical simulations are
carried out. The advantage of the MUCAREM approach over
the traditional REM is that the probability distributions of
energies of different replicas are broader in MUCAREM than
in REM; therefore, a smaller number of replicas is required
to cover the entire energy range.

The starting weights are obtained by short iterations of
MUCA simulations, as described earlier in Section 2.3. The
following procedures are carried out ineachcycle:

1. Select an energy range for each replica, for which the
replica will carry out the MUCA simulation. This energy

n(E) )
Nmu(E)

exp[-â0Emu(E;T0)]
(18)

εmu
0 (E) ≡

{Emu(Emin;T0) +
∂Emu(E;T0)

∂E |
Emin

(E - Emin)
for E e Emin

(canonical)

Emu(E;T0)
for Emin e E e Emax

(multicanonical)

Emu(Emax;T0) +
∂Emu(E;T0)

∂E |
Emax

(E - Emax)
for E g Emax

(canonical)
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range of a given replica should overlap the energy ranges of
the neighboring replicas, and the combined energy range
from all replicas should cover the whole energy space (i.e.,
the combined energy range should contain the native
structure and the most probable non-native structures). Assign
a different random protein conformation to each energy
range.

2. A MUCA simulation with MC or MD is carried out on
each selected conformation within its energy range for a
determined number of MC or MD steps. The MC or MD
simulations are carried out with eqs 15 or 17, respectively,
whereEmu is replaced byεmu

m defined as follows:

wherem is the replica index (m ) min...max) and min and
max are the lowest and highest temperature replicas.Emin

m is
then the canonical expectation value of the energy of the
mth replica at temperatureTmin

m [Emin
m ) 〈E〉Tmin

m ], and simi-
larly, Emax

m is the canonical expectation value of the energy
of the mth replica at temperatureTmax

m [Emax
m ) 〈E〉Tmax

m ] for
the mth multicanonical replica. It should be noted thatTmin

m

and Tmax
m are different for different replicas (for different

m's) and, thus, determine a different multicanonical energy
rangeEmin

m and Emax
m for different replicas. Therefore, the

multicanonical simulation with each replica is carried out in
a different energy range (Emin

m andEmax
m ).

3. After carrying out a selected number of MC or MD
steps, stop the simulation of each replica and attempt an
exchange of the whole conformations between neighboring
replicas with the following transition probability:

where∆ ≡ âm+1{εmu
m+1[E(Y)] - εmu

m+1[E(X)]} - âm{εmu
m [E(Y)]

- εmu
m [E(X)]}.

4. Continue the simulation with each newly formed
conformation at each new energy range as in step 2.

5. Iterate points 3 and 4 until the system sufficiently covers
the entire energy range.

As in REM, the densities of states are obtained from a
self-consistent evaluation of the following modified WHAM
equations:

and

where Nm(E) is the histogram at temperatureTm, âm )
1/(kBTm) is the inverse temperature,nm is the total number
of samples in themth replica, andgm is defined as in Section
2.2. The resulting densities of states are then used to evaluate
the expectation value of any observable in eq 7, withgm

canceling out, as in eq 5.
2.6. Replica Exchange Multicanonical with Replica-

Exchange Method (REMUCAREM). MUCAREM without
input weights from REM converges very slowly and,
consequently, is inefficient.71-73 Therefore, we have explored
the use of REMUCAREM, which, as in REMUCA, obtains
the starting weights from replica exchange simulations as
opposed to iterative short MUCA simulations. Everything
else proceeds in the same manner as in MUCAREM.

3. Implementation Details
All the simulations were carried out on one peptide (20
residues of alanine with free ends; ala20) and two small
proteins, namely, the B domain of staphylococal protein A
(anR-protein; 46 residues; 1BDD)74 and theEscherichia coli
Mltd Lysm domain (anR+â protein; 48 residues; 1E0G).75

The ala20 peptide was used to check whether the algorithms
perform correctly, and the proteins were chosen so that basic
R and R+â topologies were tested, and their size was
reasonable with respect to the computational time. As in our
previous work,76 the length of protein 1BDD was shortened
from the original 60 residues in the PDB to 46 residues. The
set of UNRES energy parameters, designated as the 4P force
field76 and used in the present work, was derived by
optimizing the parameters for four proteins simultaneously:
1E0L77 (a â protein; 37 residues), 1E0G75 (anR+â protein;
48 residues), 1IGD78 (an R+â protein; 61 residues), and
1GAB79 (an R protein; 53 residues).

The MC simulations with REM, REMUCA, and REMU-
CAREM were carried out as follows. All four UNRES angles
in every residue of the protein were subjected to a perturba-
tion. One MC sweep consisted of updating all of these angles
for each residue in the sequence, with a Metropolis evaluation
after each perturbation. The MD simulations with these same
algorithms were carried out with the Berendsen thermostat,80

using the velocity Verlet algorithm81 with a variable time
step to integrate the equations of motion. The variable time
step was accomplished by scaling the time stepδt by powers
of 2.16 The cutoff change of accelerationδacut for the scaling
procedure was increased toδacut ) 4 Å/mtu,16 to allow for
the multiplication of the forces in the modified Newton
equation (in eq 17, MUCA MD utilizes a factor that
multiplies the forces, i.e., accelerations, which would cause
the maximum change of accelerationδamax to exceed the
cutoff value δacut, and thus, the time step would be
unnecessarily reduced). The time step was set at 4.89 fs to
yield stable trajectories.16 However, this is only a formal time
step, and because of the reduction of the number of degrees
of freedom in UNRES, the time step is several times larger
compared with that of all-atom MD (see ref 16 for details).
The coupling constant to the thermal bath was increased to

εmu
m(E) ≡

{Emu(Emin
m ;Tm) +

∂Emu(E;Tm)

∂E |
Emin

m
(E - Emin

m )
for E e Emin

m

(canonical)

Emu(E;Tm) for Emin
m e E e Emax

m

(multicanonical)

Emu(Emax
m ;Tm) +

∂Emu(E;Tm)

∂E |
Emax

m
(E - Emax

m )
for E g Emax

m

(canonical)

W(Y|X) ) {1 for∆e0
exp(-∆) for∆>0

(19)

n(E) )

∑
m)1

M

gm
-1 Nm(E)

∑
m)1

M

gm
-1nm exp[fm - âmεmu

m (E)]

(20)

exp(- fm) ≡ ∑
E

n(E) exp[-âmεmu
m (E)] (21)
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0.2445 ps to overcome the limitation of the Berendsen
thermostat and produce a more Boltzmann-like distribution.17

Replica exchange MD was carried out using multiplexing,82

in which several replicas were simulated at each temperature.
Since MC lacks the gradient and is consequently much less
efficient at exploring the energy space than MD, the
temperature range in the MC version of REM was lower
than that of the REM MD simulations (so that the low-
temperature replicas in REM MC would involve a sufficient
number of moves to explore the low energy basins), and the
number of replicas and the frequency of exchange in REM
were much higher in MC. In all the simulations (both MC
and MD), the system was equilibrated for 20% of the
simulation length, and the last 80% of the simulation was
used for the calculations. All Monte Carlo simulations were
started from random conformations, and the starting point
for all molecular dynamics simulations was an extended
chain; because the system was equilibrated and because REM
uses high-temperature replicas and both REMUCA and
REMUCAREM perform a random walk in the energy space,
the simulations were independent of the starting conditions.

4. Results and Discussion
4.1. Poly-L-alanine. First, to test the algorithms, a very
simple poly-L-alanine system (20 residues) was chosen, and
REM, REMUCA, and REMUCAREM simulations were
carried out with both MC and MD. The parameters used in
all simulations for ala20 are shown in Table 1. REM
simulations were carried out first, from which the densities
of states were obtained. It was found that the densities of
states obtained from REM simulations were not precise
enough for REMUCA, because REMUCA simulations did
not perform a random walk (i.e., did not have flat energy
histograms). Therefore, after the first iteration of REMUCA
simulations, the densities of states were reweighted with eq
18, and with these weights, a second iteration of REMUCA
simulations was carried out. The second set of weights used
for REMUCA was also used for REMUCAREM simulations.
The simulation weights for alanine are shown as a solid or
dashed curve in Figure 1. The dashed line shows an example
of the multicanonical energy function (eq 12), used in the
modified Metropolis criterion in MC simulations (eq 15),
while the solid line shows its derivative, a factor multiplying
the force in the modified Newton equation (eq 17). The
results are summarized in Figures 2 and 3.

Figure 2 consists of six plots. Three plots on the top
correspond to MC simulations, whereas the three plots on

the bottom correspond to MD simulations. The two plots in
each column are for REM, REMUCA, and REMUCAREM
simulations, respectively. Each plot depicts the logarithm of
the probabilities ln[P(E)] as a function of energy (E) for the
given simulation. By comparing the top row to the bottom
row, it can be seen that MC simulations cover a smaller
energy range than their MD counterparts. This is due to the
fact that the MD energy function contains the extra vibration
term (eq 2) adding to the energy range for MD simulations.
It is evident from the plots that REMUCA MC and
REMUCAREM MC are flatter{constant ln[P(E)]} than
REMUCA MD and REMUCAREM MD. This discrepancy
probably arises from the fact that the MD versions of
multicanonical simulations utilize the derivative of the
multicanonical energy function (eq 17), whereas the MC
simulations use only the multicanonical energy function itself
(eq 15; Figure 1). As mentioned in the Methods section, the
derivatives are fitted using cubic splines, which can cause
problems if the entropy function is not smooth (the derivative
will be rough, which will cause numerical instabilities in
the integration of eq 17).

By comparing the plots for REM MC and REMUCA MC,

Table 1. Parameters Used in ala20 Simulationsa

MD MC

simulation replicas temp steps replicas temp sweeps

REM 16 400-2000 16,000,000 30 100-2000 2,000,000
REMUCA 1 100 10,000,000 1 1,000,000
REMUCAREM 2 100,101 20,000,000 2 1,000,000

a The replicas column shows the number of replicas used for each simulation. The temp shows the reference temperature (K) or range of
temperatures for simulations (for REMUCA MC and REMUCAREM MC, the reference temperature cancels out in the equations; therefore, the
corresponding fields are empty; this is because REMUCA and REMUCAREM depend only on the input weights which are independent of T,
whereas in REM, the replicas differ from one another in temperature, and therefore, temperature does not cancel out). The step is the number
of UNRES MD time steps, where the maximum time step was set to 4.9 fs in all MD simulations. A sweep is defined as perturbing all four angles
at all the positions along the peptide sequence (for ala20, one sweep is equal to 80 energy evaluations).

Figure 1. Parameters used for multicanonical simulations.
The dashed line denotes the multicanonical energy function
(eq 12), while the solid line denotes the derivative of this
function fitted with cubic splines. The derivatives are used as
a multiplicative factor [∂Emu(U;T0)/∂U] in the modified Newton
equation (eq 17) in molecular dynamics. The flat regions of
the derivative curve show where the multicanonical simulation
changes to the canonical simulation.
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it can be seen that REMUCA MC does not cover the entire
low-energy region but rather stops before-200 kcal/mol.

This is because we shifted the low-energy boundary for
multicanonical sampling up from the canonical average

Figure 2. Histogram curves for simulations with alanine. The plots depict the logarithm of the probabilities ln[P(E)] as a function
of energy (E). The top-row plots are from MC simulations (REM, REMUCA, and REMUCAREM, from left to right respectively).
The bottom-row plots are from MD simulations. For REM and REMUCAREM (left and right columns, respectively), each curve
corresponds to an individual replica at a different temperature (for REM) or different energy range (for REMUCAREM); see
Table 1 for the number of such replicas.

Figure 3. Heat capacity as well as average energy as a function of temperature for REM (solid line), REMUCA (dashed line),
and REMUCAREM (dotted line) simulations with MC (top row) and MD (bottom row). The columns correspond to ala20, 1BDD,
and 1E0G, from left to right, respectively. The heat capacity curves are the ones with peaks at the folding temperatures. Good
agreement for all three simulations for both MC and MD versions can be observed for ala20; some overlap is observed for
1BDD, and only REM results (see text) are shown for 1E0G.
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evaluated by the lowest temperature replica. The reason for
doing this is that, when the boundary was lower in energy,
the MC multicanonical simulations would walk in the entire
energy range until they encountered the low-energy region,
at which point the simulations would become trapped in deep
local minima out of which they did not escape for the
remainder of the simulation (data not shown). This issue was
easily resolved for ala20 MC simulations by simply raising
the low-energy boundary, but the issue reappears during both
MC and MD simulations with 1BDD and 1E0G and is
discussed further when describing the results for 1BDD and
1E0G.

Figure 3 also shows two rows of plots, one for MC and
one for MD simulations. The first column corresponds to
simulations with poly-L-alanine. Each plot consists of two
graphs; one is the heat capacity, and the other is the average
energy as a function of temperature. Each graph contains
three curves, individually corresponding to REM, REMUCA,
and REMUCAREM simulations. The average energy was
calculated with eq 7, and the heat capacity was evaluated
according to the following formula:

For both MC and MD simulations with ala20, all the curves
overlap, suggesting that the simulations converged to the
same distribution. The main peak of the specific heat curve
indicates the temperature of the peptide collapse. For a simple
system such as ala20, the collapse occurs simultaneously with
folding to the nativeR-helical state. This temperature appears
to be 1400 K for MC and 1500 K for MD. It is important to
note that the UNRES temperature has no relevance to the
experimental temperature because UNRES is a coarse-
grained potential in which the nonessential degrees of
freedom have been averaged out, and energy parameter
optimization was carried out with a hierarchical procedure56

to provide the steepest decrease of energy with increasing
native likeness62 while ignoring the correspondence between
the simulated and experimental thermodynamic character-
istics of folding. Moreover, the decoy sets were generated
using the CSA method which walks only in the space of
local minima, thus violating the detailed balance condition.
As mentioned further in the Conclusions section, we are
currently revising our hierarchical force field optimization
procedure,62 to introduce entropy using methods applied in

the present work and, consequently, to capture as much
physics as possible.

4.2. 1BDD.We repeated the same procedure for 1BDD
as for ala20. The parameters used for the simulations with
1BDD are described in Table 2. Similarly, as for ala20, the
results for 1BDD are shown in Figure 4. First, since 1BDD
has more degrees of freedom than ala20, we used a larger
number of replicas in both REM MC and REM MD
algorithms, and in REM MD, we additionally multiplexed
each replica to have more trajectories from which to sample.
Although it might appear that, by using more replicas, REM
would perform much better than both REMUCA and
REMUCAREM, the advantage of REMUCAREM (as men-
tioned in Section 2.5) is that a smaller number of replicas is
required to cover the entire energy range. To provide a fair
comparison, we used the same number of steps for both REM
and REMUCAREM (see Table 2); although many more steps
were used in REMUCAREM than in REMUCA, the results
with REMUCAREM are not substantially improved over
those with REMUCA, as discussed later in this section. As
for poly-L-alanine, the density of states from the replica
exchange simulations was insufficient to carry out a random
walk with REMUCA and REMUCAREM; therefore, the
densities of states were reweighted. The multicanonical
histogram curves in Figure 4 correspond to one iteration of
reweighting. Additionally, we encountered a trapping prob-
lem in the low-energy region for both MC and MD
simulations. As for ala20, we increased the low multicanonical
energy boundary to escape the trapping regions (Figure 4
shows that REMUCA and REMUCAREM MC and MD do
not sample all the way to the lowest energy, i.e., not beyond
-500 kcal/mol). To verify whether moving the multicanoni-
cal energy boundary is acceptable, we show the RMSD
results in Figure 5. The left column shows the energy versus
RMSD profile for replica exchange simulations. As can be
seen from this column, both REM MC and REM MD cover
a wide conformational space, which includes the native
structure (centered∼4.5 Å for REM MC and∼4.0 Å for
REM MD). The middle and the right columns show an
RMSD trajectory for REMUCA and REMUCAREM simu-
lations, respectively. It can be seen that the system folds and
unfolds several times over the course of the run, that is,
attains the low-RMSD region. Even though the multicanoni-
cal simulation should perform a random walk in the energy
space, it is more important that the simulation fully samples

Table 2. Parameters Used in 1BDD and 1E0G Simulationsa

MD MC

protein simulation replicas temp steps replicas temp sweeps

1BDD REM 30(×4)b 200-1800 240,000,000 50 50-1800 10,000,000
REMUCA 1 50 30,000,000 1 1,000,000
REMUCAREM 8 50-400 240,000,000 2 10,000,000

1E0G REM 30(×4)b 200-1800 240,000,000 50 50-2000 10,000,000
a The replicas column shows the number of replicas used for each simulation. The temp shows the reference temperature (K) or range of

temperatures for simulations (for REMUCA MC and REMUCAREM MC, the reference temperature cancels out in the equations; therefore, the
corresponding fields are empty; this is because REMUCA and REMUCAREM depend only on the input weights which are independent of T,
whereas in REM, the replicas differ from one another in temperature, and therefore, temperature does not cancel out). The step is the number
of UNRES MD time steps, where the maximum time step was set to 4.9 fs in all MD simulations. A sweep is defined as 192 and 184 energy
evaluations (four angles for each residue in the chain) for 1BDD and 1E0G, respectively. b Multiplexed replicas. 30(×4) means that four replicas
for each temperature (with 30 temperatures) were simulated.

CV ) â2
〈E2〉T - 〈E〉T

2

N
(22)
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the conformational space, which can be observed in both
the REMUCA and REMUCAREM RMSD trajectories.

The middle column of Figure 3 shows the calculated heat
capacities and average energies for both MC and MD REM
simulations with 1BDD. By contrast to the simulations with
poly-L-alanine, 1BDD heat capacities have broad irregular

peaks. The irregular peak is an overlap of two peaks, one
corresponding to a collapse to a more compact state but
without the final folding and one corresponding to a transition
to the native state, as will be shown later. For 1BDD, REM,
REMUCA, and REMUCAREM, peaks do not coincide as
they do for poly-L-alanine. The fact that all simulations differ

Figure 4. Histogram curves for simulations with 1BDD. The plots depict the logarithm of the probabilities as a function of
energy. The top-row plots are from MC simulations (REM, REMUCA, REMUCAREM, from left to right respectively). The bottom-
row plots are from MD simulations. For REM, and REMUCAREM (left, and right columns) each curve corresponds to an individual
replica at a different temperature (for REM) or different energy range (for REMUCAREM); see Table 2 for the number of such
replicas.

Figure 5. Simulation results for 1BDD. The top-row plots are from MC simulations (REM, REMUCA, and REMUCAREM, from
left to right, respectively). The bottom-row plots are from MD simulations. The left column shows energy versus RMSD coverage
of the energy space. The middle column shows the random walk of the REMUCA simulations, and the right column shows the
random walk for all REMUCAREM replicas (one after another).
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in the shape of their heat capacity curve suggests that all
simulations have not converged to the same distribution. The
reason the REMUCA and REMUCAREM curves do not
cover the whole temperature range is that the multicanonical
region was restricted to avoid trapping (i.e., the low
multicanonical energy boundary was increased).

4.3. 1E0G.Finally, for 1E0G, replica exchange success-
fully sampled the energy space and produced reasonable
statistics for thermodynamic quantities (Figure 6). The left
column of Figure 6 shows the histograms for replica
exchange simulations with both MC (top) and MD (bottom).
The middle column depicts plots of energy as a function of
the RMSD from the experimental structure, showing that the
simulations cover an extended portion of the energy space.
It can be seen that the REM MD simulation reaches the
native state within an RMSD of around 4.5 Å and has low
energy, whereas the REM MC simulation barely touches 5
Å RMSD, without reaching the low-energy region, which
suggests incomplete N- and C-terminalâ-strand contacts
(correctâ-strand packing provides a large contribution to
decreasing the energy of the native structure and is necessary
for the RMSD to be below 5 Å).

For multicanonical simulations (REMUCA and REMU-
CAREM), we were unable to obtain proper multicanonical
weights, which would enable the system to carry out a
random walk in the energy space. Even after several
iterations of reweighting, the system would walk toward the
low energy states, where it would stay for the remainder of
the simulation. This behavior is shown in the right column
of Figure 6, where a REMUCAREM simulation is shown
for MC and a REMUCA simulation for MD. For REMU-
CAREM MC, it is evident that the lower-energy replica
(replica 1) reaches low energies and remains trapped in a

low-energy region, whereas the high-energy replica (replica
2) carries out a random walk. A similar behavior is observed
for MD simulations (trapping of REMUCA MD is shown
in Figure 6). This observation is similar to that from a study
carried out by Bhattacharya and Sethna, who showed that,
in the case of glassy systems, even multicanonical simula-
tions have problems carrying out a random walk and instead
become trapped in metastable states.83 They implemented
the entropy sampling version of the algorithm with Lennard-
Jones glasses and observed that simulations that have
dynamic updating of the microcanonical entropy function
perform a random walk in the energy space, while the
simulations with fixed weights (precomputed by iterative
procedures) became trapped in metastable states. The dy-
namic updating of the weights (i.e., eq 5 of ref 36) is
essentially a single histogram reweighting on the fly with
the difference that not all regions might be visited, and
typically the time between updates is much shorter. Dynamic
updating ensures that the system does not remain in the same
conformation for a long time. However, it also introduces
discontinuities, and negative gradients into theEmu function,
which poses problems for the MD version of the REMUCA
algorithm, with MD being more sensitive to the input weights
because of its use of derivatives. The dynamic updating
procedure pushes the system out of trapped states, but this
violates the detailed balance condition and, thus, no longer
guarantees convergence to the proper distribution or correct
estimates of thermodynamic quantities. Because of the
trapping problem, we did not calculate average energies and
heat capacities from both REMUCA and REMUCAREM
simulations for 1E0G (see Figure 3).

Figure 6. Simulation results for 1E0G. The top-row plots are from MC simulations, whereas the bottom-row plots are from MD
simulations. The left-column shows the histogram curves for REM. Each curve corresponds to an individual replica at a different
temperature. The middle column shows energy versus RMSD coverage of the energy space. The right-column shows energies
at a series of steps of REMUCAREM for MC (top, with two replicas) and REMUCA for MD (bottom).
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The third column of Figure 3 shows the calculated heat
capacities and average energies for both MC and MD REM
simulations with 1E0G. A sharp single peak for the heat
capacity is observed for REM MC, whereas a broader peak
is observed for REM MD simulations, and in both cases, it
is centered at around 1270 K. As mentioned above (energy
vs RMSD plot in Figure 6), the REM MC simulation does
not quite sample the native region. This observation, and
the fact that the heat capacity for REM MC has a sharper
peak, suggests that REM MC predicts a collapse to a more
compact state but without the final folding (i.e., there is no
low-energy structure below a 5 Å RMSD as shown in the
energy vs RMSD plot in Figure 6). On the other hand, the
statistics from REM MD contain the native region (shown
in the energy vs RMSD plot in Figure 6) and, thus,
incorporates the contribution of the native region to the
thermodynamic quantities. The collapse to a more compact
structure and final folding do not seem to coincide (see the
upcoming discussion about Figure 7), which broadens the
heat capacity curve. For MC, the sharp peak is centered at
1270 K (Figure 3), which corresponds roughly to-130 kcal/
mol of average energy. From the energy versus RMSD plot
in Figure 6, it can be seen that the highest allowed energy
for the collapsed structure (RMSD∼ 5 Å) is also around
-130 kcal/mol. Folding to the native state for MD occurs
at lower energies, which broadens its heat capacity peak (see
the discussion about Figure 7 in Section 4.4).

4.4. Free-Energy Diagrams.From our tests on ala20,
1BDD, and 1E0G, we conclude that replica exchange
molecular dynamics is the most efficient method for sampling
and calculating thermodynamic quantities with a rugged
energy landscape such as the 4P force field, applied to larger
systems. Since the free energy is the most important quantity
for the description of equilibrium properties of proteins, we
used REM MD to calculate free-energy profiles for ala20,
1BDD, and 1E0G. For this purpose, we used the densities
of states obtained from the multihistogram analysis (eq 5).
From the densities of states, we calculated the microcanonical
entropy,S(Ei) ) kB ln[n(Ei)], for all conformations collected
from the simulations and used it to compute the microca-
nonical free energies with the following expression:F(Ei,T)
) Ei - TS(Ei). To plot the restricted canonical free energy
as a function of the RMSD (r) and radius of gyration (F),
we calculated the restricted canonical free energy by evaluat-
ing the following expression for each grid point:

where the indexi enumerates conformations within the
histogram bins,N(r,F), for given ranges of the RMSD and
radius of gyration.

Figure 7 shows the restricted canonical free-energy plots
as a function of the RMSD and radius of gyration for various
temperatures. Each column corresponds to simulations with
ala20, 1BDD, and 1E0G, from left to right, respectively. The
temperatures are chosen so that the highest temperature is
higher than that of the heat capacity peak (first row), within

the peak (second row), below the peak (third row), and at
zero K (fourth row) from top to bottom, respectively.

The highest-temperature free-energy plot for ala20 shows
that, at this temperature, the peptide is preferentially com-
pletely unfolded, as indicated by the high RMSD (greater
than 5 Å) and the high radius of gyration (greater than 9 Å),
whereas at the heat capacity peak temperature (1460 K), the
lowest free-energy region connects both the native and the
non-native basins (RMSD between 2 and 5 Å). For 1000 K,
the free-energy surface already appears very similar to the
free-energy surface at 0 K, which represents the potential
energy surface. The native state (RMSD lower than 2 Å) is
the lowest free energy at this temperature, confirming our
observation from the heat capacity curve. It should be noted
that the range of energies observed in the potential energy
plot is much larger than the range observed with nonzero
temperatures, showing that the search for the native state is
very much facilitated in the restricted canonical free-energy
surface. In other words, the restricted canonical free-energy
differences do not need to be very large in order to pass
from the unfolded to the folded state, whereas large potential
energy barriers must be crossed to pass from the unfolded
to the folded state in the potential energy surface. For ala20,
we conclude that, even though the force field was optimized
without any thermodynamics, we still observe a correct
folding behavior.

For protein A (1BDD), the restricted canonical free-energy
plots look similar to the plots for ala20. At high temperatures,
unpacked, open structures with a high RMSD and radius of
gyration are observed. At 1000 K, the low free-energy region
connects unfolded non-native states with compact states (both
native and non-native). At a much lower temperature (600
K), the lowest free-energy regions belong to the native basin
(centered around 5 Å RMSD) and to the mirror image
(centered around 9 Å RMSD). It should be noted that, for
ala20, the native region had the lowest free energy at 1000
K whereas, for 1BDD, the temperature had to be lowered to
600 K for this to occur. Finally, the potential energy plot is
again similar to the low-temperature free-energy plot but has
a much larger energy range. It should be noted that, at 600
K, the free energy has well-defined regions of low free
energy whereas, for the potential energy, the native state is
more evenly connected with compact but non-native states,
which has been observed previously in MD studies with
protein A in our laboratory (all 10 simulations successfully
folded protein A with the 4P force field at 800 K).18

For 1E0G, the high-temperature plot again shows a
preference for unfolded structures. For 1000 K, the compact
structures are not quite preferential in free energy. From
previous MD work with 1E0G in our laboratory,18 it was
found that the successful folding trajectory starts with the
formation of noninteracting helical structures, which then
collapse to a native HTH motif (15 Å RMSD) and finally to
one with a 3.9 Å RMSD from that of the experimental
structure. The HTH motif structures appear to be preferable
in terms of free energy at 1000 K, which is still within the
broad peak of the heat capacity for 1E0G. For low temper-
atures, such as 600 K, the low free-energy region connects
the HTH motif to compact nativelike structures without

F(r,F,T) ) - kBT ln ∑
Ei∈N(r,F)

exp(-F(Ei,T)

kBT ) (23)
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â-strand contacts (around 6 Å RMSD). However, the fully
formed native structure (centered at 4.5 Å RMSD) is at
higher free energy, and it appears at the lowest free-energy
region only at very low temperatures (where the free-energy
plot is similar to the potential energy plot). Liwo et al.
observed that only 6 out of 10 canonical MD simulations at

800 K yielded nativelike structures.18 Our free-energy
calculations show that the lowest free energy corresponds
to non-native compact structures (i.e., with a low radius of
gyration but a high RMSD); however, the native structures
(with an RMSD less than 5 Å) have slightly higher free
energy. Therefore, the non-native conformations are more

Figure 7. Restricted canonical free energy (in kcal/mol, indicated by the colored bars at the top of each graph) as a function
of RMSD and radius of gyration for various temperatures. The free-energy surfaces were calculated from the REM MD simulations
(see text). The columns correspond to simulations with ala20, 1BDD, and 1E0G, from left to right, respectively. The temperatures
are chosen so that the highest temperature is higher than that of the heat capacity peak (first row), within the peak (second
row), below the peak (third row), and at 0 K (fourth row) for comparison.
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probable, but the native structures still have a finite prob-
ability to occur. Thus, our free-energy calculations agree with
the results obtained by Liwo et al.

Since the temperature must be extremely low in order for
the native state to be the global minimum of the free energy,
the entropy contribution is much larger than that for the same
temperature in protein A and ala20. A larger contribution from
entropy means more accessible conformations for a given
temperature. Therefore, the multicanonical simulations have
to sample a larger number of accessible conformations, which
becomes difficult for 1E0G.

From Figure 7, it can be seen that, for a simple system
such as ala20, the collapse occurs simultaneously (at 1460
K) with folding to the nativeR-helical state (RMSD values
and radii of gyration for low free-energy regions decrease
simultaneously with temperature from 1700 to 1460 to 1000
K). For protein A and 1E0G, the low free-energy region at
1000 K extends all the way to the low radius of gyration
and high RMSD values. For protein A, two low free-energy
regions remain as the temperature is decreased to 600 K,
one being the native and one being the mirror image. For
1E0G, the low free-energy region at 600 K with a low radius
of gyration but a high RMSD appears first, and as the
temperature is lowered (not shown here), the native region
becomes the lowest free-energy basin. However, this occurs
at very low temperatures, as described above. This explains
why the heat capacity peaks for both protein A and 1E0G
are broad and irregular. The two main events, collapse and
folding to the native state, occur at different temper-
atures.

5. Conclusions
In the present work, we implemented REM, REMUCA, and
REMUCAREM algorithms with the UNRES force field,
utilizing Monte Carlo and molecular dynamics techniques.
First, we tested all the algorithms on a simple poly-L-alanine
system. For both the MC and MD algorithms, we obtained
good agreement for heat capacity and average energy curves,
which shows that all the simulations converged to the same
distribution and that our implementation works as expected.

Next, we applied the simulations to two proteins, namely,
to 1BDD and 1E0G. First, the 1BDD simulations performed
reasonably well. The best performance was observed for the
replica exchange algorithm in both the MC and MD
simulations, since REM appeared to be much less sensitive
to the input parameters (the only important parameter is the
distribution of temperatures). To carry out a random walk,
REMUCA and REMUCAREM depend on a proper estima-
tion of the input weights and, as for ala20, both REMUCA
and REMUCAREM simulations had to be reweighted in
order to obtain reasonably flat histograms. A trapping
problem occurred at low energies, which was alleviated by
raising the lower energy boundary for multicanonical simula-
tions. However, by excluding a certain energy region from
being sampled, the agreement among the heat capacity curves
for all simulations was not so good.

Since 1E0G has a more complicated fold than 1BDD,
multicanonical simulations broke down, and only replica
exchange simulations were capable of exploring the energy

region and computing the thermodynamic averages. This
observation agrees with that from the study by Aleksenko
et al.,84 who concluded that the generalized ensemble
approach is a useful study tool for proteins up to 30-40
residues with simple topology such as theR-helix. Further-
more, since the MD version of REMUCA and REMU-
CAREM use the derivative of the entropy function, MD
multicanonical simulations are even more sensitive than their
MC counterparts; therefore, they are more difficult to
implement. Conversely, MD is much more capable of
exploring the energy landscape than MC; hence, MD
simulations are much more useful for larger systems.

Finally, we analyzed data from our REM MD simulations
for all three test systems and calculated free-energy maps
as a function of the RMSD and radius of gyration. The free-
energy calculations show the correct folding behavior for
poly-L-alanine and protein A, while for 1E0G, the native
structure had the lowest free energy only at very low
temperatures; hence, the entropy contribution is much larger
than that for the same temperature in protein A and ala20.
The larger contribution from entropy means more accessible
conformations for a given temperature. For the same tem-
perature, ala20 has the smallest entropy contribution, followed
by protein A, and then by 1E0G.

Although both REMUCA and REMUCAREM seem to
have potential as sampling methods applied to smaller
systems, replica exchange utilizing MD, coupled with
multiplexing, appears to offer more insight into the behavior
of protein folding for more complicated systems with a rough
energy landscape. Moreover, since replica exchange is easy
to implement and has few parameters to adjust, it is very
suitable for implementation in the future revision of our
hierarchical optimization procedure,62 which is currently
under development in our laboratory. The new optimization
procedure is based on a hierarchical design of the potential-
energy landscape such that the energy decrease follows the
increase of native likeness56 and utilizes MD as a sampling
method to capture as much physics as possible. Preliminary
tests (unpublished data) show that replica exchange together
with umbrella sampling85 (introduced when the native region
is not sufficiently covered with the initial parameter set)
covers a broader region of conformational space and, thus,
produces better statistics for hierarchical optimization.
Consequently, this will allow us to produce a coarse-grained
force field suitable for molecular dynamics simulations,
which will be capable of a more accurate evaluation of
thermodynamic quantities.
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Abstract: Coarse-grained models can be very different from all-atom models and are highly

varied. Each class of model is assembled very differently, and some models need customized

versions of the standard molecular mechanics methods. The most flexible way to meet these

diverse needs is to provide access to internal data structures and a programming language to

manipulate these structures. We have created YUP, a general-purpose program for coarse-

grained and multiscaled models. YUP extends the Python programming language by adding

new data types. We have then used the extended language to implement three classes of coarse-

grained models. The coarse-grained RNA model type is an unusual nonlinear polymer, and the

assembly was easily handled with a simple program. The molecular dynamics algorithm had to

be extended for a coarse-grained DNA model so that it could detect a failure that is invisible to

a standard implementation. A third model type took advantage of access to the force field to

simulate the packing of DNA in viral capsids. We find that objects are easy to modify, extend,

and redeploy. Thus, new classes of coarse-grained models can be implemented easily.

1. Introduction
All-atom molecular dynamics (MD) simulations have pro-
gressed from the treatment of small proteins in vacuo for a
few picoseconds1 to simulations in solution covering time
scales as long as 1µs.2 One major challenge for MD
simulations is the treatment of very large systems. Perhaps
the largest system treated in all-atom detail is the ribosome,3

for which about 106 CPU h were required for MD simulations
totaling about 20 ns.

One way to reduce the computational burden for examin-
ing very large systems is to use reduced (coarse-grained)
representations, in which pseudoatoms are used to represent
pieces of the structure. These pseudoatoms may represent
only a few atoms, e.g. methyl groups, or they can represent
very large groups, depending on the resolution of the model.
At very low resolution, a single pseudoatom might represent
a protein, a nucleosome, or even larger structures.

The parametrization of all-atom models is based on the
chemical properties of the atoms, and the transferability of

parameters to a broad collection of molecules is a major goal.
In contrast, coarse-grained models are generally developed
for specific problems, so their parametrization tends to be
empirical. The advent of multiscale models that contains
different levels of resolution in different regions renders
parametrization even more idiosyncratic.

We developed the Yammp molecular mechanics package
with the specific purpose of facilitating coarse-grained
modeling.4 Although it can be used for all-atom modeling,5

its principal applications have been aimed at tackling very
large systems with reduced representations. Among these are
supercoiled DNA,6-8 the ribosome,9-11 HIV,12 and other
viruses.13,14Yammp contains a number of unique force field
terms, developed for different applications.

As coarse-grained and multiscale models become more
popular, it would be desirable to have a single, integrated
package that facilitates the development and application of
such models. The revision of Yammp to Yammp 2 provides
such a package. It extends the Python programming language,
hence it is also known as YUP (Yammp Under Python). This
paper describes the new package.* Corresponding author e-mail: steve.harvey@biology.gatech.edu.
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High-quality molecular simulation programs for all-atom
models are widely available, and two such programs that
influenced this work are AMBER15,16 and CHARMM.17,18

A molecular simulation program has to provide at least
two features. The first is a way for users to construct their
model. Essentially, this is the process of converting the user’s
specification of the model (e.g. a base or amino acid
sequence) to the terms of an energy function. This function
expresses the interactions among the atoms: which atoms
are involved in each interaction, the functional form of the
interaction, and the specific parameters that are to be used
to calculate the interaction. We call this process force field
assembly, and ideally the procedure should be extensible to
new classes of models. The second feature is the raison d’eˆtre
for molecular simulation programs: routines for molecular
mechanics calculations, and users should be able to extend
existing methods and implement new ones.

Conventional, i.e., all-atom, modeling programs can be
awkward tools for coarse-grained models. For example, most
conventional programs include a mechanism to build only
linear polymers with provisions for simple cross-links. This
is sufficient to build proteins, nucleic acids, and most other
molecules of computational interest. On the other hand, the
best way to build a coarse-grained model may not necessarily
be as a linear polymer, even if that is what the original is.
In fact, a coarse-grained program will have to be much more
versatile than a conventional program because the definition
of a coarse-grained model is open-ended.

Version 2 of Yammp, or YUP (http://rumour.biology.ga-
tech.edu/YammpWeb/), is designed for the easy implementa-
tion of coarse-grained models. This is to be achieved through
two features: [1] most of the data structures of the program
are user accessible and [2] a high-level language is available
to manipulate the data. YUP is a component of the NIH
Research Resource Center for the Development of Multiscale
Modeling Tools for Structural Biology (http://mmtsb-
.scripps.edu/). YUP is available for two computer platforms,
LINUX on Intel X86 and MacOS X on PowerPC, and can
be downloaded without charge from the YammpWeb site.

Most simulation programs provide a scripting or program-
ming language. Perhaps the most sophisticated example is
the CNS19 language, which can be used to implement many
new algorithms. The predecessor of the CNS program
package is XPLOR, which also influenced the development
of Yammp.

2. Method
The Python20 language (http://www.python.org/) is a good
choice for user scripting because it has a simple and clear
syntax that is close to natural languages and programs do
not have to be explicitly compiled. Thus, it was chosen to
be the scripting language in Yammp 1. The most computa-
tionally intensive parts of YUP have to be implemented in
a low level language, and C was chosen for this purpose.
However, high-level languages are much easier to use, and
programmers are more productive with these languages.
Thus, Python was chosen as a programming language for
YUP.

MMTK 21 is a molecular simulation program that is
similarly implemented in Python and C, but it is for all-
atom models.

An alternative would be to use a bespoke language, as
was the case with the CNS package. However, by using a
standard language, we are freed from the burden of designing,
implementing, and maintaining a language. Furthermore,
YUP users will acquire skills in a standard language that
can be used to solve other programming problems.

Limited Access to Internal Data. Python is an object-
oriented language with a number of predefined data types
such as floating-point numbers and strings of characters. YUP
extends Python by adding new data types or objects.
Programmers are not granted direct access to internal data
structures. Instead, controlled access is provided through
objects. Objects are bundles of data and code that define
their properties and behaviors. The new data types or objects
are designed for molecular simulations and are implemented
either in the C language for speed or in Python for
productivity. However, all the objects are to be used within
the Python environment.

Object-Oriented Programming in Python. (This is a
discussion of some of the concepts that will be used in this
article.) A defining property of objects isinheritance: an
object can be used to define another object and the derived
object has the properties and behaviors of the parent object
without having to be reimplemented. The new object may
also extend or modify the properties and behaviors of the
parent object. Objects or data types are defined in Python
using theclassstatement. The class definition includes an
initialization function, also known as the constructor. The
class or data type definition provides a template for the
construction of any number of objects each of which is an
instanceof the data type. The properties of a Python object
are usually accessible from thedata attributes, which are
written using the dot notation, e.g.a.b is the data attribute
named b of the object a. Some objects may support
assignments to certain data attributes, e.g.a.b)c assigns the
valuec to the attributeb of the objecta. Object behaviors
are usually implemented asmethods. These are functions
written with the dot notation, e.g.a.m(...) applies the method
m (with the arguments unspecified) to the target objecta.
Some objects can be mapped or subscripted, e.g.a[k] is a
mapping or subscripting ofa andk is the key or subscript.
The key may be of anyimmutabletype. A data type may
also support assignments to mapping, e.g.a[k])v assigns
the valuev to the mappinga[k] . Operators may also be
defined for an object. These include the arithmetic and
bitwise operators. For example, in the expressiona/b the
operator is/, and the expression is correct if the operator
has been implemented for the objectsa andb. The creator
of an object can implement any action for an operator but
would usually stay close to the established meaning. The
order in which operators are applied (precedence) is never
changed. One of the most useful data types in Python is the
tuple, which is an immutable and heterogeneous list, i.e., a
list that can contain any type of data but thetupleitself cannot
be changed. Atuple is written as a comma-separated list
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within parentheses. For example,(3.142,(0,b),“a string”) is
a tuple in which the second item is itself atuple.

Types of Atoms and Interactions. YUP divides the
potential energy terms into two categories:Implicit and
Explicit. Interactions of closely bonded atoms such as bonds,
angles, and torsions are always explicitly listed; we call such
termsExplicit. Nonbond interactions involve all atom pairs
except those that are explicitly excluded; we call such terms
Implicit. YUP also providesExplicit versions of the nonbond
interactions. Each atom can be assigned two atom types: an
inclusion type and anexclusiontype. Atom types are used
as keys or indices to tables of force field parameters:
inclusionatom types for parameters ofExplicit interactions
andexclusionatom types for parameters ofImplicit interac-
tions. Thus, parameters are specified separately for each of
the two versions of nonbond terms. The parameters are keyed
by as many atom types as the number of atoms in the
interaction. The list of atom types is called an interaction
type. For example, the parameters of theImplicit version of
the van der Waals term (VanderWaalsX) are keyed by two
exclusionatom types, and the parameters of the torsion term
(Torsions) are keyed by fourinclusionatom types.

Every model has to be associated with a specific parameter
library. Each library defines a number ofinclusion and
exclusionatom types, someExplicit interaction types, and
all Implicit interaction types. An atom can only be assigned
an atom type that exists in the parameter library. The only
exception is a nameless ornull atom type. An interaction is
assumed to have theinteraction type that is formed from
the atom types of the constituent atoms, but it is possible to
assign a specific type to the interaction. In either case the
interaction type must have been defined in the library. If at
least one atom of an interaction has thenull atom type, that
interaction will not be evaluated. An atom that has a null
inclusion type does not participate in any of theExplicit
interactions. Atoms with nullexclusion atom type are
automatically excluded from allImplicit interactions.

The AtomMap Extension Data Type.This was imple-
mented in the C language and compiled into a shared object
(dynamic link library). This is closely associated with the
AtomVectortype that will be discussed later.

There are two varieties ofAtomMaps. The “atom” variety
is used to store atomic properties such as mass, charge, and
so on. The “group” variety is used as a container of other
AtomMaps. AtomMapscan be linked to form a hierarchy
including the standard chain/residue/atom hierarchy. An
AtomMaphierarchy resembles a file hierarchy in which the
atomAtomMapscorrespond to files and the groupAtomMaps
are like folders or directories. Thus, anAtomMaphierarchy
is a filing system for atoms. Figure 1 shows a hierarchy
containing five atoms and four groups.

The hierarchy shown in Figure 1 may be constructed as
follows:

A special group called the root always occupies the top
of the hierarchy. It has no name, and it is created by a
function (the constructor) instead of methods such as the rest
of the hierarchy. TheAtomMapconstructor function requires
the path to a library of force field parameters. The example
makes use of thedatasourcefunction to construct the path
to the standard parameter library namedrrDNAV1.

The atom method adds a new atomAtomMap to an
existing target that must be a groupAtomMap. The expres-
sion a.atom(“b”) means to the groupAtomMapa (the target),
create and return a new atomAtomMap labeled “b”.
Additional arguments specify atomic properties such as mass,
charge,inclusiontype, andexclusiontype. Thegroup method
is used to create and return a groupAtomMap that is
contained in the targetAtomMap. In both cases, the returned
AtomMaps will be printed if they are not assigned to
variables. (These variables will be used to illustrate further
examples.)

The name of the path between twoAtomMapsis called
the pathname of the destinationAtomMap. It is formed by
concatenating the names of theAtomMapsalong the path
and separating each name with a colon “:”.AtomMaps
support the mapping operation. The key must be a pathname,
and the result of the mapping is theAtomMap of the
destination. For example, the following are three references
to the atomAtomMaplabeled “d” in Figure 1:

The first line references the variable that was used to hold
the atomAtomMapat its creation (in the earlier example).
The second line shows an example of an absolute path, while
the third line shows a relative path.

Figure 1. An AtomMap hierarchy and an associated Atom-
Vector with group AtomMaps shown as squares, atom Atom-
Maps as circles, both enclosing the label, and AtomVectors
are represented by black rectangles enclosing the index.
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The AtomVector Extension Data Type. This is also
implemented in the C language.AtomVectorscontain arrays
of floating-point numbers that can be manipulated in a limited
number of ways, by using operators, methods, and functions.
The operations include scalar and vector arithmetic, rotations
and other coordinate transformations, and file operations.
Generally, binary operations require conformalAtomVectors,
i.e., the operands must have the same number of rows and
columns. The contents of anAtomVectorcan be packed into
or unpacked from a Pythontuple. This allows for operations
beyond those that have been defined for theAtomVectordata
type.

AtomVectorsare used to represent such data as coordinates,
velocities, gradients, atomic mass, atomic charges, and so
on. An AtomVectorcan be associated with anAtomMap
hierarchy.

The AtomVectorshown in Figure 1 can be created as
follows:

This creates anAtomVectorthat is associated with the
AtomMaphierarchy whose root is referenced by the variable
grR. The AtomVectoris assigned to the variableC, and it
provides storage for five atoms and three dimensions. The
number of dimensions is assumed to be three if it is not
specified; thus the second argument in this example is
redundant.

Any AtomMapfrom anAtomMaphierarchy can be used
to map anAtomVectorthat is associated with this hierarchy.
The result is anotherAtomVectorthat shares storage with
the parentAtomVector. The derivedAtomVectoris called a
slice or extract. Mapping always results in a single contiguous
slice. For example

produces the slice with the indices 1 and 2 in Figure 1. This
can also be accomplished with a function:

This is the only way to slice anAtomVectorthat is not
associated with anAtomMaphierarchy.

Both the original and the extract areAtomVectors, and
they have many properties and behaviors in common. (One
of the few differences is as follows: an originalAtomVector
can be sliced many ways; extractedAtomVectorscannot be
sliced at all.)

The molecular mechanics algorithms are implemented
usingAtomVectoroperations. The following is the statement
that is at the heart of the steepest descent procedure for
energy minimization

where the ellipses represent the code that have been excised
from the example: these include energy and gradient
evaluations and such housekeeping codes as updating the
nonbond list and printing intermediate results.

C is theAtomVectorcontaining the coordinates,G is the
AtomVectorof the first derivatives, andstepsizeis the
negative step size, a scalar quantity. This example shows
the use of an operator and a method.

ForAtomVectors, the * operator is programmed to multiply
the value from each cell of the left operand with the value
from the corresponding cell of the right operand. Thus, the
AtomVectorsmust be conformal, and the results are placed
in a newAtomVectorthat is conformal with the operands.
The right operand can be a scalar variable, in which case it
is equivalent to having a conformalAtomVectorthat has the
same value in every cell. Theshift method adds the
AtomVectorspecified in the argument to the targetAtom-
Vector, i.e., in-place addition. As with operators, the target
and argumentAtomVectorsmust be conformal, and the
argument can also contain a scalar.

This code fragment applies equally to originalAtomVectors
or to their extracts, as long as the operands are conformal.
All the current molecular mechanics methods are imple-
mented in Python usingAtomVectoroperations. Thus, these
methods can be applied to an entire model or to contiguous
slices of the model. Each method accepts alimit argument
containing anAtomMap, and the calculations will be limited
to the atoms contained in thisAtomMap. The parts of the
model that are not in the slice are not affected by these
methods. If no limit is specified, then the calculations will
be carried out on the entire model.

To take advantage of this capability, theAtomMap
hierarchy has to be constructed so that slices of the model
can be selected. The slices may overlap. This might be useful
for piecewise refinement for example.

A YUP program runs under the control of a Python
interpreter. The latter runs Python extension modules directly,
while C extension modules are dynamically linked for
execution. We will illustrate this with a simple example. The
following defines a function to calculate and return the center
of mass of anAtomVector.

TheReduction function sums the rows or columns of the
AtomVectorspecified in the first argument depending on the
value specified in the second argument. The results are
returned in a newAtomVector. The Reduction function is
part of theAtomVectmodule, which was implemented in C
and compiled into native machine code. TheCenterOfMass
function takes theAtomVectorreturned byReduction and
divides it by the number of atoms. The latter is available for
any AtomVectoras thenumatomdata attribute.

As an example of how the new function might be used,
we will move the coordinatesR so that the center of mass is
at the origin:
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The Python interpreter will process the arguments first.R
is a simple expression that needs no processing. Next, the
CenterOfMass function will be evaluated. Like any exten-
sion module,AtomVectcontains a table that maps each syntax
element (such as the dot operator, the division operator, and
theReduction function in the definition ofCenterOfMass)
to an appropriate function. The value returned byCenter-
OfMass is anAtomVector. This is negated before it is passed
to theshift method. These operations are also implemented
as functions in theAtomVectmodule. In essence, the Python
interpreter translates a YUP program into a list of functions.

The Energy Extension Data Types. These were imple-
mented in the C language. These types are calledBonds,
Angles, Torsions, andVanderWaalsX, and there are seven
others. We will use the term represented by theAnglesobject
for this discussion. This has the form

There areNθ terms in total, and for theith term, the force
constant iskθ,i, the prevailing angle isθi while the equilibrium
angle isθ0,i. To use any particular potential energy term in
a model, the appropriate object must be created first:

This creates aninstanceof the Anglesdata type. It is
associated with theAtomMaphierarchygrR. The force field
parameters will be obtained from the library that was named
whengrRwas created. This object is given a label “Angles”
to identify it; it can also be used to label printouts.

At this point, theAnglesobject is empty. In a moment,
we will be adding the individual interactions.

The Anglesobject can be mapped with a string as key.
For example

The string is aninteractiontype, and it contains the names
of three inclusionatom types, “frnG”, “cntG”, and “lftG”,
set off by colons “:”. This mapping returns atuple of
numbers, the values (kθ,θ0) that have been defined for the
Anglestype (“frnG”, “cntG”, “lftG”).

We can assign new values to an existingAnglestype. For
example, to preserve the force constant and change the
equilibrium angle to 108°:

(It is easier to assign the complicatedinteraction type
string to a variable instead of having to type it twice.) This
changes the parameters for thisinteractiontype just for this
Anglesobject.

The heart of force field assembly is the addition of the
individual interactions. For example, to add anAngles
interaction that involves the atoms in Figure 1, labeled “b”,
“e”, and “d”:

This interaction is added to theAnglesobjectEangleusing
the add method. Note that the argument contains only one
item, atuplethat happens to contain three values. The atoms
are represented by theirAtomMaps, which were assigned to
variables in an earlier example.

When an interaction is added like the above, it is assumed
that the interaction type is to be constructed from the atom
types of the constituent atoms. The parameter library must
contain data for this interaction type. If any one atom has a
null atom type, then the interaction will not be evaluated
even though it will remain in theAnglesobject. A specific
interaction type can be specified as the second argument like
this:

(Note that theAnglestype is expressed differently from
the key used in the earlier mapping.) If any one of the atom
type names is replaced with a null string, the angle will still
be registered but will not be evaluated.

When all the interactions have been added, theAngles
object must be compiled before the energy (and gradients)
can be evaluated.

This registers theAtomVector Cas atomic coordinates,
and theAtomVector Gwill be used for the first derivatives.
At this time, the Angles type is determined for each
interaction: whether it is to be constructed from the atom
types, or a specific type is to be used. Compilation fails if
any interaction type cannot be found in the parameter library.
Null interactions are not added to the list of interactions that
are to be evaluated.

To evaluate theAnglesenergy

The energy is evaluated for the conformation defined by
the coordinatesAtomVector registered earlier with the
compile method. The energy is expressed in internal units.

The force field can be modified on the fly during a
simulation, by applying themodify method, but thecompile
method must be applied to commit to the changes. For
example, by writing

This interaction will now be evaluated using the default
interactiontype instead of the specific type that was assigned
earlier.

∑
i)1

Nθ

kθ,i[θi - θ0,i]
2
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It is possible to have more than one Energy object of the
same kind. One reason to do this is to be able to isolate the
interactions whose parameters are to be modified dynami-
cally.

Other Energy objects are used in much the same way.
Thus, for theBondsobject, each interaction requires two
AtomMapsand twoinclusionatom types. For theTorsions
andImproperstypes, fourAtomMapsand fourinclusionatom
types are required. These are allExplicit Energy types; the
interactions have to be added explicitly.

Some terms are also available in anImplicit version for
example VanderWaalsX. An Implicit Energy object is
completely full as soon as it is created. Exclusions have to
be registered, by applying theexcludemethod on each atom
pair that is to be excluded.

All nonbond Energy terms, whetherImplicit or Explicit,
are evaluated from a list of candidate pairs that have been
explicitly added or have not been excluded or are notnull
interactions and are within a certain threshold distance. This
list is updated periodically by applying theupdate method.

The Potentialand ModelsExtension Data Type.These
objects are implemented in Python. They are container
objects, to hold lists of related objects so that they can be
manipulated together. For instance, thePotentialobject holds
a list of Energy objects. Thus, thecompile, evaluate, and
update methods can be applied to all the Energy objects
without knowing what these objects are.

Defined for both data types are methods to add, delete,
and find the component objects.

TheModelobject always consists of the rootAtomMap, a
Potentialobject, and fourAtomVectors. These components
define a complete model. The components are available as
data attributes as listed in Table 1.

A Modeldata type may contain additional attributes. The
Draw attribute specifies how a model is to be represented
visually. If a Model object has this attribute, YUP can
produce input files for the Kinemage22 and POV-Ray (http://
www.povray.org/) programs. This is especially useful for
coarse-grained models, as most molecular graphics programs
cannot handle idiosyncratic stereochemistry.

A Model type may also define attributes that are unique
to a model type.

Thus, we have extended the Python language to be able
to write programs to simulate coarse-grained models. Some
simulation algorithms require users to define a target or
objective function. The function will depend on the model
and the problem, and therefore it is impractical to incorporate
all possible functions into a program. For example, the

CONTRA23 algorithm to construct a minimally biased path
between two conformations requires a user-defined function
to provide a score for each conformation along the path. YUP
is the ideal platform for such algorithms: many internal data
structures are accessible to the user, and the user can use a
powerful programming language to access the data and write
a scoring function.

The YUP Package. YUP is a Python package, a collection
of code modules organized in a file hierarchy. When a YUP
program runs, the Python interpreter links each code module
as it is needed. Code modules can be added to the package
without disturbing existing code. These modules take care
of memory management. Object size is theoretically limited
only by the word size of the computer (typically 32 bits,
increasingly 64 bits). The actual limits are determined by
the amount of memory available on a system.The extension
objects that were discussed earlier are in two subdirecto-
ries: Yup/Energy/for the Energy objects andYup/Taro/for
the remaining objects.

The molecular mechanics routines are inYup/Methods/.
There are routines for two energy minimization methods, a
molecular dynamics method and three variants of the Monte
Carlo method. The molecular mechanics algorithms are not
implemented as functions but are objects derived from the
MolMechparent object.

General-purpose utilities are kept in theYup/Tools/direc-
tory. These are usually implemented as objects instead of
procedures. Two of these modules are particularly important.
TheFFA module implements a template for a minimal force
field assembler. TheChainsmodule defines theChainsclass,
based onFFA, and it is a template for a force field assembler
that links atoms into a simple unbranched chain. These two
objects can be used as the basis for force field assemblers
for more complex model types.

Three model types have been implemented so far, and they
will be discussed shortly. Each model type requires a
standard parameter library. The parameter library for a model
typeModelTypecan be found inYup/Data/ModelType/, and
the code will be inYup/Models/ModelType/.These models
are implemented as objects that can be used to create future
models. Programs that make use of the molecular simulation
objects without reference to a specific model type can use
the empty parameter libraryYup/Data/Null/.

3. Results
The rrRNAW1 Model Type. This is a coarse-grained model
of RNA where each nucleotide is represented by one
pseudoatom.10 Helices are explicitly represented by semirigid
structures in which hydrogen bonds between the strands are
replaced by unbreakable interactions. TherrRNAV1 model
type cannot be easily assembled in conventional modeling
programs, but a simple procedure has been developed for
YUP.

A small RNA will be used as an example: therrRNAV1
model of the tRNAPhe molecule is shown in Figure 2.

This model can be viewed as a linear polymer of 76
monomers (each consisting of one pseudoatom), but the
helices would have to be built separately (by cross-linking
the monomers within each helix to give the proper three-

Table 1. Data Attributes of the Model Data Type

Name of Attribute Data Type

Mapa AtomMap
Energya Potential
Coordinatesa AtomVector
Gradientsb AtomVector
Velocitiesb AtomVector
InverseMassb AtomVector

a The first three attributes must be added to a new Model object.
b The remaining attributes will be created as the need arises.
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dimensional geometry dictated by base pairing), which would
be a difficult task even for such a small RNA. A more
systematic approach would be to treat the model as a
nonlinear polymer of four helices and seven single-stranded
tracts. The procedure in YUP relies on anAtomMaphierarchy
in which each monomer is represented by a groupAtomMap.
Figure 3 shows one of many feasible hierarchies.

Note the additional levels in the hierarchy, e.g.Dstemand
Dloopare placed in theDstemloopgroup. Further groupings
are possible, e.g.Dstemloop, nucleotide 26, andacnstemloop
could all be placed in a new group;acc3′ and Tstemloop

could be placed in another. A hierarchy can be chosen to
divide the model into possibly overlapping domains. Each
domain can then be selected and treated as a rigid unit or as
a focus of molecular mechanics calculations.

The desired hierarchy can be expressed as atuple that
contains components of three types. Each type is indicated
by a keyword (TRACT, HELIX, or DOMAIN), followed by
a label, and the specifications of aTRACTor HELIX or the
contents of aDOMAIN. (The secondary structure may be
read from a file, such as an RNAML24 file, but the higher

Table 2. YUP Package Directorya

Yup/

Taro/ Energy/ Tools/ Methods/ Data/ Models/

AtomMap.so Angles.so Atoms.py EnerMinim.py rrDNAv1/ rrDNAv1/
AtomVect.so Bonds.so AutoGen.py MolDynam.py rrRNAv1/ rrRNAv1/
Model.py ElectroI.so Chains.py MolMech.py VirPack/ VirPack/
Potential.py ElectroX.so ChemNames.py MonteCarlo.py Null/

Impropers.so FFA.py
Noens.so Groups.py
SoftSphereI.so LinSeq.py
SoftSphereX.so MakeGraph.py
Torsions.so MakeLine.py
VanderWaalsI.so ParmTop.py
VanderWaalsX.so TraceChain.py

Topology.py
misc.py

a *.so files are shared objects or dynamic link libraries; *.py files are Python modules and directory names end in “/”.

Figure 2. The rrRNAv1 model of a tRNAPhe molecule: cross-
hatched regions represent helices, the nucleotide indices are
shown as unadorned numbers, numbers within parentheses
indicate the lengths of helices, and each monomer is named
except for nucleotide 26.

Figure 3. An AtomMap hierarchy of tRNAPhe with atom
AtomMaps represented by circles, group AtomMaps by
rectangles.
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levels of the hierarchy must be added manually.) The
hierarchy of Figure 3 can be expressed as

The contents of aDOMAIN are indented for clarity. This
definition is constructed in one step, but larger RNAs will
have to be defined in stages. The program to unravel an RNA
definition, such as this, is very simple as the following code
outline shows:

The adddomain function constructs theAtomMaphier-
archy, defined in theparts argument, underneath the group
AtomMap, defined in the parent argument. Theparts
argument is a tuple containing three items:parts[0], the
keyword;parts[1], the label; andparts[2], the specification
of HELIX or TRACTor the contents ofDOMAIN. If the label
is not a blank string, themakegroup function constructs a
new groupAtomMapunderparentand returns the new group.
Otherwise, the function returns the value ofparent. Then,
the keyword is parsed to build either aHELIX or aTRACT
using the specification in the final part. The functions
addtract and addhelix add the specifications for one and
two tracts respectively to a buffer. The buffer is later used
to add the interactions that are needed to join the tracts into
a continuous chain. When the keyword isDOMAIN, the
adddomain function is called to unravelits content. The
program is short and easy to understand.

The rrDNAW1 Model Type. This model type represents
double-helical DNA at two levels of detail or scale: three
pseudoatoms per base pair (3DNA)6 and three pseudoatoms
for every four base pairs (3DNA4). A model may contain
both representations. TherrDNAV1 model is used in the study
of large pieces of DNA of hundreds to thousands of base
pairs. Figure 4 shows a multiscaledrrDNAV1 model of a
dodecamer.

TherrDNAV1 pseudoatoms,CENTER, FRONT, andLEFT,
mark out a quadrant of a base plane. The latter is an idealized
rectangle that lies in the average plane of the base pair.
Idealized base pairs can be reconstituted from therrDNAV1
base plane. Note that the3DNA4 base plane lies between
the second and third base pairs of the tetramer that these

Figure 4. The conventional (all-atom) and rrDNAv1 models
of an isolated base pair (top) and a DNA duplex (bottom) are
shown as wire-frames and spheres, respectively. The top
panel shows how the pseudoatoms that make up the rrDNAv1
base plane are related to the atoms of a base pair. The bottom
panel shows the conventional and a multiscaled rrDNAv1
model of a dodecamer. This figure was made using KiNG, a
Kinemage22 display program.
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pseudoatoms represent. The base plane is also twisted equally
between these base pairs. Only theCENTERpseudoatoms
have bulk; they are connected to form a flexible rod.

TherrDNAV1 force field assembler is based on theChains
template inYup/Tools/Chains.py, which provides the code
to assemble theCENTERatoms. The additional code is for
the assembly of theLEFTandFRONTatoms. TherrDNAV1
model is of a linear polymer (cyclized in closed circular
DNA), and force field assembly is a straightforward process.

The nonbond interactions are somewhat unusual. As stated
earlier, only theCENTERatoms have bulk, i.e., only one
out of every three atoms takes part in nonbond interactions.
Therefore, eight out of nine atom pairs never need to be
considered. The list of interactions in theExplicit version of
a nonbond term will be much shorter than the list of
exclusions in theImplicit version. Thus, therrDNAV1 model
type has historically used theExplicit version of the
repulsion-only term (SoftSphereI). With support forSoft-
SphereIstill in place, therrDNAV1 model now uses the
Implicit version (SoftSphereX). Tests showed thatSoft-
SphereXis significantly slower thanSoftSphereIif a con-
ventional exclusion list is used. However, if theLEFT and
FRONTatom are assigned nullexclusionatom types, these
atoms will be automatically excluded from allImplicit
interactions. Without the need to process a long exclusion
list, SoftSphereXis now only slightly slower thanSoftSphereI.
(The switch toSoftSphereXallows rrDNAV1 models to be
used inAMBER, where all the nonbond terms areImplicit.)

The two strands of a circular DNA wind around each other,
and we can count the number of times each strand crosses
the other. This count is called the Linking Number.25

Underwinding the DNA byN full turns (360N°) and closing
the circle reduces the linking number byN. Overwinding
increases the linking number.

The twist of two successive base pairs is modeled by an
improper torsion angle between the equivalentrrDNAV1 base
planes. An underwound circular DNA can be constructed
by setting all improper torsion angles below the equilibrium
values. (The necessary offset at each base plane is 360°
multiplied by the number of turns desired and divided by
the number of base pairs in the model.) Given the chance, a
linear model will relax, and the torsions will be returned to
the equilibrium values. On the other hand, a circular model
can only relieve the torsional stress by bending the helix. If
the linking number is in sufficient deficit or excess, the DNA
supercoils, i.e., the double helix winds around itself.

Supercoiling can occur only as long as theCENTERatoms
form an impenetrable barrier to strand crossing. If permitted,
strand crossing would relieve torsional stresses, and the
linking number would revert to the equilibrium value. Further
calculations would be unproductive since the model is no
longer correct. We would like to detect failed calculations
and terminate them quickly.

The problem is one of incorporating a nonstandard feature
(calculation of the linking number) into a standard molecular
mechanics method. The standard molecular dynamics class
Motors, defined inYup/Methods/MolDynam.py, applies the
method userafter every UserAfterInterVal steps of the
procedure to solve the equations of motion. The solution is

to customize theMotors class to have the properties and
behaviors that are relevant torrDNAV1 models. Thus, we
first derive a new class,_motors, from theMotors class:

The new object•motors inherits the properties and
behaviors ofMotors, including the all-important methods to
integrate the equations of motion. A function and a method
are defined for the new class. The function•init• is
special: it is called the constructor function, and it initializes
a new instance of this class. Note that the parent class is
initialized as part of the creation and initialization of the new
class. The initialization routine sets a default value for the
UserAfterInterVal attribute (the user can set it to any value
later on). The linking number is calculated (using the
CountLink function), and the value is saved in the instance
variable•0link. Theuserafter method definition overrides
the method of the same name in the parent class. This
method, called everyUserAfterInterVal steps, is now made
to calculate the linking number and to compare it with the
value saved by the initialization routine. If the numbers differ,
then strand crossing has occurred, and the simulation is
interrupted.

The rrDNAV1 module can now use the•motorsclass,
instead of Motors, to define molecular dynamics and
simulated annealing (used for structural refinement) calcula-
tions. Thus, both structural refinement and simulations can
benefit from the strand-crossing check, and failed calculations
can be detected and terminated quickly.

The key feature of this implementation is the ability to
store the initial linking number for the lifetime of the
simulation. It would be much harder to do this if the
simulation method were to be implemented as a traditional
procedure.

The VirPack Model Type. This model type is used to
study the packaging process in DNA viruses. The model
represents a double-stranded DNA as a continuous chain
containing one pseudoatom for every six base pairs, and the
capsid is represented either as a sphere or a polyhedron. The
shape and the size of the model depend on the virus that is
being modeled. TheVirPackmodel type makes use of many
of the special features of YUP: access to internal data
structures, null atom types, an unconventionalAtomMap
hierarchy, and molecular dynamics on slices of the model.

The VirPack force field assembler is derived from two
classes: Chains to assemble the DNA andShapesto
assemble the capsid.

The classChains is derived from theChains template
defined inYup/Tools/Chains.py. The derivedChainsclass
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links the DNA pseudoatoms into a stepped hierarchy, which
allows the selection of an increasing length of the molecule.
At this point in the assembly, the DNA pseudoatoms are
assigned null atom types, i.e., these atoms contribute nothing
to the force field. Figure 5 shows the steppedAtomMap
hierarchy of a small system.

TheShapesclass provides methods to assemble the capsid.
The simplest type of capsid is a spherical cavity sized to
match the volume of a virus, and it requires only one
additional atom, the focal atom at the center of the sphere.
The pseudoatoms of the DNA are subject to forces directed
toward the focal atom for only as long as they are outside
the capsid. TheShapesclass is also capable of assembling
more realistic capsids. Two polyhedra (icosahedron and a
standard or elongated pentakisdodecahedron) of any size are
available now. Barrier atoms are placed on the vertices,
edges, and faces of the selected polyhedron. The barrier
atoms are spaced as closely as it is required to prevent the
passage of the DNA pseudoatoms. An entry hole through
the capsid DNA (made by assigning null atom types to the
barrier atoms in the hole) allows the passage of DNA. A
more elaborate entry channel can also be constructed to
mimic the portal proteins of the virus. The process of placing
the barrier atoms on an icosahedron is illustrated in Figure
6.

As described earlier, the initial virus model contains a
capsid part and a DNA component that is invisible to the
force field. The packing procedure starts with the DNA
pseudoatoms aligned on a straight line just outside the capsid.
The coordinates of the exterior DNA are translated toward
the capsid by half the length of the DNA-DNA bond. This
pushes one DNA pseudoatom into the capsid, and this
pseudoatom is now assigned the properinclusion and
exclusionatom types. Thecompile method is applied to all
the Energy objects, and the newly injected DNA pseudoatom
is now subject to the force field, as are all the pseudoatoms
that are already in the capsid. All the interior pseudoatoms

are selected for a molecular dynamics simulation. This
relaxes the compressed bond near the entry as the DNA
explores new conformations.

In Figure 5, the group labeled “A:” is shown linked to the
DNA pseudoatom with the unique label “a”. The next group
up the hierarchy, labeled “B:”, contains two pseudoatoms
labeled “a” and “b”. By going up the hierarchy, an increasing
length of the DNA can be selected for molecular dynamics
simulation. The group labeled “F:” encloses all the DNA
pseudoatoms (for this simple system). The packing simula-
tion is complete once the last DNA pseudoatom has been
injected into the capsid and the last molecular dynamics
simulation is finished. The capsid atoms, either the focal atom
of a spherical capsid or the barrier atoms of a polyhedral
capsid, are never subjected to molecular dynamics.

The results of a study of virus packing in spherical capsids
are reported elsewhere.26 Work on the polyhedral capsids is
underway; these calculations are now taking two to four times
longer to complete. Another elaboration of the model is to
account for electrostatic interactions; these simulations are
taking about three times the time needed for the earlier

Figure 5. The VirPack model of a virus containing six DNA
pseudoatoms (circles) linked to groups (rectangles) into a
stepped hierarchy, showing the AtomMaps that are enclosed
by the group labeled “C” (filled circles and rectangles).

Figure 6. Construction of an icosahedral capsid: starting
from the bare icosahedron (top), a template is triangulated to
the necessary spacing, the grid is populated with barrier atoms
(middle), and the template is copied and transformed into all
the faces (bottom). The pseudoatoms defining the cylindrical
core associated with the portal are also shown (bottom).
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simulations (that lack electrostatics). Clearly, the virus model
will have to remain coarse-grained even as it is enhanced.

4. Discussion
Access to internal data structures makes it possible to
implement a diverse group of coarse-grained model types
in YUP. Each model type has to be assembled in very
different ways: rrRNAV1 models as nonlinear polymers,
rrDNAV1 as conventional models but with very unusual
nonbond interactions, and the atoms ofVirPackmodels are
organized in an unorthodox hierarchy. The data structures
that represent the potential energy function were constructed
in very different ways to suit each model. Access to internal
data structures also makes it possible to customize the
molecular simulation algorithms. For example, therrDNAV1
model can break down during a molecular dynamics simula-
tion, but the failure is not detectable in a standard algorithm.
The algorithm was extended to monitor strand crossing, and
unproductiverrDNAV1 simulations can now be avoided. The
molecular dynamics algorithm is customized for theVirPack
model to modify the force field on the fly in order to simulate
the injection of DNA into a viral capsid.

The internal data structures are not directly accessible but
are presented to the programmer as molecular simulation
objects. This limits how the data are manipulated, but it also
makes programming easier. The objects represent a higher
level of abstraction than is possible with the underlying data
structures. For example, the underlying data structure for the
AtomVectorobject is an array of floating-point numbers. A
large number of operations, including vector arithmetic, have
been implemented for this object type. Thus, we can write
more compact programs without the details that can obscure
the algorithm.

The biggest benefit from the object-oriented approach is
the ease by which objects can be extended, modified, and
redeployed. Earlier, we showed how the molecular dynamics
object was extended and modified for therrDNAV1 model
type. As an example of object redeployment, consider the
VirPackmodel type. The current model combines the DNA
object (Chains) and the viral capsid object (Shapes). The
DNA model lacks torsional stiffness, a defining feature of
the molecule. This feature exists inrrDNAV1, a coarse-

grained model of DNA. If we combine therrDNAV1 object
with theShapesobject, we would then have a more realistic
virus packing model (Figure 7).

Some code revisions will be required. A method has to
be added to organize the3DNApseudoatoms into the stepped
hierarchy depicted in Figure 5. The customized packing
procedure has to assign legalrrDNAV1 atom types to each
DNA unit (now consisting of three pseudoatoms) that is
injected into the viral capsid. This is still a lot less effort
that is required with a traditional approach.

Whenever possible, existing objects should be used to
implement new model types. If it is necessary to write new
code, it should be implemented as reusable objects. As the
number of base objects increase, new models should be easier
to implement.
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Abstract: We present a new general analytical solution for computing the screened electrostatic

interaction between multiple macromolecules of arbitrarily complex charge distributions, assuming

they are well described by spherical low dielectric cavities in a higher dielectric medium in the

presence of a Debye-Hückel treatment of salt. The benefits to this approach are 3-fold. First,

by exploiting multipole expansion theory for the screened Coulomb potential, we can describe

direct charge-charge interactions and all significant higher-order cavity polarization effects be-

tween low dielectric spherical cavities containing their charges, while treating these higher order

terms correctly at all separation distances. Second, our analytical solution is general to arbitrary

numbers of macromolecules, is efficient to compute, and can therefore simultaneously provide

on-the-fly updates to changes in charge distributions due to protein conformational changes.

Third, we can change spatial resolutions of charge description as a function of separation distance

without compromising the desired accuracy. While the current formulation describes solutions

based on simple spherical geometries, it appears possible to reformulate these electrostatic

expressions to smoothly increase spatial resolution back to greater molecular detail of the

dielectric boundaries.

1. Introduction
Atomistic molecular dynamics simulations routinely and ben-
eficially address materials problems in the condensed phase.
However, there is another set of problems on the supramolec-
ular scale where the limitations of size and time scales are
reached, examples being the recognition events and subse-
quent complexation of multiple proteins in explicit solvent
environments, or the study of phase behavior and interfacial
properties of colloid systems. Atomistic modeling is too com-
putationally demanding to evaluate for times long enough to
measure the macromolecules’ traversal over large spatial do-
mains and to do this with enough statistical confidence to
analyze complex phase behavior, association kinetics, or
mechanism of assembly.

Fortunately, coarse-grained models may actually be the
more sensible approach when large-scale spatial organization
or dynamic events occurring over long time scales are
operative. Spatial coarse-graining would involve, for ex-
ample, removing explicit solvent molecules and ions as well
as ignoring an individual macromolecule’s internal motion
for some period of time.

At large spatial separations between charged macromol-
ecules in solution, electrostatic interactions will dominate,
so that an appropriate coarse-grained model could describe
them as complex charge distributions imbedded in a low
dielectric medium surrounded by a high dielectric solvent
continuum with salt screening defined by explicit microions
or implicitly through a Debye-Hückel treatment. The elec-
trostatic potential and forces and torques are found by solving
the full Poisson-Boltzmann equation (PBE) or when expand-
ing the exponential and keeping only linear terms, by solving
the corresponding linearized PBE. Both linearized and the
full PBE are typically solved numerically using either a
finite-difference (FD) method, boundary-element (BE) meth-
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ods or based on more recent work with an adaptive multilevel
finite element solution,1 and the associated electrostatic fields
are evaluated by a central difference approximation using
the numerical potential. An additional feature to solving the
full or linearized PBE numerically is that solutions are not
restricted to simple geometries but can describe greater levels
of molecular detail of the macromolecular cavity shape.

In this work, we have developed a new analytical solution
for computing the electrostatic interaction between multiple
macromolecules of arbitrarily complex charge distributions
in aqueous salt solutions, assuming the macromolecules and
their environment are well described by spherical low
dielectric cavities in the presence of a Debye-Hückel
treatment of salt.2 By exploiting multipole expansion theory
for the screened Coulomb potential, we are able to describe
direct charge-charge interactions and all significant higher-
order cavity polarization effects between low dielectric
spherical cavities containing their charges, treating all higher
order polarization terms correctly at all separation distances.
Hitherto this level of completeness was only available
through numerical solutions to the PBE, such as the grid-
based FD solutions3-6 and BE methods7-9 (See ref 1 for a
survey.). While the numerical methods are able to represent
the shape of the molecule to high resolution, they are
expensive to compute. They have an inherent tradeoff
between spatial resolution (grid discretization for the FD
methods and choice of boundary elements for the BE
methods) and memory and time requirements, that limits
them to system of few macromolecules. In contrast, our
method is efficient and fast to compute even for many
macromolecules, including frequent updates of changes in
their charge distributions due to induced conformational
changes. Unlike the effective charge approximation of
Gabdoulline and Wade,10 our formalism allows for automati-
cally changing spatial resolutions of charge description on
the fly as a function of separation distance so the desired
accuracy is always achieved with no waste in computation.

Previous analytical solutions to the linearized PBE under
spherical geometries have fallen short of providing complete
and useable solutions for multiple macromolecules of
arbitrarily complex charge distribution. When the system is
comprised of only one macromolecule, a complete solution
was offered by Kirkwood11 more than 70 years ago, and a
similar solution has recently been derived by Hoffman et
al.12 The interaction of two macromolecules has proven to
be more difficult, and many different partial and approximate
solutions have been proposed. Glendinning and Russel13

proposed an analytical solution using multipole expansion
for two equal spheres with uniform charge density. Assuming
weak interaction between the two molecules, a superposition
approximation was used, first by Verwey and Overbeek14

for uniformly charged molecules and later by Sader and
Lenhoff15 for arbitrary charge distributions. Allen and
Hansen16 proposed a solution based on variational charge-
density functional method for a system of two macromol-
ecules, each with one charge on the line connecting their
centers, and with no salt. Phillies17 was the first to offer a
complete analytical solution for two molecules with arbitrary
charge distributions in solution with salt; however, his use

of implicit re-expansion operators made the solution cumber-
some and impractical. Later McClurg and Zukoski18 im-
proved on this solution by using, among other things, explicit
re-expansion operators. While their solution is similar to ours,
it is limited to the first few multipole orders and to only two
molecules and thus is not as complete and general as the
solution we provide here.

In devising this new formulation, much attention and care
were directed at providing a computationally practical and
reliable method. Our method is numerically stable even for
large molecular radii and high multipole orders, which makes
it usable even at short separation distances, independent of
the Debye screening length. Our formulation also provides
easy access to many quantities of interest, such as forces,
torques, and interaction energies, and affords an intuitive
physical understanding of the different factors that contribute
to them. Our approach takes advantage of recent advances
in the computation of Yukawa (screened Coulomb) poten-
tial19,20 and the Helmholtz equation,21,22 that makes the
derivation and use of the re-expansion operator straightfor-
ward and computationally efficient. While the current
analytical approach exhibits a reliance on simple spherical
geometries, it appears possible to reformulate these electro-
static expressions to increase spatial resolution back to
molecular level descriptions of cavity geometries.

2. Theory
2.1. Mathematical Preliminaries. In this section we will
establish some definitions and recount some identities that
will be used in developing the theory needed for computing
the electrostatic interaction between charged spherical mol-
ecules. First, a definition of thespherical harmonics,
following the work of Gumerov and Duraiswami21

wherePn,m(x) are theAssociated Legendre Polynomials.23

Note, this is not the standard definition of spherical harmon-
ics, as it differs by a (-1)m factor. The resulting expressions,
however, are simpler. This definition can be used for allm
g0 . Whenm is negative we rely on the simple identity

whereYn,m is the complex conjugate ofYn,m.
We also require the use of themodified spherical Bessel

functions(MSBF) defined as

where In(z) and Kn(z) are themodified Bessel functionsof
the first and second kinds, respectively.23 We will make use
of two addition theorems that use the MSBFs and the
spherical harmonics.23 For convenience we copy them below.
Given two points in 3-D space specified by their spherical
coordinatesp ) [F,ϑ,æ] andt ) [r,θ,φ], with F < r, and the
Euclidean distance between themR ) |t - p|, we have

Yn,m(θ,φ) ) (-1)mx(n - m)!

(n + m)!
Pn,m(cosθ)eimφ (1)

Yn,-m(θ,φ) ) Yn,m(θ,φ) (2)

in(z) ) xπ
2z

In+1/2(z)

kn(z) ) xπ
2z

Kn+1/2(z) (3)
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Note that while in eq 4 the exponentiated ratio of distances
Fn/rn+1 appears explicitly; in eq 5 it is implicit in the MSBFs.
Namely,kn(r) ∝ 1/rn+1 and in(r) ∝ Fn.

Kirkwood developed a general analytic solution to the
linearized Poisson-Boltzmann equation (PBE) around a
spherical solvent-excluding dielectric cavity

where the coefficientsAn,m are determined by enforcing ap-
propriate boundary conditions. His solution uses an adapted
definition of the MSBF suitable for the conditions of the
problem:

Based on this definition we can now rewrite the addition
theorem in eq 5

where

Besides their usefulness in solving the Poisson-Boltzmann
equation around spherical cavities, theseadaptedMSBFs are
also more numerically stable than thestandardMSBFs since
the dependence on exponents ofr and F that may grow
rapidly with the ordern of the functions has been taken out.
A recursive method for directly computing kˆn and ı̂n without
first computingkn and in is given in the Appendix.

2.2. Boundary-Value Problem.The system we are solv-
ing is comprised ofN spherical molecules of radiiai, whose
centers are positioned at pointsc(i). The molecules are im-
mersed in a solvent, containing charged salt ions. The di-
electric constant (permittivity) in the interior of each molecule
is εp, and the dielectric constant of the solvent isεs. For sim-
plicity we will assume all molecules have the same dielectric
constant, although that is not a restriction of the solution. The
inverse Debye screening length of the ions in the solution isκ.

The electrostatic potential of the system is governed by
the PBE. For systems under physiological conditions the PBE
can be safely linearized to give2

In the general case, when the dielectric boundary has arbitrary

shape, only numerical solutions exist. For the case of
spherical cavities, however, one can write general parametric
expressions for the potential in different parts of the system.
The values of the coefficients are then determined by
enforcing a set of boundary conditions. These conditions
stipulate the continuity of the electrostatic potential and the
electrostatic field at the surface of each molecule. These
conditions take the form of the following equations

whereΦin
(i) is the total potential inside moleculei andΦout

(i) is
the total potential in the solvent, both expressed in the
coordinate frame of moleculei.

The system at hand consists of two types of regions: the
inside of each molecule and the outside solvent. The inside
region is characterized by a low dielectric constant and an
arbitrary distribution of free charges. In this region eq 10
reduces toεp∆Φ(r ) ) 4πF(r ) . The outside region is
characterized by the high dielectric constant of the solvent
and the presence of salt. In this region eq 10 reduces to
∆Φ(r ) - κ2Φ(r ) ) 0 . Following Kirkwood11 we write
general parametrized expressions for both regions. The
electrostatic potential inside moleculei is described by

whereE(i) is the multipole expansion of the charges inside
moleculei. It is defined as

whereMi is the number of charges in moleculei, qj
(i) is the

magnitude of thejth charge, andpj
(i) ) [Fj

(i), ϑj
(i), æj

(i)] is its
position in spherical coordinates. The expansion in eq 13
can be used in eq 12 only whenai g r > maxj Fj

(i), a
condition that is always met when computing the potential
at the surface of the sphere. Its use facilitates the application
of the boundary conditions and the subsequent computation
of the coefficient vectorsB(i). If later on one desires to
compute the potential at a point inside the molecule, the
following variant of eq 12 can be used:

The general form of the potential outside all molecules (in
a coordinate frame whose origin is the center of moleculei) is

1

R
) ∑

n)0

∞

∑
m ) -n

n Fn

rn+1
Yn,m(ϑ,æ)Yn,m(θ,φ) (4)

e-κR

R
)

2κ

π
∑
n)0

∞

∑
m)-n

n

(2n + 1)in(κF)kn(κr)Yn,m(ϑ,æ)Yn,m(θ,φ) (5)

Φ(t) ) ∑
n)0

∞

∑
m)-n

n An,m

rn+1
e-κrk̂n(κr)Yn,m(θ,φ) (6)

k̂n(z) ) 2
π

ezzn+1

(2n - 1)!!
kn(z) (7)

e-κR

R
) ∑

n)0

∞

∑
m)-n

n Fn

rn+1
ı̂n(κF)e-κrk̂n(κr)Yn,m(ϑ,æ)Yn,m(θ,φ) (8)

ı̂n(z) )
(2n + 1)!!

zn
in(z) (9)

∇[ε(r )∇Φ(r )] - ε(r )κ2Φ(r ) ) 4πF(r ) (10)

Φout
(i) ) Φin

(i)|r)ai

εs

∂Φout
(i)

∂r
) εp

∂Φin
(i)

∂r
|
r)ai

(11)

Φin
(i)(t) ) ∑

n)0

∞

∑
m)-n

n ( En,m
(i)

εpr
n+1

+ Bn,m
(i) rn)Yn,m(θ,φ) (12)

En,m
(i) ) ∑

j)1

Mi

qj
(i)(Fj

(i))nYn,m(ϑj
(i),æj

(i)) (13)

Φin
(i)(t) )

1

εp
∑
j)1

Mi qj
(i)

|pj
(i) - t|

+ ∑
n)0

∞

∑
m)-n

n

Bn,m
(i) rnYn,m(θ,φ) (14)

Φout
(i) (t) )

1

εs
∑
n)0

∞

∑
m)-n

n (An,m
(i)

rn+1
e-κrk̂n(κr) + Ln,m

(i) rnı̂n(κr))Yn,m(θ,φ) (15)
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The vectorsA(i) and B(i) of eqs 12 and 15 are the free
parameters (coefficients) that will be determined through the
application of the boundary conditions of eq 11.

The coefficientsL (i) in eq 15 are a re-expansion of the
external potential coefficientsA(j), j * i of all other molecules
in the system. It is defined as

where T(i,j) is the linear re-expansion operator that transforms
a multipole expansion atc(j) to a local (Taylor) expansion at
c(i). This operator is described in detail in the Appendix. The
use of the T(i,j) operators allows us to represent the potentials
due to all molecules in the coordinate frame of a single
molecule. This is crucial to our ability to analytically apply
the boundary conditions and derive compact expressions for
the free parameters of the formulation.

Applying the boundary conditions to eqs 12 and 15 yields
the following expressions for the elements of the parameter
vectors

where the vectors of constantsΓ(i) and∆(i) are

Given a solution to all theA(i) vectors, theB(i) vectors are
easily calculated using eq 18. We therefore concentrate on
solving for A(i). Based on eq 17 we can write a system of
linear equations that describes the electrostatics of the entire
problem

where

and

Note that in order to write the system of equations we need
to truncate all vectorsA(i) and concordantly all other
coefficient vectors at a finite order (the maximal value for
n), which we callp. The appropriate choice forp depends
on practical considerations, which we will elaborate on in
the next section.

We can give intuitive physical meaning to the matrices
and vectors of eq 21. The vectorsA(i) represent theeffectiVe
multipole expansion of the charge distributions of each
molecule. The effective expansion represents an equivalent
system, where the low dielectric cavities have been removed
and the solvent (with the salt ions) is allowed to penetrate
everywhere. Namely, one can use these effective expansions
to represent the now missing dielectric boundary. This
effective expansion is reminiscent of the effective charges
of Gabdoulline and Wade10 in the sense that it incorporates
the effect of the dielectric boundary into the charge distribu-
tion. In contrast to Gabdoulline and Wade, our effective
expansion also accounts for the polarization effects caused
by the dielectric boundary. The diagonal matrix∆ can be
understood as a cavity polarization operator. It transforms
the coefficients of an external charge distribution (re-
expanded around the center of the cavity) to yield the
expansion coefficients of a polarization charge distribution
that forms on the surface of the cavity (due to that external
charge distribution). The diagonal matrixΓ can be taken to
be a dielectric boundary crossing operator. It transforms the
coefficients of a charge distribution expansion inside a
dielectric cavity to yield the effective expansion as if the
charges were in the solution. Both theΓ and ∆ operators
are functions of the parameters of the system being solved,
namely the radiiai, the dielectric constantsεp and εs, and
the inverse Debye screening lengthκ . Thus eq 21 can be
understood to state the intuitive fact that the external potential
field induced by a molecule is the sum of the contribution
of its free charges and the contribution of polarization charges
induced by other molecules, transformed by the effect of its
dielectric boundary.

It is instructive to note that this formulation separates the
solution into a free charge distributions (the vectorE(i)) and
operators that represent the configuration of the system (the
matrices T(i,j)) and the geometric and physical conditions (the
operatorsΓ(i) and ∆(i)). The charge distributions and the
operators are independent except for the fact that they all
need to be defined in terms of the same molecular centers.
This observation may be exploited in devising approximate
schemes that can deal with nonspherical molecules.

2.3. Interaction Energy. Plugging the expression in eq
18 into eq 12 and rearranging the terms yields

L (i) ) ∑
j)1
j*i

N

T(i,j)‚A(j) (16)

An,m
(i) ) γn

(i) δn
(i) Ln,m

(i) + γn
(i) En,m

(i) (17)

Bn,m
(i) ) 1

εs ( An,m
(i)

ai
2n+1

e-κaik̂n(κai) + Ln,m
(i) ı̂n(κai)) -

En,m
(i)

εp ai
2n+1

(18)

γn
(i) )

(2n + 1)eκai

(2n + 1)k̂n+1(κai) + nk̂n(κai)(εp/εs - 1)
(19)

δn
(i) )

ai
2n+1

2n + 1[κ2ai
2

ı̂n + 1(κai)

2n + 3
+ nı̂n(κai)(1 - εp/εs)] (20)

A ) Γ‚(∆‚T‚A + E) (21)
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Note that the first double summation is the internal potential
due to the charges inside the molecule and the effects of the
external salt ions, while the second double summation is the
potential due to the other charged molecules (external sources
of charge), which we dubΦ̂in

(i):

Plugging eq 17 into eq 15 yields the expression for the
potential anywhere in the solvent (outside all molecules) with
the coordinate frame centered at moleculei

Note that by analogy to eq 6, the expansion of the total
charge distribution of a molecule, dubbedG(i), taking into
account both its free charges and the charges due to the
polarization of its dielectric cavity by external charges, is

The interaction energyΩ(i) of each molecule is the product
of its charge distribution (both free and polarization charges)
of eq 27 with the potential due to external sources of eq 25.
We can compute this as the inner product of the coefficients
of the two corresponding multipole expansions

where the inner product of two coefficient vectors is defined
as

Note that using our formulation computing the interaction
energy is very simple and straightforward.

2.4. Charge Distribution on the Surface of the Mol-
ecules.Because of the dielectric discontinuity, a charge
distribution develops on the surface of each of the molecules
in the system. These charges are a reaction to both the
electrostatic field of the free charges of the molecule itself
and the electrostatic field of other molecules in its vicinity.
In the former case we shall call this charge distributionself-
polarizationcharge, and in the latter case we shall call this
charge distributionexternal polarizationcharge. The charged
ions in the solution, whose distribution is governed by the
potential field, also polarize the dielectric cavities. We will

call this charge distribution thesalt polarizationcharges. We
can compute the surface charge density by using Gauss’ Law
on an infinitesimal patch on the surface of each molecule
with zero thickness. Recall that Gauss’ Law states that the
net electrostatic field through the surface of a closed volume
is proportional to the net charge inside. In the case of a small
and very thin patch on the surface of a sphere, this translates
to the following equality:

Plugging in the expression forΦin
(i) from eq 12 and forΦout

(i)

from eq 15 we arrive at the following expression for the
charge distribution on the surface:

A careful look at the terms in eq 31 reveals a clear separation
between self-polarization and external polarization. The first
term in the brackets describes the self-polarization charge
distribution. Note, however, that it also includes the salt
polarization that depends on the potential of the free charges.
We can extract thepure self-polarization term by setting
κ ) 0. We then get

Similarly the second term above describes the external
polarization charge distribution (here too, the salt polarization
governed by the external potential is included). Without the
contribution of the salt-induced charges, the external polar-
ization charge is

Note that if among the external potential sources are also
other dielectric cavities that are polarized by the potential
of this molecule’s charges, then there would be some (usually
small) portion of the external polarization charges that
actually depends on the free charges. Namely, in this case,
removing the free charges will have some effect on the
external polarization charges.

By integrating eq 31 over the surface of the molecule we
can construct a multipole expansion representation of the
polarization charge:

Φin
(i)(t) ) ∑

n)0

∞

∑
m)-n

n [En,m
(i)

εp ( 1

r2n+1
-

1

ai
2n+1)+

γn
(i) En,m

(i)

εsai
2n+1

e-κaik̂n(κai)]rn

Yn,m(θ,φ) +
1

εs
∑
n)0

∞

∑
m)-n

n

γn
(i) Ln,m

(i) rnYn,m(θ,φ) (24)

Φ̂in
(i)(t) )

1

εs
∑
n)0

∞

∑
m)-n

n

γn
(i) Ln,m

(i) rnYn,m(θ,φ) (25)

Φout
(i) (t) )

1

εs
∑
n)0

∞

∑
m)-n

n

γn
(i)(δn

(i) Ln,m
(i) +En,m

(i) )
e-κrk̂n(κr)

rn+1
Yn,m(θ,φ)+

1

εs
∑
n)0

∞

∑
m)-n

n

Ln,m
(i) rnı̂n(κr)Yn,m(θ,φ) (26)

Gn,m
(i) ) δn

(i) Ln,m
(i) + En,m

(i) (27)

Ω(i) ) 1
εs

〈Γ(i)‚L (i),G(i)〉 ) 1
εs

〈L (i),A(i)〉 (28)

〈U,V〉 ) ∑
n)0

p

∑
m)-n

n

Un,mVn,m (29)

∂Φin
(i)

∂r
|
r)ai

-
∂Φout

(i)

∂r
|
r)ai

) 4πσ(i) (30)

σ(i)(θ,φ) ) ∑
n)0

∞

∑
m)-n

n (2n + 1)

4πai
n+2 [En,m

(i) (γn
(i)k̂n + 1(κai)

εse
κai

-
1

εp
) +

nLn,m
(i) γn

(i) ai
2n+1

εs(2n + 1) (1 -
εp

εs
)]Yn,m(θ,φ) (31)

σself
(i) (θ,φ) )
εp - εs

εp
∑
n)0

∞

∑
m)-n

n (2n + 1)

4πai
n+2

(n + 1)

(n + 1)εs + nεp

En,m
(i) Yn,m(θ,φ) (32)

σext
(i) (θ,φ) )
εs - εp

εs
∑
n)0

∞

∑
m)-n

n

ai
n-1

(2n + 1)

4π

n

(n + 1)εs + nεp

Ln,m
(i) Yn,m(θ,φ)

(33)
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We can now use this expansion to describe the potential
outside moleculei (ignoring the direct contribution of other
molecules) as if there was no dielectric boundary; namely,
no difference in dielectric constant between the inside and
the outside:

Here, the term [eκai/k̂n+1(κai)] is a simplified version of the
coefficients Γ(i) of eq 19, that result when there is no
dielectric discontinuity, only a uniform dielectric, and salt
cannot penetrate into the cavity.

Note that eq 35 is not equivalent to eq 15. Recall that
molecule i not only caused a disruption in the dielectric
medium of the solvent but also created a cavity devoid of
salt ions. This displacement of salt affects the screening of
the potential field of the external sources of charge by the
salt and thus alters it. By examining the difference between
the two equations we are able to extract another set of
multipole expansion coefficients that accounts for this effect:

Figure 1 shows the surface charge on a Barstar molecule
(see section 3 for details) interacting with a second Barstar
molecule in close proximity (1Å separation distance between
bounding spheres). The charge distribution is broken into
its different components using the formulas we have
developed above (eqs 31-33).

2.5. Forces and Torques.The force acting on a molecule
due to other molecules in its vicinity is the gradient (in
Cartesian coordinates) of the interaction energy with respect
to the position of the center of the molecule, namely

where∇i is the gradient with respect to the coordinates of
the centerc(i).

We compute the gradient of the coefficient vectorsA(i)

by solving the linear system

which we arrive at by applying the gradient operator to both
sides of eq 21. The gradient of the re-expansion operator,
∇iT(i,j), can be computed analytically as described in the
Appendix.

The torque on a molecule is the sum of the torques due to
each of the charges in the molecule. By definition, the torque
on a charge is the cross product of its position relative to
the center of mass of the molecule (the moment arm) with
the force it experiences. It is not difficult to convince oneself
that the force acting on the external polarization charges
generates no net torque. This is because rotating a spherical
cavity cannot change the distribution of external polarization
charges on its surface. The torque on moleculei, due to the
chargeqj

(i) inside it, is thus

wherepj
(i) ) [xj

(i), yj
(i), zj

(i)] in Cartesian coordinates. Due to
the linearity of the cross product we can rewrite this as

Sn,m
(i) ) En,m

(i) (γn(i)k̂n + 1(κai)

εse
κai

- 1
εp) +
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Figure 1. Surface charge distribution of a Barstar molecule broken up to its components: (a) the total charge distribution, (b)
the self-polarization charge w/o the contribution of the salt ions, (c) the external-polarization charge distribution due to another
molecule in close proximity w/o the contribution of the salt ions, (d) polarization charge distribution due to salt ions governed by
the potential induced by the molecule’s own charge, and (e) polarization charge distribution due to salt ions governed by the
potential induced by external sources. Top row shows view from front and bottom row shows view from back.
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Summing over all charges of the molecule we get the
following expression for the net torque

where

and

The cross product for two sets of three coefficient vectors,
used in eq 41, is defined in analogy to the regular cross
product for vectors in 3-D, where the complex inner product
of two coefficient vectors defined in eq 29 replaces the
regular multiplication of two vector elements. Note that the
three coefficient vectors [xH(i),yH(i),zH(i)] do not change as
long as the charges inside the molecule do not move and do
not depend on the position of the molecule or other
molecules.

3. Analysis of Electrostatic Potential
Two of the benefits of our formulation are the correct
inclusion of cavity polarization to all orders, whose full
contribution is not always included in partial analytical
solutions and in numerical approaches such as Gabdoulline
and Wade’s effective charges10 and desolvation terms,24 as
well as the ability to consider multiple proteins and thereby
multibody effects through the cavity polarizations. To test
the consequence of neglecting cavity polarization and multi-
body effects, we examined model configurations of multiple
copies of both Barstar and Barnase,25 which were chosen as
representing typical macromolecules in terms of size and
charge distribution. Barnase is an extracellular ribonuclease,
and Barstar is its intracellular inhibitor. Barstar and Barnase
are modeled as spheres of radii 21.8Å and 28Å, respectively.
Their charge distribution is based on assignment of OPLS26

partial charges centered on atomic coordinates taken from
their PDB file (1BRS), after inclusion of hydrogens on heavy
atoms using CHARMM.27 Barstar has a relatively large net
charge of-6e, and Barnase has a net charge of+2e. These
two proteins were chosen somewhat arbitrarily, and we could
have chosen for the sake of the computations we present
here almost any other protein. The only assumption we make
is that the charge distribution inside them is not significantly
different from what is normally observed in proteins. The

radii were chosen so that all charges are within a sphere
centered at the geometric center of each molecule. It is
possible to choose a different center and as a result have
somewhat different radii; however, one must remember that
the correctness of the method depends on the inclusion of
all charges inside the cavity, and that if the chosen center
differs from the center of mass, the computed torques must
be translated to the true centers of mass. In all computations
that follow we useεp ) 4, εs ) 80, and the salt concentration
in the solution is 50 mM, which at room temperature yields
κ ) 0.074.

We considered configurations of two molecules, an
equilateral tetrahedron with four molecules centered on each
vertex, and six molecules configured as a 3-D cross, with
the centers at the ends of the segments. In Figure 2 we show
the relative error in magnitude and the standard deviation
of the error in direction of both forces and torques, when
cavity polarization is ignored, computed for different con-
figurations at different separation distances for different
numbers of Barstar molecules. The results for Barnase were
similar and are not shown. We can see that magnitude errors
as high as 85% in force and over 50% in the torque and is
often as high as 60% in the direction of force or torque, at
the point of closest protein contact. Although the neglect of
molecular features of the interface will also be a significant
error at these closest separations, at longer separations where
the coarse-grained approximation is still a reasonable one,
the cumulative effect of 10-30% error by neglecting cavity
polarization could strongly influence, for example, a simula-
tion of mechanism and rate of protein assembly.

Figure 2. Higher order effect of the dielectric cavities (through
polarization and salt displacement) on the forces and the
torques in different configurations of Barstar molecules. The
left column shows the effect on the forces acting on the
different molecules, and the right column shows the effect on
the torques. The top row shows the average relative error in
magnitude, and the bottom row shows the standard deviation
of the error in direction when ignoring the dielectric cavities.
Results are shown for configurations of two, four, and six
molecules, as a function of separation distance.
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In Figure 3 we compare the interaction energy of two
Barstar molecules as a function of their relative separation
(distance between surfaces of bounding spheres), to the effect
on their potential of mean force (PMF) due to a third Barstar
molecule. The three molecules are set up on the vertices of
an equilateral triangle, and the PMF is calculated by
uniformly sampling their relative orientations. The nonad-
ditivity effects due to cavity polarization introduced by the
third Barstar modulate the interactions of the two Barstar

molecules so that there is an increased repulsion at closer
distances. This effect would typically be missing in formula-
tions of the electrostatic potential in which it is only feasible
to consider pair interactions.

Figure 4 shows the power of our formulation in solving
the electrostatics of very large systems. The interaction
energy, force, and torque on a unit cell comprised of a single
Barstar molecule in an infinite lattice is computed using
neighborhoods as large as 3 surrounding layers or 73 unit
cells (243 molecules participating in the calculation all
together). As we can see the relative error going from two
to three layers is smaller than 1% even at very close
separations, which ensures us that a larger neighborhood is
not required.

4. Implementation
4.1. Computing the Re-Expansion Operator and Its
Derivatives. The literature describes a number of methods
for computing the re-expansion operator T(i,j).19-22,28,29We
based our implementation on the method of Gumerov and
Duraiswami21 for the solution of the Helmholtz equation
because of its relative simplicity and efficiency. We adopt
it to our formulation and extend it to the computation of
partial derivatives. Note that in what follows we restrict our
discussion to the practical aspects of using the re-expansion
operator. The theory behind it can be found elsewhere.21 The
matrix T(i,j), which represents a re-expansion in an arbitrary
direction, is decomposed (diagonalized) to a re-expansion
along theZ-axisS(i,j). This is done using a rotation operator
R(i,j) that orients the desired direction of re-expansion with
the Z-axis and its inverse that rotates back to the original
coordinate frame after the diagonalized re-expansion is
performed. We thus have the following decomposition of
T(i,j):

Figure 3. The effect of a third molecule on the interaction
free energy of two Barstar molecules, as a function of
separation distance. Results are averaged over all possible
relative orientations of the molecules (by uniform sampling).
In black is the interaction energy for the two molecules in
isolation, and in gray the energy when a third molecule is
placed an equal distance from both (forming an equilateral
triangle).

Figure 4. Computing the energy, force, and torque on a molecule in an infinite lattice. The top row shows the relative error in
computing the energy, force, and torque of a unit cell comprised of a single Barstar molecule when taking into account interactions
with only the first layer (a 3 × 3 × 3 neighborhood) and only the second layer (a 5 × 5 × 5 neighborhood). The second row
shows the magnitude of the energy (kT), force (kT/Å), and torque (kT/rad) on a single Barstar molecule in the infinite lattice.
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While T(i,j) is a full matrix having possiblyO(p4) inde-
pendent elements, bothR(i,j) andS(i,j) have onlyO(p3) nonzero
elements, which can be computed recursively as described
in Appendix A.1 inO(p3) time. Moreover, a simple relation
exists between T(i,j) and T(j,i) namely, T(j,i) ) (T(i,j))H, which
entails that

Since bothR(i,j) andS(i,j) are sparse matrices, whose nonzero
elements are known in advance, we compute the re-expansion
Z ) T‚X in three steps:

The partial derivatives of the re-expansion matrix have a
similar decomposition that can be computed by differentiat-
ing eq 44. For re-expansion alongv(i,j) ) c(i) - c(j) ) [r,θ,φ]
we get

Note thatR(i,j) is independent ofr andS(i,j) is independent of
θ and φ . To convert the derivatives with respect to the
spherical coordinates to derivatives with respect to Cartesian
coordinates the following 3× 3 matrix is used:

A careful examination of eqs 47 and 48 leads to the
conclusion that∇jT(i,j) ) -∇iT(i,j). The derivatives with
respect toθ andφ encounter a singularity when sinθ f 0.
In Appendix A.2 we discuss this in detail and explain how
to handle the singularities.

4.2. Iterative Computation of Forces and Torques.A
one-time exact solution of the forces for a given configuration
of the molecular system can be computed by inverting eqs
21 and 38. We first compute the values of theA(i) vectors
by solving

and then for every molecular centerc(j) we compute all∇jA(i)

by solving

which is an inversion of eq 38. Note that the expensive matrix
inversion operation need only be performed once, since the
same inverted matrix is used in both eqs 49 and 50. The
values ofA(i) and∇iA(i) are then plugged into eq 37 to yield
the force on moleculei and into eq 41 to yield the torque on
moleculei.

As long as the distance between any pair of molecules is
larger than the sum of their radii, which is a requirement of
our theory, the inverted matrix of eq 49 is strictly diagonally
dominant.30 This guarantees that an iterative approach such
as the Gauss-Seidel method30 will converge quickly. More-
over, in a simulation setting, the position and orientation of
each molecule changes little between time-steps, thus it
makes sense tofix the solution computed at the previous
time-step, instead of computing a new solution from scratch.
Therefore instead of a costly matrix inversion we use the
Gauss-Seidel method, first to solve eq 21 and then to solve
eq 38 for each centerc(j). Casting eq 21 as an iteration step
in a Gauss-Seidel solution of the linear system yields

At iteration t eachA t
(i) is computed in turn,i going from 1

to N using the most recent values of allA(j), j * i. The
iterations stop when the relative change toA(i) falls below
the desired precision. The relative change is computed as

In a simulation setting,A0
(i) ) Γ(i)‚E(i) for the computation

at the first step of the simulation, and for each subsequent
stepA0

(i) is set to its final value in the previous step.
Once allA(i) are computed, an analogous iterative form

of eq 38 can be used to compute the∇jA(i):

Here∇jA0
(i) ) 0 for the first step of a simulation. At each

subsequent step the final value of the previous time-step is
used.

4.3. Adaptive Control of Precision. Since we must
truncate each vector of expansion coefficients at a finite
order, there will always be an inherent error in the computa-
tion of the forces. However by carefully choosing the
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truncation order we can guarantee the error will never exceed
a preset value. In the interest of speed, we would like to use
the smallest order required to give the desired precision. A
theoretical upper bound on the error when computing the
potential at a distanceR using a truncated multipole
expansion isO(a/R)p+1, wherea is the radius of the charges
andR > a.31 When computing the interaction between two
sets of charges whose centers are a distanceR apart, with
radii ai and aj and R > ai + aj, an upper bound on the
truncation error is

Thus for each interaction between a pair of molecules a
different truncation order should be used that depends on
the respective separation and radii of the pair.

The theoretical bound of eq 54 is often not tight for
proteins, because the constant hidden in the bound depends
on ∑i|qi|, which for proteins is much larger than∑iqi. Thus
we use a heuristic bound that is much tighter in practice
(although its correctness cannot be guaranteed). We ap-
proximate the truncation error as

Namely, the relative error in computing the interaction by
truncating at orderp is the difference between the value using
maximal orderp + 1 and the value using maximal orderp,
divided by the value using maximal orderp. Since the values
of A(i) andA(j) at the current time-step are not yet known,
their values from the previous step are used. Assuming these
values change very little between time-steps the error
introduced by this approximation will be small. When
errp

(i,j) is larger than the desired error, the truncation order is
incremented and tested again. Iferrp

(i,j) falls below a second,
lower threshold, the order we are using is too high and should
be decremented and tested again. This heuristic bound starts
to break as the ratio in eq 54 approaches 1; in this case it
may be safer to also test truncation orderp + 2 and evenp
+ 3 in order to make sure the truncated terms indeed fall
off and do not diverge.

4.4. Computational Complexity. The size of the com-
putational problem at hand is governed by a number of
parameters:N: the number of molecules,M ) maxi(Mi):
the number of partial charges in each molecule, andp: the
maximal expansion order used in the calculations. To
compute the forces and torques as described above, the
following calculations are performed:

1. Compute the multipole expansion for each molecule.
O(Mp2) per molecule,O(NMp2) in total.

2. Invert a matrix of sizeNp2 × Np2 which takesO(N3p6)
time (eq 49).

3. Compute allA(i) and all∇jA(i) (eqs 49 and 50). Involves
multiplying Np2 vectors byNp2 × Np2 matrices which takes
O(N2p4) per molecule orO(N3p4) in total.

4. Compute the forces and torques, which involves dot
products of vectors ofp2 elements.O(p2) per molecule or
O(Np2) in total.

The total computational complexity for a one time calcula-
tion is thusO(NMp2 + N3p6) .

During a simulation, as mentioned above, the configuration
of the system changes very little between time-steps, and an
iterative method can be used tofix the forces and torques
computed at the previous step. Also, as long as the charge
distribution does not change, the multipole expansion of the
charges of each molecule need only be rotated to represent
the new orientation of the molecule, and there is no need to
compute it from scratch. Thus for an update step during a
simulation the calculations are as follows:

1. Rotate the multipole expansion of each molecule.O(p3)
per molecule orO(Np3) in total.

2. Iteratively update allA(i) and all∇jA(i). This requires
O(N2p3) per cycle through the lines of eq 51 as well as per
cycle through the lines of eq 53. For all molecules, assuming
a maximum ofk cycles, the time isO(kN3p3) .

3. Compute the forces and torques. Same as aboveO(Np2)
in total.

The total computational complexity for an update step is
thusO(kN3p3), which is independent ofM, and assumingk
e p is asymptotically faster than a one time computation by
at least a factor ofp2. Note that when the charges of a
molecule are slightly perturbed, its multipole expansion may
need to be recomputed. The update procedure, however, can
still be used effectively, since the previous values ofA(i) and
∇jA(i) still constitute good initial guesses.

4.5. Numerical Stability. When the use of high order
poles is required to maintain the desired precision of the
computations, we run the risk of exceeding the precision
bounds of the machine we are using. A simple scaling
scheme can be used to significantly alleviate this problem.
We define a scaling factorλ to be the average molecular
radius of the system we are solving. We then use scaled
versions of the multipole expansions in the computation that
will be numerically better behaved:

Note that the scaling should be done before the actual
construction of these expansions, by multiplying the centered
coordinates of each charge byλ-1. Each of the parameters
δn

(i), defined in eq 20, also needs to be scaled down toδ̌n
(i) )

λ-2n δn
(i). This too should be done during the construction of

the δn
(i) to ensure numerical stability. Finally the translation

coefficientsS(i,j) need to be scaled up. This is explained in
detail in the Appendix A.1.

4.6. Performance Evaluation. We ran a number of
experiments using our implementation of the theory, to test
how well it performs in realistic scenarios. First we looked
at the performance of the Gauss-Seidel linear system solver.
We expected the number of iterations to be low because the
matrix we need to invert is diagonally dominant. We looked
at the solution of configurations of 2, 4, and 6 Barstar
molecules similar to those we used in section 3. The error
defined in eq 52 was set to 1%. The number of iterations
required for the solution of both the effective charge
expansion vectorsA(i) and their gradients∇jA(i) is recorded

errp ) O( ai

R - aj
)p+1

(54)
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for 5000 different relative random orientations of the tested
molecules. In Figure 5a we show the iterations and timing
results for a range of separation distances for the molecule
Barstar. The number of iterations to compute theA(i) vectors
is only slightly more than 2 and seems to vary as a function
of size only for short separations. The computation of the
gradient vectors∇jA(i) requires as many as 3.5 iterations for
6 molecules at short separations, and in general there is a
small yet persistent difference between the different config-
uration sizes across separation distances, where the larger

the configuration the more iterations that are required on
average. Also included as a reference are the actual average
running times on an apple G5 workstation. These running
times have been normalized by the size of the configuration.
Thus one needs to multiply the reported times for polarization
by a factor ofN (the size of the configuration) and the
reported times for the polarization gradient by a factor of
N2 to get the total computation time for the configuration.

The iteration and timing results for Barnase are in Figure
5b. Comparing the two, one notices that the number of

Figure 5. The computation time required to compute the energy and forces for different configurations of (a) Barstar and (b)
Barnase molecules as a function of separation distance. The first column shows the number of iterations and time required to
compute the polarization effects (solve the linear system of eq 51). The second column shows the number of iterations and time
required to compute the polarization effects (solve the linear system of eq 51). The second column shows the number of iterations
and time required to compute the partial derivatives of the polarization effects (solve the linear system of eq 53 for a single
molecular center). The first row shows the number of Gauss-Seidel iterations, and the second row shows the computation time
required to converge to within 1% of the correct solution.

Figure 6. The average and standard deviation of the number of poles in a multipole expansion needed to compute the interaction
between two molecules to within 0.1% error as a function of separation distance. Results are shown for three configurations of
(a) Barstar and (b) Barnase molecules: two molecules at the top, four in the middle, and six at the bottom graph.
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iterations required for convergence is about the same for both
molecules; however, the time per iteration is about 3 times
larger for Barnase because higher order expansion was
needed to get the same desired level of precision. The number
of poles (the maximal expansion order) that are used on
average to represent theA(i) vectors determines the actual
size of the computations that are performed. Recall that this
number is chosen automatically by the algorithm to maintain
the desired error of eq 55. In Figure 6a we show the number
of poles required to reach a desired relative error of 0.001
(mean and standard deviation) for different numbers of
Barstar molecules, and in Figure 6b we show the same for
Barnase.

Computing these systems using numerical methods, such
as DelPhi, would take many seconds, and we expect our
method to be at least 2-3 orders of magnitude faster.
Moreover, for the larger configurations (4 and 6 molecules)
a very large grid would be needed to get high levels of
accuracy. Numerical methods, in general, are designed to
handle complex molecular surfaces and are unable to take
advantage of simple spherical geometries, unlike our method.
Thus, already from a theoretical perspective, it is always
considerably better, in terms of both precision and time, to
use our method when spherical geometry is assumed.

5. Conclusion
We have presented a new general analytical solution for
computing the screened electrostatic interaction between
multiple macromolecules of arbitrarily complex charge
distributions, assuming they are well described by spherical
low dielectric cavities in a higher dielectric medium in the
presence of a Debye-Hückel treatment of salt. Our new
formulation builds upon foundations of electrostatic theory
of dielectric boundary problems laid down by Kirkwood,11

Phillies,17 Hansen and co-workers,12,16 and McClurg and
Zukoski18 and unites it with the scientific computing com-
munity’s recent developments in solving for the screened
Coulomb (Yukawa) potential19,20 and solution to the 3-D
Helmholtz equation.21,22 Our formulation offers the further
advantage that it is general for arbitrary numbers of
macromolecules with arbitrarily complex charge distribu-
tions, and the use of straightforward and computationally
efficient multipole re-expansion operators to solve the
screened Coulomb problem has made our formulation
practical as well. In addition we present its algorithmic
scaling costs and implementation (with code made available
upon request to one of the corresponding authors).

Often a macromolecule in solution is represented by two
concentric spheres, an inner sphere to represent the molecule
and a concentric layer around it (a 3-D annulus) to represent
a charge-free region due to the finite size of ions, a solvent-
free region due to the finite size of solvent molecules, or an
ionic Stern Layer. See, for example Kirkwood11 and Hoffman
et al.12 When assuming that this layer has the same
permittivity as the interior of the macromolecule our
formulation can be used as is. The radius of the molecule is
simply extended to include this outer layer as well, and any
charges in it are treated as part of the molecule’s charge
distribution. If, however, a different permittivity is used, one
would need to derive new expressions for the electrostatic

potential, where now each cavity would have two boundaries,
and expressions for the potential would be required for three
different areas (inside, external layer, and outside). This has
been done before for a single molecule.11,12 Our approach
would be applicable for this case as well; however, the
expressions would be much longer and more cumbersome
and thus we have chosen not to derive them. We could also
model the Stern layer ions explicitly since our formulation
allows for arbitrary numbers of spheres of arbitrary radii.

We plan to apply this generally formulated electrostatic
model in the future to problems in protein complexation using
Brownian dynamics. In typical implementations of protein-
protein association using Brownian dynamics, the charge
distribution of the protein in isolation is assumed to be fixed
throughout the stochastic simulation of proteins in solu-
tion.24,32,33While this approximation is best for earlier stages
of the diffusion reaction, the approximation degrades sig-
nificantly as the relative separation of the two proteins
become smaller, since the accumulated forces at shorter range
acting on the charge sites should shift the conformational
state of the two proteins, thereby altering their overall charge
distribution and shape. This scenario can be further com-
plicated by the effect of the presence of multiple proteins
on the pair interactions. Our analytical solution is general to
arbitrary numbers of macromolecules, is efficient to compute,
and can therefore simultaneously provide on-the-fly updates
to changes in charge distributions due to protein conforma-
tional changes. We can also change spatial resolutions of
charge description as a function of separation distance
without compromising the desired accuracy.

While for many applications the simple spherical geometry
of the macromolecule is sufficient and reasonable, in some
cases it falls short of capturing the desired level of atomic
detail. In our future work we plan to explore a number of
paths that promise to extend the usability of our formulation
to cases where a more accurate description of the influence
of shape on the electrostatics near the surface of proteins is
required. As we discuss in section 2.2, our solution separates
the description of the charge distribution from the description
of the geometric and electrostatic properties (dielectric
constants and salt screening length). The latter is restricted
to theΓ operator that describes the behavior of the dielectric
boundary between each molecule and the solution and the
∆ operator that describes the polarization properties of the
molecule. Thus, instead of using the analytic values for these
operators computed for spherical geometry, it may be
possible to compute generalized operators for more complex
geometries such as unions of spheres, where more than a
single expansion center is used to better approximate the
electrostatic potential.
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Appendix
A.1. Recursive Computation of Re-Expansion Coef-
ficients. The re-expansion coefficients are computed using
the decomposition of eq 34. Thus a set of rotation and
translation coefficients needs to be computed. Gumerov and
Duraiswami21 propose a recursive method for the re-
expansion coefficients for the Helmholtz equation, which we
adopt here for the very similar Poisson-Boltzmann equation.
Other formulations of the re-expansion operator also ex-
ist.20,22,29 Below we lay out the recursive procedure for
computing the rotation and translation coefficients for a re-
expansion along the vectorV ) [r,θ,φ].

Rotation Coefficients and Their DeriVatiVes.The rotation
coefficients Rn

m,s (0enep-1, -nem,sen) are used as
described in eq 46. The recursive procedure for computing
Rn

s,m is the following:
1. SetRn

0,s ) Yn,-s(θ,φ) for 0 e n e 2p - 1 and-n e s
e n .

2. For each 0e m e p - 1 starting atm ) 0 , fill all
coefficients withm + 2 e n e 2p - m - 1 and- n + 1 e
s e n - 1 using the following rule:

For negative values ofm useRn
m,s ) Rn

-m,-s.
The constants used in the recursion are

The partial derivatives of the rotation operator∂Rn
m,s/∂θ

and ∂Rn
m,s/∂φ can be computed in a similar fashion. For

∂Rn
m,s/∂θ the following recursion should be used:
1. For 0e n e 2p - 1 use the formula

whensg0 , and then use∂Rn
0,-s/∂θ ) ∂Rn

0,s/∂θ to complete
the positive values ofs.

2. For each value of 0e m e p - 1 starting atm ) 0 fill
all coefficients withm + 2 e n e 2p - m - 1 and-n +
1 e s e n - 1 using the following rule:

3. For negative values ofm use∂Rn
m,s/∂θ ) ∂Rn

-m,-s/∂θ.
For ∂Rn

m,s/∂φ the formula is

Translation Coefficients and Their DeriVatiVes. The
translation coefficientsSn,l

m (0en,lep-1, -nemen) are
used as in eq 46. The recursive procedure for computing
Sn,l

m (r) is the following:
1. SetS0,l

0 ) (λ/r)l( k̂l(κr)e-κr/r) for 0 e l e 2p - 1 and
useSn,0

0 ) (- 1)nS0,n
0 for 0 e n e 2p - 1.

2. Use the following recursion to computeSn,l
0 for 0 e n

e p - 2 andn + 1 e l e 2p - n - 2 :

3. For each 0e m e p - 2 use the following two steps
to compute allSn,l

m+1:
I. For m e l e 2p - 2 - m compute allSm+1,l

m+1 using

II. For m e n e p - 2 andn + 1 e l e 2p - n - 2 use

4. To complete the set of coefficients two identities can
be used:

I. For all Sn,l
m wheren > l useSn,l

m ) (-1)n+lSl,n
m .

II. For all Sn,l
m wherem < 0 useSn,l

-m ) Sn,l
m .

The constants used in the recursion are the following:

Recall thatλ is the uniform scaling factor that was defined
in section 4.5.

The derivatives of the translation coefficients∂Sn,l
m /∂r are

computed using a similar procedure, which differs only in
step #1, where the initial values are computed using

A.2. Dealing with Singularities. The method we use to
compute the derivatives of the re-expansion operator breaks

-an
s(sinθ

∂Rn
m,s

∂θ
+ cosθRn

m,s)] (1.4)

∂Rn
m,s

∂φ
) -isRn

m,s (1.5)

Sn + 1,l
0 ) - 1

Rn
0
[âl-1

0 Sn,l-1
0 + ân-1

0 Sn-1,l
0 + Rl

0Sn,l+1
0 ] (1.6)

Sm+1,l
m+1 ) - 1

ηm+1
-m-1

[µl
-m-1 Sm,l-1

m + ηl+1
m Sm,l+1

m ] (1.7)

Sn+1,l
m+1 )

- 1

Rn
m+1

[âl-1
m+1 Sl-1

m+1 + ân-1
m+1 Sn-1,l

m+1 + Rl
m+1 Sn-1,l

m+1 ] (1.8)

Rn
m ) x(n + m + 1)(n - m + 1)

ân
m )

λ2
κ

2 Rn
m

(2n + 1)(2n + 3)

ηn
m ) sign(m)x(n - m - 1)(n - m)

µn
m )

λ2
κ

2 ηn
m

(2n - 1)(2n + 1)
(1.9)

∂S0,l
0

∂r
) (λr )le-κr

r2
(lk̂l(κr) - (2l + 1)k̂l + 1(κr)) (1.10)

Rn-1
m+1,s ) 1

bn
m [12e-iφ(1 + cosθ)bn

s-1 Rn
m,s-1 -

1
2
eiφ(1 - cosθ)bn

-s-1 Rn
m,s+1 + sinθan

sRn
m,s] (1.1)

an
m ) x(n + m + 1)(n - m + 1)

(2n + 1)(2n + 3)

bn
m ) sign(m)x(n - m - 1)(n - m)

(2n - 1)(2n + 1)
(1.2)

∂Rn
0,-s

∂θ
)

s cotθYn,s(θ,φ) - x(n - s)(n + s + 1)e-iφYn,s+1(θ,φ) (1.3)

∂Rn-1
m+1,s

∂θ
)

- 1

bn
m [12 eiφ bn

-s-1(sinθRn
m,s + 1 + (1 - cosθ)

∂Rn
m,s+1

∂θ ) +

1
2

e-iφ bn
s-1(sinθRn

m,s-1 - (1 + cosθ)
∂Rn

m,s-1

∂θ )
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as the direction of the re-expansion vectorV ) [r,θ,φ]
approaches thez-axis (either the positive or negative direc-
tions). In this case the angleθ f 0,π and sinθf0 . This is
not due to a true singularity of the re-expansion operator
but is rather due to the fact that the gradient of this operator
is computed first in Spherical coordinates and then converted
to Cartesian coordinates. This singularity affects the deriva-
tives with respect toθ andφ . Note that whenθ ) 0,π , the
coordinateφ becomes meaningless and we can arbitrarily
set it to 0.

For the case of∂Rn
m,s/∂θ, when sinθ f 0 , eq 1.3 reduces

to

which is nonzero only whens ) (1 because then the sinθ
term in both Yn,s(θ,φ) and cotθ cancels out. Examining
carefully the recursion rule in eq 1.4 tells us that only the
∂Rn

m,s/∂θ coefficients wherem ) s ( 1 will be nonzero and
thus the calculation and application of this operator in the
singular case is significantly simplified (onlyO(p2) opera-
tions).

For the case of∂Rn
m,s/∂φ we also need to take into account

the term∂φ/∂y ) cosφ/(r sinθ) in the operator that converts
derivatives with respect to spherical coordinates to derivatives
with respect to Cartesian coordinates (see eq 48) because of
its dependence on 1/sinθ. Similarly to the case of the
∂Rn

m,s/∂θ coefficients, here too, because we end up multi-
plying each∂Rn

m,s/∂φ by ∂φ/∂y we get a cancellation of sinθ
in both. Recall that the∂Rn

m,s/∂φ coefficients have a simple
dependence on theRn

m,s coefficients (see eq 1.5). We thus
define in this case new coefficients∂Rn

m,s/∂y ) (∂Rn
m,s/∂φ

∂φ/∂y), noting that when sinθ ) 0, ∂Rn
m,s/∂y depends only

on ∂Rn
m,s/∂φ. Here too we end up with only the∂Rn

m,s/∂y
coefficients, wheres ) (1, being nonzero.

A.3. Computing the Adapted MSBFs.Following Kirk-
wood, a simple recursive formula allows for the generation
of all k̂n(z)

where the starting values arek̂0(z) ) 1 andk̂1(z) ) 1 + z .
The derivatives of this function, which are used in the
derivations of section 2, can be generated using the relation

We have also derived a recursive formula for the generation
of all ı̂n(z):

where the starting values are ıˆ0(z) ) sinh(z)/z and ı̂1(z) )
(3/z2)(cosh(z) - ı̂0(z)) . While this formula is correct and
useful in theoretical derivations, its usefulness in actual finite
precision computation is limited. Instead we recommend the

following formula

where the starting value ist0
n(y) ) y/(2n + 3). The

summation in the formula should be continued until the
change falls below the desired precision (we usedL ) 20).
The derivatives can be generated using the relation

Finally a relation between the two kinds of the adapted
MSBFs that is useful in simplifying complex expressions is

References

(1) Baker, N. A. InMethods in Enzymology; Brand, L., Johnson,
M. L., Eds.; Academic Press: 2004; Vol. 383, pp 94-118.

(2) Honig, B.; Nicholls, A.Science1995, 268, 1144-1149.

(3) Davis, M. E.; Madura, J. D.; Luty, B. A.; McCammon, J.
A. Comput. Phys. Commun.1991, 62, 187-197.

(4) Madura, J. D.; Briggs, J. M.; Wade, R. C.; Davis, M. E.;
Luty, B. A.; Ilin, A.; Antosiewicz, J.; Gilson, M. K.; Bagheri,
B.; Scott, L. R.; McCammon, J. A.Comput. Phys. Commun.
1995, 91, 57-95.

(5) Nicholls, A.; Honig, B.J. Comput. Chem.1991, 12, 435-
445.

(6) Rocchia, W.; Alexov, E.; Honig, B.J. Phys. Chem.2001,
105, 6507-6514.

(7) Beard, D. A.; Schlick, T.Biopolymers2001, 58, 106-115.

(8) Bordner, A. J.; Huber, G. A.J. Comput. Chem.2003, 24,
353-367.

(9) Boschitsch, A. H.; Fenley, M. O.; Zhou, H. X.J. Phys. Chem.
2002, 106, 2741-2754.

(10) Gabdoulline, R. R.; Wade, R. C.J. Phys. Chem.1996, 100,
3868-3878.

(11) Kirkwood, J. G.J. Chem. Phys.1934, 2, 351-361.

(12) Hoffmann, N.; Likos, C. N.; Hansen, J. P.Mol. Phys.2004,
102, 857-867.

(13) Glendinning, A. B.; Russel, W. B.J. Colloid Interface Sci.
1983, 93, 95-104.

(14) Verwey, E. J. W.; Overbeek, J. T. G.Theory of the stability
of lyophobic colloids; Dover Publications: Mineola, NY,
1999.

(15) Sader, J. E.; Lenhoff, A. M.J. Colloid Interface Sci.1998,
201, 233-243.

(16) Allen, R.; Hansen, J. P.J. Phys.: Condens. Matter2002,
14, 11981-11997.

(17) Phillies, G. D.J. Chem. Phys.1974, 60, 2721-2731.

(18) McClurg, R. B.; Zukoski, C. F.J. Colloid Interface Sci.1998,
208, 529-542.

ı̂n(z) ) 1 + ∑
j)1

L

tj
n(z2/2)

tj
n(y) ) 1

j
tj-1
n (y)

y
2n + 2j + 3

(1.15)

dı̂n(z)

dz
)

zı̂n+1(z)

2n + 3
(1.16)

ı̂n(z)k̂n + 1(z) + k̂n(z)ı̂n + 1(z)
z2

(2n + 1)(2n + 3)
) ez (1.17)

∂Rn
0,-s

∂θ
) s cotθYn,s(θ,φ) (1.11)

k̂n + 1(z) ) k̂n(z) +
z2k̂n-1(z)

(2n + 1)(2n - 1)
(1.12)

dk̂n(z)

dz
)

(2n + 1 + z)k̂n(z) - (2n + 1)k̂n+1(z)

z
(1.13)

ı̂n+1(z) ) (2n + 1)(2n + 3)
ı̂n-1(z) - ı̂n(z)

z2
(1.14)

554 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Lotan and Head-Gordon



(19) Boschitsch, A. H.; Fenley, M. O.; Olson, W. K.J. Comput.
Phys.1999, 151, 212-241.

(20) Greengard, L. F.; Huang, J. F.J. Comput. Phys.2002, 180,
642-658.

(21) Gumerov, N. A.; Duraiswami, R.Siam J. Sci. Comput.2003,
25, 1344-1381.

(22) Rokhlin, V.Appl. Comput. Harmonic Anal.1993, 1.

(23) Arfken, G. B.; Weber, H.-J.Mathematical methods for
physicists, 4th ed.; Academic Press: San Diego, CA, 1995.

(24) Gabdoulline, R. R.; Wade, R. C.J. Mol. Biol. 2001, 306,
1139-1155.

(25) Buckle, A. M.; Schreiber, G.; Fersht, A. R.Biochemistry
1994, 33, 3, 8878-8889.

(26) Jorgensen, W. L.; Tiradorives, J.J. Am. Chem. Soc.1988,
110, 1657-1666.

(27) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D.
J.; Swaminathan, S.; Karplus, M.J. Comput. Chem.1983,
4, 187-217.

(28) Danos, M.; Maximon, L. C.J. Math. Phys.1965, 6, 766-
778.

(29) Epton, M. A.; Dembart, B.1995, 16, 865-897.

(30) Golub, G. H.; Van Loan, C. F.Matrix computations, 3rd
ed.; Johns Hopkins University Press: Baltimore, MD, 1996.

(31) Greengard, L.; Rokhlin, V.J. Comput. Phys.1987, 73, 325-
348.

(32) Gabdoulline, R. R.; Wade, R. C.Methods1998, 14, 329-
341.

(33) Gabdoulline, R. R.; Wade, R. C.Curr. Opin. Struct. Biol.
2002, 12, 204-213.

CT050263P

Screened Interactions between Multiple Proteins J. Chem. Theory Comput., Vol. 2, No. 3, 2006555



Parametrization and Validation of Coarse Grained
Force-Fields Derived from ab Initio Calculations

Giacomo Prampolini*

Dipartimento di Chimica e Chimica Industriale, UniVersità di Pisa,
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Abstract: A novel multisite interaction potential, suitable for computer simulations of complex

materials as liquid crystals or polymers, is proposed and parametrized. Its validation is achieved

through Monte Carlo numerical experiments at constant temperature and pressure, performed

on the p-n-phenyls series and a typical mesogenic molecule (5CB). The model is constructed

by connecting an array of anisotropic Gay-Berne sites and a collection of isotropic Lennard-

Jones sites. The former mimics the rigid planar six-membered rings of the molecule, while the

latter represents the flexible chain, if present. Such intermolecular potential, coupled with an

intramolecular part to account for molecular flexibility, is parametrized from ab initio information

only, obtained through the recently proposed Fragmentation-Reconstruction Method (FRM).

Computer simulations are performed on all systems by exploring phase behavior at several

temperatures and by comparing the resulting thermodynamic and structural properties with the

relevant experimental data. Despite the simplicity of the present models, the good agreement

with the experimental measures suggests the possibility of adopting such hybrid potentials for

those systems with a large number of atoms, where high computational cost does not allow the

use of more accurate atomistic potentials.

1. Introduction
In the past decades, computer simulations have considerably
aided the study of advanced materials such as liquid crystals
or polymers.1,2 Unlike simple liquids, both the wide range
of length and time scales that characterizes the dynamics of
such complex substances, and the large dimensions of their
forming molecules have suggested the adoption of simplified
or coarse grained models.2-5 In liquid crystal field, for
instance, many anisotropic single site interaction models have
been reported in the literature.6-9 Among them, the most
successfully employed is certainly the Gay-Berne (GB)
potential,3,9-11 which has much contributed to clarify the
basic features responsible for mesogenic behavior. The main
lack of these single-site models is the absence of molecular
flexibility, which cannot be neglected if one aims to
accurately reproduce experimental behavior. On the other
hand, the use of atomistic force-fields becomes rapidly

unfeasible with the growth of the molecular dimensions. Even
standard united atom (UA) approaches, by which groups of
methyl and methylene atoms are represented with a single
Lennard-Jones (LJ) interaction site, might not solve the
problem if one aims to sensibly increase the speed of the
calculation or the quality of the statistics.

For these reasons, several models have been proposed in
the past few years,1,2,12-20 where a reasonable computational
cost is reached through a reduction of the number of
interaction sites, without losing the basic features of the
molecular interactions. For instance, following the UA
approach, LaPenna and co-workers13 have first employed a
coarse grained model potential, by coupling one GB aniso-
tropic potential (representing the rigid molecular core of a
typical mesogenic substance) with a collection of standard
LJ sites describing the flexible aliphatic chain. Such a hybrid
GB/LJ model has then been refined and successfully adopted
in simulations of both polymers21,22 and liquid crys-
tals.14,15,17,20Despite their simplicity, in fact, hybrid models* Corresponding author e-mail: giacomo@dcci.unipi.it.
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have proven valuable to study the basic structure-property
relationships subtending the bulk behavior. Nevertheless, it
should be mentioned that most of these force-fields13-15,21,22

were parametrized in a semiempirical manner, being their
aim to represent the features of a general (liquid-crystalline
or polymeric) bulk phase, rather than reproduce with good
accuracy the experimental properties of a specific substance.
Even in the most recent works,17,20 the proposed hybrid
GB/LJ model is parametrized on an empirical potential
derived from the widely used OPLS23 atomistic force-field.
This route of parametrization might be inappropriate when
the interest focuses on a specific substance, with a well
defined molecular composition. To reproduce the thermo-
dynamic, structural, and dynamic properties of a real
advanced material, one needs to employ model potential
functions able to accurately describe the interactions between
its forming molecules, taking into account the chemical
details that characterize the microscopic structure.

The Fragmentation Reconstruction Method (FRM), re-
cently proposed by our group,18,19,24-26 allows to compute,
through accurate ab initio calculations, the interaction
potential energy surface (PES) of dimers of large molecular
dimensions. Once the FRM-PES has been computed, it can
be used to parametrize the intermolecular potential model
through a fitting procedure, at several possible degrees of
accuracy and complexity. In this work, a model potential
based on representing the phenyl groups in each molecule
with single interaction sites is parametrized on the base of
previously computed FRM data18,19,24,25and employed in MC
computer simulations.

Two test cases have been chosen to validate the afore-
mentioned model and its parametrization procedure: thep-n-
phenyls series (n ) 2-5) and 4-n-pentyl 4′-cyanobiphenyl
(5CB), a typical mesogenic molecule. The series ofp-
polyphenyls certainly exhibits fascinating properties both in
the field of polymers and liquid crystals. In the former, the
applications of poly(p-phenylene) vary from ribbons and
fibers to solid-state lubricants, and the polymer itself has
been the object of several reviews.27 In the latter, p-
quinquephenyl andp-sexiphenyl show nematic and smectic
phases, respectively. Moreover, the torsional potential be-
tween the phenyl rings of all the series has been recently
modeled by our group28 through accurate DFT calculations.
The coupling of such an intramolecular term to the inter-
molecular hybrid potential should refine the results of
preliminary runs already reported for these systems.19 On
the other hand, the 5CB molecule has been the object of
several simulation studies,12,16,17,20,26,29-34 being a sort of
prototype nematogen. Empirical atomistic simulation
models26,30-34 have been proven capable to reproduce with
a certain accuracy most of the static and dynamic properties
of such liquid-crystal nematic phase. Moreover, an atomistic
force-field, derived by our group through the FRM ap-
proach,25 has been successfully employed to reproduce the
bulk behavior of crystalline, nematic, and isotropic 5CB,
yielding a phase diagram in good agreement with the
experimental trends. However, since atomistic modeling
cannot be extended to much larger molecules, a hybrid
potential parametrization of 5CB PES is tempted in this work

and compared with the results achieved by the atomistic
model, so to evaluate the possibility of its use for compu-
tationally more expensive systems.

The paper is organized as follows. Section 2 gives details
on the hybrid potential and on the employed MC technique.
In the first part of section 3, the results of the parametrization
of both p-n-phenyls and 5CB are discussed. In the second
part, the simulation results are reported and compared with
the relevant experimental data. A comparison with the results
of the more detailed atomistic model25 is also discussed.
Finally, section 4 collects the main conclusions.

2. Computational Details
2.1. Hybrid Force-Fields and Fitting Procedure. p-
Polyphenyls.All the consideredp-n-phenyls (n ) 2-5) have
been modeled by representing the phenyl rings of each
molecule with oblate Gay-Berne ellipsoids,9,10 plus a linear
quadrupole (Q) along the orientational axis of the disk (i.e.
perpendicular to the phenyl plane). The upper panel of Figure
1 shows the adopted model for the third member of the series,
namelyp-quaterphenyl. The word “hybrid” here stands to
indicate the use, in modeling one molecule, of several bonded
GB sites, normally used as a single site potential.3

In this hybrid model, the intermolecular potentialUAB
inter

between two interacting sites A and B is thus expressed by
a sum of two terms, i.e.

With regards to the first term of eq 1, a pair of nonequivalent
GB interaction sites can be defined9,10,19by the specification
of two parameter arrays, namelyPk ) [σk

0,σk
ee,σk

ss,εk
0,εk

ee,
εk

ss,µk,νk,êk], with k ) A, B.

Figure 1. (a) The adopted model is shown for p-quaterphenyl.
All the series members have been modeled in analogous
manner. The black arrows on each disk represent the added
quadrupoles. (b) The hybrid GB/LJ modeling is reported for
5CB. All UA interaction sites have been represented with a
LJ potential, except the phenyl rings, which have been
modeled with a generalized GB potential (green disks). For
both models, all parameters are listed in Tables 1-2 and 4,
respectively.

UAB
inter ) UAB

gGB + UAB
Q (1)
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Their interaction energy, the generalized Gay-Berne
potential (UAB

gGB),10 depends on the distance vectorr̂AB and
on the disks orientational axesûA and ûB

where

and

In eqs 3 and 4, the functionsσAB(ûA, ûB, r̂AB), εAB
(1) (ûA, ûB),

and εAB
(2) (ûA, ûB, r̂AB) are defined in terms of the quantities

øAB, RAB, ø′AB, andR′AB through eqs 5-7, i.e.

and

In ref 10, the authors suggest a mixing rule to calculate, from
the aforementioned setsPA andPB, the combinations of the
quantitiesøAB andRAB, as appearing in eqs 5-7, that is

To obtain the other quantities (e.g.ε0
AB or µAB), since no

combination rule of this kind was found in the literature, a
Lorentz-Berthelot approach has been followed where pos-
sible, thus defining

The three remaining quantities, namelyø′ABR′2AB, øABR′-2
AB,

andø′AB, were here derived by comparing the standard GB
expressions9 for ø′ with eqs 8 and 9, found in the literature10

for øR2, øR-2, andø2. These considerations have lead to the
definitions

Equations 12 and 13 correctly reproduce the standard GB
interaction in the limiting case A) B. Furthermore, they
also can be used to model the interaction between an
anisotropic and a spherical site, i.e. a gGB-LJ pair. In fact,
this has been done in the 5CB hybrid model, which will be
further discussed.

The second term of eq 1,UAB
Q , is a quadrupole-quadru-

pole contribution,3,35 whose asymptotic expressioni

where the orientationalûi (i ) A, B) and intermolecular
vectorsr̂AB have the usual meaning, andQi (i ) A, B) is the
quadrupole value of theith interacting site. The model
intermolecular potentialEinter, of a couple of moleculesi and
j, can be expressed by

whereUAB
inter is given in eq 1, andNi andNj are the number

of interaction sites of moleculesi and j, respectively.
The gGB parameter arraysP as well as the molecular

quadrupolesQ of all interaction sites were obtained by a
least-squares fitting procedure, using as reference the dimer
interaction PES (EFRM) of biphenyl,p-terphenyl,p-quater-
phenyl, and p-quinquephenyl. The latter has been ob-
tained18,19 from ab initio calculations through the FRM
approach.24,25The fitting was carried out by minimizing the
integral I

whereRk andΩk are, respectively, the intermolecular vector
and the reciprocal orientation vector of the dimer in thekth
geometry, andNg is the number of employed geometries.
Finally, wk is a Boltzmann-like weighting factor which takes
the form

The molecular flexibility is taken into account by making
each gGB disk able to rotate around thep-n-phenyl long
axis. Such rotations are driven by an intramolecular torsional
potential (Eintra) expressed by
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wheren is the number of rings,Mi is the number of cosine
functions used for ringi, and Cij and mij the potential
parameters. The angleφi is the torsional dihedral between
two neighboring rings (namelyi and i + 1). For all the
members of the series, this intramolecular potential has been
parametrized in a previous work28 by fitting the torsional
energy profiles arising from accurate DFT calculations. The
Cij andmij parameters are reported in Tables 2, 4, and 6 of
ref 28.

5CB. The model adopted for the 5CB molecule is shown
in the lower panel of Figure 1. The 5CB’s biphenyl core
has been represented with two gGB oblate ellipsoids, whereas
the N and C atoms (labeled N and Cn, see Figure 1) of the
cyano group have each been modeled with a LJ potential.
Following a standard UA description, all methyl and meth-
ylene groups of the lateral aliphatic chain have been also
modeled with a single spherical LJ site. In this case, the term
“hybrid” indicates that the model is composed by both
isotropic (LJ) and anisotropic (gGB) interaction sites.
Furthermore, a point charge was added to every site, so that
the intermolecular model potential of two moleculesi andj
can be expressed by

where Ni
LJ, Ni

GB, and Ni
q are the number of LJ spheres,

gGB ellipsoids, and point charges of moleculei.
The interaction energy between the gGB ellipsoids,

UAB
gGB, has the same expression given for the polyphenyls in

eq 2, while the LJ potential energy,UAB
LJ , has been slightly

modified by the introduction of an additional parameterê:

This has been done both to increase the flexibility of the
function in the fitting procedure and to make it consistent
with the expression of the gGB potential,UAB

GB, given in eq
2. As done for the polyphenyl series, the three quantities
σ0

AB, ε0
AB, andêAB can be computed from the parameters

specifying each site (i.e.σ0
i, ε0

i, and êi, with i ) A, B)
through the following mixing rules

The hybrid interaction termUAB
gGB/LJ, between an anisotropic

gGB site A (B) and a spherical LJ one B (A), can also be
described, as previously stated, by eq 2. Indeed, due to its
spherical symmetry, the following relations stand for theith
(i ) A, B) LJ site:

In eqs 5-7, defining σAB, εAB
(1) and εAB

(2) , this implies the
annealing of the coefficients of the terms formally depending
on the orientational vectorûi of the isotropic LJ site. For
instance, in the interaction between a LJ site A and a gGB
one B, eq 5 definingσAB simply reduces to

As one can see, this term correctly depends only on the
distance vector between the isotropic (A) and the anisotropic
(B) interaction site,r̂AB, and on the anisotropic site orienta-
tion, ûB. Finally, the point charges interaction termUAB

Coul

has been computed by a standard Coulomb potential.
The parametrization of the 5CB hybrid intermolecular

potential has been carried out with the same procedure
described, for the oligophenyl series, by eq 16. The reference
ab initio PES for the dimer was already computed through
the FRM approach and was recently25 employed in an
atomistic modeling of 5CB. The molecular flexibility of the
5CB molecule is certainly more complex than the polyphen-
yls one. Its description has been carried out by the intramo-
lecular termEintra, which results in a sum of stretching,
bending, torsional, and intramolecular LJ contributions:

For all the terms in the above sum, the standard AMBER36

expressions have been adopted. The parametrization of such
potential terms for 5CB has been recently made by our group
on the base of accurate quantum mechanical calculations,26

and successfully validated through lengthy molecular dy-
namics simulations,26,34 performed with the aforementioned
atomistic modeling. All parameters of stretching, bending,
and torsional intramolecular potentials can be found in Tables
1-5 of ref 26.

2.2. Computer Simulations.All simulation runs were
carried out with the Monte Carlo method37 (MC). To study
phase transitions, the isothermal isobaric ensemble (NPT)
has been preferred to the canonical one (NVT), although a
bit computationally more expensive. In fact, MC NPT
techniques, allowing fluctuations of the shape and the volume
of the simulation box, favor the achievement of the natural
structure of the system. Furthermore, the NPT ensemble is
the closest to experimental conditions, since real experiments
are usually performed at constant pressure.

The short-range intermolecular interactions have been
truncated atRc ) 10 Å, employing the energy standard
correction.38 In the 5CB system, charge-charge long-range
interactions have been treated with the Ewald method,39 using
a convergence parameterR of 5.36/2Rc. All MC runs have
been performed according to the usual rules of the NPT
scheme, using systems of 600 molecules for the oligophenyl
series and 192 for the 5CB simulations. The latter number
has been chosen both for computational convenience and
for a better comparison with the results of the previous
atomistic model.25 During the runs a molecule was selected
at random, and trial displacements of its center of mass and
inertia axes were performed. To sample the intramolecular

Einter ) ∑
A

Ni
gGB

∑
B

Nj
gGB

UAB
gGB + ∑

A

Ni
LJ

∑
B

Nj
gGB

UAB
gGB/LJ +

∑
A

Ni
gGB

∑
B

Nj
LJ

UAB
gGB/LJ + ∑

A

Ni
LJ

∑
B

Nj
LJ

UAB
LJ + ∑

A

Ni
q

∑
B

Nj
q

UAB
Coul (19)

UAB
LJ ) 4ε

0
AB[( êABσ0

AB

rAB + σ0
AB(êAB - 1))12

-

( êABσ0
AB

rAB + σ0
AB(êAB - 1))6] (20)

ε
0
AB ) xε

0
Aε

0
B; σ0

AB )
σ0

A + σ0
B

2
; êAB ) xêAêB

(21)

σi
0 ) σi

ee) σi
ss; εi

0 ) εi
ee) εi

ss; µi ) νi ) 1 (22)
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conformational space, a randomly selected gGB disk could
also be rotated around the molecular long axis of both
oligophenyls and 5CB. Moreover, for 5CB, attempts to move
the chain’s interaction sites were also performed, so to alter
their stretching, bending, and torsional coordinates. Finally,
the shape and the volume of the computational box have
been changed during simulations, by attempting to vary a
randomly selected edge of the box. With the aim of
preserving the detailed balance condition, all the aforemen-
tioned trial moves have been selected randomly and not
sequentially.

The equilibration of the systems studied has been assessed
by monitoring the evolution of a number of observables such
as enthalpy, density, and orientational order parameter,P2.
The latter was obtained by diagonalizing the Saupe ordering
matrix Q, whose elements are defined as

where the mean value〈 ... 〉 is obtained averaging on all
molecules composing the system, andû (a ) x, y, z) is the
eigenvector corresponding to the minimum eigenvalue of the
molecular inertia tensor, i.e., the long principal axis. The
maximum eigenvalue of Q is then taken as the principal order
parameterP2, and the corresponding eigenvector represents
the phase directorn.

Every equilibration has been followed by a production run
for the evaluation of the thermodynamic properties. Positional
order was monitored by calculating the correlation functions
g(r), g(r |), andg(r⊥). g(r) is the standard isotropic correlation
function, whiler| andr⊥ are the projections of the center of
mass vectors along and normal ton, respectively. The
orientational order was studied calculating the major order
parameterP2 and the orientational correlation function
G2(r).40 This function, computed as

describes the orientational correlation of two moleculesi and
j as a function of the distance between their center of mass.
As shown by Bates et al.,41 G2(r) reaches the asymptotic
value of 〈P2〉2 at largerij.

3. Results and Discussion
p-Polyphenyls.The intermolecular PES of thep-n-phenyls
have been computed through the FRM method,24 which is
based on the construction of a dimer interaction potential as
a sum of fragment-fragment contributions. In particular, the
polyphenyls PES can all be obtained as a sum of benzene-
benzene interaction energies. The details of these FRM
calculations have been already reported in refs 18 and 19.
Furthermore, the accuracy of the ab initio calculations on
the benzene dimers has been also extensively discussed in
previous works.24,42,43

The computedp-n-phenyls PES have been fitted with the
gGB model potential, reported in eq 1. In view of the poor
significance of very repulsive values, all the energiesEk

FRM

> 80 kJ/mol were discarded from the integralI of eq 16,
and the weighting coefficientR, defined by eq 17, was set

to 0.84 (kJ/mol)-1. Preliminary fittings performed over a wide
R interval (0.42 (kJ/mol)-1 < R > 8.37 (kJ/mol)-1) showed
a negligible dependence of the shape of the fitted curves
over the weighting factor, at least in the considered confor-
mations. Finally, the parametrization conforms to the mo-
lecular symmetry, i.e. equivalent rings are represented by
identical gGB and quadrupolar potential terms. The obtained
parameters are reported for all the series in Tables 1 and 2.

As it can be seen from the standard deviations reported in
Table 2, although based on a reduced number of interaction
sites with respect to an atomistic model, the present gGB
model can describe to a good level of accuracy the main
features of the reconstructed ab initio PES.

In Figure 2, cross sections of the computed FRM-PES are
compared with the fitted potential for some selected con-
formations ofp-quinquephenyl. In the first panel from the
left, a sandwich parallel conformation is obtained by displac-
ing the center of mass of one molecule along the translation
vectorR perpendicular to the central ring plane. All other
conformations (i.e. cross, parallel displaced and T-shaped)
are shown in the other panels of Figure 2 together with the
selectedR. Similar results have been obtained for the other
members of the series. It might be noted that aligned
conformations (first and third panels from the left in Figure
2) result in deeper wells, thus favoring orientationally more
ordered geometries. It may be worth also noticing as in the
parallel displaced curve (third panel from the left), the model
quadrupolar interaction allows for reproduction of the shift
of the minimum toward slipped configurations (R> 0), found
by the quantum mechanical results.18

Preliminary MC runs on thep-n-phenyls series had already
been performed by our group,19 by coupling the fitted
intermolecular PES to a torsional ring-ring potential reported
in the literature.44 Unfortunately, it turned out that the height
of the barrier for the planar conformation of biphenyl in ref
44 was overestimated compared to more recent experimental

Qab ) 〈12(3uaub - δab)〉

G2(rij) ) 〈P2(ûi‚ûj)〉(rij)

Table 1. Parameters of the GGB Model for the
Oligophenyl Seriesa

n m ε0 εss εee σ0 σss σee µ ν ê

2 1,2 1.26 4.18 28.38 6.83 6.83 3.18 1.0 1.20 0.86
3 1,3 1.59 5.02 13.60 6.69 6.69 3.41 1.0 2.07 0.89
3 2 0.71 1.80 48.03 6.86 6.86 2.83 1.0 -0.87 0.77
4 1,4 1.34 5.82 47.15 6.90 6.90 3.20 1.0 -0.86 0.83
4 2,3 1.67 2.34 22.13 6.56 6.56 3.16 1.0 -0.61 0.84
5 1,5 1.34 2.89 35.90 6.85 6.85 3.21 1.0 -1.24 0.79
5 2,4 2.26 2.34 25.06 6.51 6.51 3.19 1.0 -3.42 0.83
5 3 1.21 5.86 34.02 6.43 6.43 3.31 1.0 1.46 0.81

a n indicates number of phenyl rings in the molecule, and m
indicates the position of the ring inside the polyphenyl; ε’s are in kJ/
mol and σ’s in Å.

Table 2. Optimized Quadrupoles of the gGB Model for
the Oligophenyl Seriesa

n Q SD n Q SD

2 15.6 2.68 4 13.3 2.51
3 18.1 1.97 5 10.4 2.68
a All quadrupoles were imposed to be equal on each phenyl ring

and are reported in C ‚ m2 ‚ 1040; in the last column, the standard
deviations of the fitting procedures are reported in kJ/mol for each
polyphenyl.
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and theoretical data.45,46 This led to inaccurate predictions
of the thermodynamical properties of all the series.19 In this
work, MC NPT runs have been performed using the
intermolecular hybrid model coupled with the intramolecular
torsional potential reported in ref 28.

All simulations were started from the same configuration,
created for all the omologues according to the following
procedure. The polyphenyl centers of mass were disposed
in a fcc crystal structure, elongated in the [111] direction,
and chosen parallel to thez axis. Their molecular long axes
were all aligned along thezdirection, thus yielding a starting
order parameterP2 ) 1; the dihedral angles between two
contiguous disks were set to∼45°, which corresponds to
the minimum of the torsional potential as calculated in ref
28. Next, all crystals were expanded to a densityF = 0.8
g/cm3, to favor the disordering processes. Starting from this
expanded crystal, several MC runs were performed on each
omologue at atmospheric pressure and varying the temper-
ature by 50 K steps.

In Figure 3 the enthalpy, density, and orientational order
parameterP2 are shown as a function of temperature for the
four systems. Some of the thermodynamical results re-
ported in Figure 3 are compared with experimental data in
Table 3.

The melting points (Tm) were determined in simulation
by considering the average value between the highest
temperature in the solid and the lowest in the liquid phase
for each oligophenyl; clearing (TNI) and boiling (Tb) points
were determined analogously. In this way the computed
values carry an uncertainty of(25 K. At low temperatures,
the four systems show a translationally and orientationally
ordered phase. Raising the temperature, a liquid and a gas
phase appear, with an almost vanishing orientational order
parameterP2, but with definitely different enthalpies and
densities. With regards to the 5 ring member, a third fluid
phase was found, with a partial orientational order (P2 =

0.7). The lack of positional ordering, associated with aP2

> 0.4, is typical of a nematic phase. The latter is experi-
mentally found for p-quinquephenyl between 653 and
681 K,49 thus very close to the computed range (625-675
K). In fact, Table 3 shows that the adopted model, although
coarse grained, is capable of reproducing the range of
stability of the phases with an error of=50 K. On
the contrary, all transition enthalpies are significantly un-
derestimated, with relative deviations increasing along the
series.

The ordered phase shown at 650 K byp-quinquephenyl
has been analyzed in more detail. First, in view of the known
tendency of these systems to remain trapped in metastable
states, the runs atT ) 600, 650, and 700 K have been

Figure 2. Selected cross sections of the FRM intermolecular
PES (dotted black line) and the fitted gGB model (solid black
line) for the polyphenyls series. The translation vector R is
reported in the inner panels, for each of the considered
geometries, with a dotted arrow. In the middle panels, the
latter is perpendicular and parallel to both molecular long axis
in cross and parallel displaced geometries, respectively. The
intermolecular distance R is reported in Å and all energies in
kJ/mol.

Figure 3. Thermodynamic properties of p-n-polyphenyls as
a function of temperature for biphenyl (black symbols, left
panels), p-terphenyl (green symbols, left panels), p-quater-
phenyl (blue symbols, right panels), and p-quinquephenyl (red
symbols, right panels). Enthalpies (circles) are in kJ/mol and
densities (squares) in g/cm3. All values have been averaged
over production runs of 50 ‚ 106 MC steps.

Table 3. Thermodynamic Results of the Employed Hybrid
Modeld

n Tm TNI Tb ∆Hm ∆HNI ∆H°vap

2 375 575 14.2 27.4
344a 529b 18.8a 54.0b

3 425 725 17.1 34.6
493a 658b 35.4a 79.0b

4 575 825 17.7 56.7
587a 773b 37.8 117.0b

5 625 675 875 11.4 7.9 65.1
660a 688a 823b 42.3a 0.9a 151.0b

653c 681c

a Reference 47. b Reference 48 and references therein. c Refer-
ence 49. d n indicates the number of phenyl rings in the p-n-phenyls.
All temperatures are in K; all ∆H’s are in kJ/mol.
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extended to over 250‚106 MC steps. TheP2 was plotted over
the step number and reported in Figure 4. The order
parameter at 650 K (green line) remains stable for about 200
million configurations, resulting in an average value ofP2

) 0.74, whereas it grows up to 0.9 at 600 K (red line), and
it falls under 0.4 (blue line) if the temperature is raised to
700 K. To assess the nematic nature of the phase at 650 K,
the pair correlation functionsg(r) and G2(r) have been
computed and reported in Figure 5. From the upper panel, it
can be seen that, despite the high orientational order, no
positionally ordered structure is present at 650 K, and the
g(r) correlation function shows a shape very similar to the
one computed in the isotropic liquid phase. TheG2(r)
function at 650 K shows a long-range correlation, which
decays to the expected〈P2〉2 value, consistent with the
nematic nature of the orientationally ordered phase.

The proposed model accounts for flexibility through the
intramolecular torsional potential computed in ref 28. The
validation of the latter could be assessed if the proposed
model results are able to reproduce the delicate interplay
between intermolecular and intramolecular forces that drive

the phase transitions in thep-oligophenyls series. Indeed,
the experimental inter-ring angle of biphenyl results to be
around 40° in gas phase,50,5132° in liquid phase,52 and nearly
0° in crystalline phase.53 This tendency is apparent also in
the larger homologues,54 where the molecular planarity is
lost in going from the crystalline to the less ordered
structures. In fact, this experimental trend is well reproduced
by the simulation data, as one can see from Figure 6, where
the distribution functions of the first dihedral angle are
reported at different temperatures. For all the members of
the series, a neat change in population can be observed at
the transition between crystalline and liquid phases, in
agreement with the experimental findings.54 This can be
easily explained by considering the gain in intermolecular
energy due to the closer packing allowed for the planar
conformations. Furthermore it is worth noticing the impor-
tance for the model to account for an accurate representation
of internal flexibility. Indeed, the correction of the afore-
mentioned overestimation in the torsional potential adopted
in the preliminary runs19 adjusts the balance between
intermolecular and intramolecular contributions, thus leading
to more accurate thermodynamic results, including transition
temperatures. For instance, the melting temperatures of
p-terphenyl andp-quaterphenyl for the present model are
425 and 575 K, respectively. These values clearly show a
better agreement with the experimental measures (493 and
587 K47) with respect to those found in the preliminary runs,19

namely 375 and 475 K.
5CB. The 5CB intermolecular potential energy surface,

previously computed by the FRM method,24,25was fitted into
the hybrid GB/LJ model. The fitting procedure, performed
according to eq 16, has already been applied in ref 25 to an

Figure 4. Equilibration of the order parameter of the p-
quinquephenyl molecule at different temperatures. The ne-
matic range [0.8-0.4] is indicated between dotted lines.

Figure 5. Correlation functions for p-quinquephenyl in the
crystal (black line), in the nematic (red line) and liquid phase
(blue line) at T ) 350, 650, and 800 K respectively.

Figure 6. Population distribution of the first torsional angle
along the p-oligophenyls series. For all molecules, distributions
in solid, liquid, and gas phases are reported with solid, dashed,
and dotted lines, respectively.
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atomistic model potential. This 5CB atomistic model was
used26,34in molecular dynamics (MD) simulations, and it was
shown to reproduce with good approximation the thermo-
dynamic, structural, and dynamic properties of 5CB crystal-
line, nematic, and liquid phases. In the present work, in fact,
during both the parametrization and the validation proce-
dures, the obtained results will be compared with those
reported for the more “realistic” atomistic model.

Here, as done for the latter,25 all repulsive energies larger
than 40 kJ/mol were discarded from the sample ofNg = 2
× 104 dimer conformations, and the weighting coefficient
R was set to to 1.67 (kJ/mol)-1. Furthermore, the partial
charges on the three Cp2 sites were imposed to be null, and
their parameters were taken as equivalent. No other restriction
but electroneutrality was imposed, obtaining in such a way
a standard deviation of 2.8 kJ/mol. The latter well compares
with the one obtained for the atomistic model,25 i.e. 2.5
kJ/mol. The resulting intermolecular parameters are reported
in Table 4.

Other coarse grained parametrizations, performed on
biphenyl18,19 or on cyanobiphenyl in 5CB,20 report a strong
dependence of the fitted parameters on the chosen weighting
factors. In particular in ref 20, where a uniaxial single GB
site is employed to model the cyanobiphenyl moiety in 5CB,
the GB radii (σss andσee) are found to be very sensitive to
the temperature employed in the fitting. In the present work,
the value of the employed weighting factorR corresponds
to a temperature of=200 K. As reported for then-phenyls,
other fittings performed withR set to 0.42 (kJ/mol)-1 and
8.37 (kJ/mol)-1 (corresponding to temperatures of 50 and
1000 K, respectively) did not show relevant differences in
the shapes of the coarse grained PES. For instance, in the
face-to-face conformation of the 5CB dimer (see Figure 7),
the well depth (= -40 kJ/mol with R ) 1.67 (kJ/mol-1)
showed variations of less than 5%, while the distance where
the fitted curves cross they ) 0 axis changes withR only
by =2%. This different behavior with respect to other coarse
grained parametrizations probably arises from the more
accurate level of approximation introduced by the present
model. Indeed, substituting each phenyl ring with a rigid gGB
site implies only the remotion of “hard” internal potentials,
which rule the ring hexagonal shape and planarity. Therefore,
the degrees of freedom neglected by this model do not change
much with temperature in the real molecule. Conversely, the
substitution of both rings with a single (prolate) GB site18,20

also removes the inter-ring “soft” potential, which drives
molecular biaxiality and shows a rather flat shape in the
minimum region.28,25 In this case,18,20 a rotational average
on the reference PES is needed before performing the fitting,
thus introducing the reported strong temperature dependence.

As done for thep-n-phenyls, some fitted potential curves
are compared in Figure 7 with the corresponding FRM
reconstructed energies, for selected dimer arrangements. The
latter have been constructed as follows. In the parallel
conformations, reported in the upper panel of Figure 7, the
second molecule is moved along a vectorR containing the
midpoint of the ring-ring linkage, parallel to theĈ6

symmetry axis of the cyanophenyl group for the face-to-
face geometries. The side-by-side arrangements are obtained
by translating the second molecule along the vectorR′
containing the ring-ring linkage and perpendicular to both
the molecular long axis and theĈ6 symmetry axis. In the
antiparallel and cross geometries (lower panel of Figure 7),
a rotation of 180° and 90°, respectively, is performed around
R̂, together with a translation along it. The agreement for all
the four considered configurations is good; in particular the
local parallel and antiparallel minima are well represented.

It is also worth noticing that the parallel dimer conforma-
tion is correctly less favorite than the antiparallel one. This
is mainly due to the repulsive Coulomb contribution, which
can be ascribed to an unfavorable dipole-dipole parallel
arrangement. Indeed, the Coulomb contribution to the energy
of the hybrid model in the parallel and antiparallel local
energy minima result+7.1 kJ/mol and-0.1 kJ/mol, respec-
tively. Moreover in the latter geometry, it may be of some
interest to investigate the source of all energy contributions
which concur to the local minimum and to compare the
distribution arising in both the FRM calculation and the fitted
hybrid model. The core-core, core-chain, and chain-chain

Table 4. Fitted Intermolecular Parameters for the 5CB
Hybrid Modela

site ε0 σ0 ê εss εee σss σee µ ν q

Bz1 2.22 6.23 0.86 5.40 25.19 6.23 2.89 1.41 2.87 -0.070

Bz2 2.47 6.46 0.72 3.93 25.56 6.46 3.14 1.13 -1.02 0.127

ε0 σ0 ê q

N 0.02 3.21 0.68 -0.369

Cn 0.07 2.68 0.15 0.318

Cp1 1.00 2.49 1.42 0.024

Cp2 0.33 4.16 0.70 0.000

Cp5 0.02 4.58 1.38 -0.030
a The charge on Cp2 site was imposed to be null. All ε’s are

reported in kJ/mol, σ’s in Å, and all charges in fraction of e.

Figure 7. FRM reconstructed (red line) and hybrid model
potential (blue line) energy curves. Translation vectors R̂ and
R̂′, defined in the text, are reported in the inner panels with
dotted black arrows. Energies are in kJ/mol and distances are
in Å.
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FRM terms, reported in Table 5, can be easily computed as
sums of the appropriate fragment-fragment contributions.
The core-chain term, for instance, arises from the sum of
all benzonitrile-pentane and benzene-pentane interaction
energies. Conversely, in the fitted model, the three contribu-
tions arise from different types of interactions: gGB-gGB,
gGB-LJ, and LJ-LJ, respectively.

From the quantities reported in Table 5, it is evident that
the hybrid model is capable of conserving the correct
distribution of the energy contributions found by the FRM
approach.24 In fact it can be seen that the main source of
attraction is the interaction between the aromatic cores, which
accounts for almost 80% of the total interaction energy.

Finally, in Figure 8 a comparison between the 5CB
atomistic25 and hybrid models is presented. Two parallel
displaced (PD) conformations were created with the same
procedure, i.e. a displacement along the long molecular axis
of 5.0 Å and-2.5 Å for the parallel and antiparallel dimers,
respectively. The agreement between the two models is
satisfactory, as the hybrid models do not lose much accuracy
in representing the FRM curves, with respect to the more
“realistic” atomistic one.

5CB simulations were carried out in the NPT ensemble,
making use of the hybrid GB/LJ intermolecular model
coupled to the intramolecular potential whose parametrization
has been described in detail in ref 26.

Two configurations of 192 molecules, in the nematic and
isotropic phase respectively, were extracted from the equili-
brated trajectories of MD simulations previously performed
by our group with the 5CB atomistic FRM model.25,26,34

These geometries were expanded to a density of 0.8 g/cm3,
and the interaction sites (six aromatic carbons and four
hydrogens) of each phenyl ring were substituted with a rigid
gGB disk, centered in the geometrical center of the phenyl
plane and with its orientation axisûgGB perpendicular to the
ring (see panel b of Figure 1). Such hybrid configurations
were eventually used as starting point for two MC-NPT runs
at atmospheric pressure, at 300 and 320 K.

Equilibration, assessed by monitoring total energy, density,
and order parameter of both systems, was reached after=280
‚ 106 and 160‚ 106 MC steps for the lower and higher
temperature, respectively. A comparison of the CPU usage
of these simulations, with respect to the atomistic MD runs
performed on the same system,26,34 cannot be easily carried
out, since different techniques as well as different modeling
levels are concerned.

Nevertheless, in the last row but one of Table 6, the CPU
time/step has been reported for the two methods. The cost
of the MD technique is not surprising, considering that each
step involves a collective move, the calculation of the forces,
and the computation of the energies for a larger number of
interaction sites. However, in the discussion of the CPU
usage with the two different techniques, the number of steps
performed to reach equilibrium should be also taken into
account. The latter quantity has been reported in the last row
of Table 6 and clearly shows the better efficiency of MD
steps to reach equilibrium.

Once equilibrated, production runs of 50‚ 106 MC steps
have been carried out for both temperatures. The values of
some average quantities are reported in the first rows of Table
6 and compared with those obtained with the atomistic MD
runs. These results seem to indicate that the adopted hybrid
model is still capable of reproducing stable isotropic and
nematic phases in the experimental temperature range. In
particular the orientational order parameter in the nematic
phase at 300 K well agrees with both the MD and the
experimental value. Conversely, by looking at the first rows
of Table 6, one may note as the gain in energy from the
isotropic phase at 320 K to the nematic at 300 K is higher
for the hybrid model (11.7 kJ/mol) than for the atomistic
one (3.2 kJ/mol), which better compares with the experi-
mental clearing enthalpy∆Hc of 0.54 kJ/mol.57 Accordingly,

Table 5. FRM24 and Fitted Energy Contributions in kJ/mol
in the Antiparallel Local Energy Minimum

FRM24 hybrid fitted model

r0 (Å) 3.9 3.9
total energy -43.4 -43.7
core-core -33.6 -33.5
core-chain -8.5 -9.6
chain-chain -0.2 -0.5
Coulomb -0.1

Figure 8. Comparison between FRM (red, dotted line) curve
and atomistic25 (green dashed line) and hybrid (blue solid line)
models for some selected parallel displaced (PD) conforma-
tions. Energies are in kJ/mol and distances are in Å.

Table 6. Calculated and Experimental Thermodynamic
Propertiesa

this work MD-FA26 exp

F (300 K) 1.092 ( 0.04 1.085 ( 0.03 1.02055

F (320 K) 1.051 ( 0.05 1.063 ( 0.04 0.99555

P2 (300 K) 0.546 ( 0.01 0.538 ( 0.03 0.5456

P2 (320 K) 0.151 ( 0.01 0.176 ( 0.03
Uinter (300 K) -98.4 ( 0.1 -106.9 ( 0.5
Uinter (320 K) -86.7 ( 0.1 -103.7 ( 0.7
CPU time/step 0.02 0.6
Nsteps ‚ 106 220 40

a The data of this work, averaged over 50 millions MC steps, are
compared with the corresponding MD values, reported in ref 26.
Density F is expressed in g/cm3, and intermolecular energies
contributions Uinter are in kJ/mol. In the last two rows are reported
the CPU time/step in seconds and the average number of steps
needed to reach equilibrium, Nsteps. Both MC and MD calculations
were performed on Xeon 2.8 GHz processor.
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the MC ordered system at 300 K increases its density with
respect to the MD value, while the isotropic phase behaves
in an opposite manner.

A more detailed characterization of the structure of the
two resulting condensed phases can be obtained from the
computed correlation functions,g(r), g(r|), and G2(r),
reported in Figure 9.

As can be seen from the behavior ofg(r) and g(r|)
functions (solid lines in Figure 9), no positional order is
present in the two phases and both exhibit a liquidlike
structure. More importantly, theG2(r) orientational correla-
tion function at 300 K correctly decays to an asymptotic
value of=0.33, which is consistent with〈P2〉2 ) 0.3, thus
confirming the nematic nature of the condensed phase at
lower temperature. Theg(r) functions for the atomistic
model25,26(reported with dashed lines) show a different short-
range structure with respect to the hybrid model results. This
is rather surprising since both models were fitted on the same
FRM PES, and they show (see Figure 4) a very similar
behavior, at least on the investigated configurations. Indeed,
this extreme sensibility of the simulated properties of
complex materials to the details of the molecular interactions
reinforces the need of specifically computed intermolecular
PES as well as models potential capable of accurately
reproducing them.

Another important feature to verify is the capability of
the hybrid coarse grained model to reproduce the molecular
flexibility of the 5CB molecules. In Figure 10 are reported
population distributions of the inter-ring dihedral (δ) and the
first dihedral of the aliphatic chain (φ), i.e. defined by the
sites Bz2-Cp1-Cp2-Cp2 (see Figure 1, panel b). With regards
to the former, the average value of the dihedral between the
two gGB disks 32.6° in the nematic phase well agrees with
both experimental56 (37°) and the atomistic model26 results
(31°). The distribution of conformers in the aliphatic chain,
monitored by the dihedralφ, confirms the tendency of the
5CB molecules to assume a more elongated geometry in the

nematic phase, by increasing the trans population with respect
to the gauche one. This is in good agreement with both the
experimental56 findings and the atomistic model results.26

4. Summary and Conclusions
In this paper, coarse grained hybrid potentials, suitable for
computer simulations of advanced materials, have been
parametrized and validated through MC computer simula-
tions. Thanks to the FRM approach,24,25 pair potentials of
large molecular dimers can be ab initio computed, construct-
ing a reference PES on which the hybrid models can be sewn.
In this way, the chemical detail entailed in a quantum
mechanical description can be transferred, up to the chosen
level of accuracy, to rather simple models that can be used
in computer simulations. It may be worth stressing that the
FRM/coarse grained approach can be employed for any large
molecular system. Once obtained, the transferability of the
FRM-derived parameters must be carefully evaluated in each
case: in the polymer field, for instance, simulations of
polyphenylene or similar molecules could be tempted with
the adoption of the many gGB disks model, without the need
of further parametrizations. Conversely, the specificity of the
FRM derived potentials can become a drawback if one tries
to extend the use of the same coarse grained parameters to
similar fragments in very different chemical backgrounds.

In the cases studied, the proposed models have proven
capable of reproducing the computed FRM PES with good
approximation. The augmented tendency of the larger
homologues of thep-n-phenyl series to assume parallel
conformations is well reproduced by the gGB disks as well
as the effect of the ring quadrupoles to shift the minimum
energy toward displaced conformation. With regards to the

Figure 9. Correlation functions in the nematic (300 K, blue
lines) and isotropic (300 K, red lines) phases. MC results of
this work are reported with solid lines, while dashed lined are
used for MD results of ref 26.

Figure 10. Population distribution functions of the inter-ring
dihedral δ (upper panel) and the first chain torsional dihedrals
φ (bottom) in the nematic (blue lines) and isotropic (red lines)
phases.
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5CB molecule, comparison with the more realistic full atomic
potential,25,26 fitted on the same FRM PES, shows that most
of the features of the molecular interaction are correctly
accounted for. In a hierarchy of simulation models, the
realism and computational complexity of such hybrid
potentials lies between a single-site representation3,7 and a
fully atomistic modeling. Notwithstanding their simplicity,
the proposed models have been proven capable of describing
at the semiquantitative level the phase diagram of the
p-oligophenyl series and reproducing to a good level of
accuracy the structure and orientational properties of a typical
mesogen.

Among the formers, three phases (solid, liquid, and gas)
were reproduced at atmospheric pressure for then < 5
members, with a maximum error of=50 K on the phase
transition temperatures. Furthermore, the larger homologue,
namelyp-quinquephenyl, showed an orientationally ordered
phase (P2 = 0.7) at 650 K and 1 atm, not far from the
experimental range (653-688 K47,49). Conversely, the transi-
tion enthalpies are underestimated if compared with the
relative experimental values, with an increasing error for the
larger homologues. This might be due to the lack of
intramolecular flexibility of the hybrid model, which neglects
all internal degrees of freedom except the torsion between
adjacent rings. Indeed, the importance of molecular flex-
ibility on the resulting bulk properties is confirmed by the
increased accuracy of the present results with respect to those
obtained, for the oligophenyl series, by the use of single
site models18,19 or less accurate intramolecular potentials.19

The inclusion (and the accurate description) of “flexible”
internal coordinates appears to be a necessary feature for
an accurate representation of the phase transitions. The hy-
brid model adopted for the 5CB molecule was shown to
be able to reproduce a nematic and an isotropic liquid
phase, in the correct temperature range. Both these phases,
however, showed a short-range structure noticeably dif-
ferent from that shown by the correlation functions ob-
tained26 for the more realistic atomistic model. On the
contrary, the internal distribution of the more flexible
torsional angles (as the inter-ring or the chain dihedrals) is
well reproduced and in agreement with both theoretical and
experimental findings.

In conclusion, hybrid potentials turn out to be useful in
modeling very large molecules, where the computational
costs do not allow more complex functions. For example,
the recently discover banana molecules,58 which are formed
from several phenyl groups, connected by benzoate linkages,
could be a relevant test case for the capabilities of the
proposed models.
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Abstract: The thermostat introduced recently by Stoyanov and Groot (J. Chem. Phys. 2005,

122, 114112) is analyzed for inhomogeneous systems. This thermostat has one global feature,

because the mean temperature used to drive the system toward equilibrium is a global average.

The consequence is that the thermostat locally conserves energy rather than temperature. Thus,

local temperature variations can be long-lived, although they do average out by thermal diffusion.

To obtain a faster local temperature equilibration, a truly local thermostat must be introduced.

To conserve momentum and, hence, to simulate hydrodynamic interactions, the thermostat must

be Galilean invariant. Such a local Galilean invariant thermostat is studied here. It is shown

that, by defining a local temperature on each particle, the ensemble is locally isothermal. The

local temperature is obtained from a local square velocity average around each particle.

Simulations on the ideal gas show that this local Nosé-Hoover algorithm has a similar artifact

as dissipative particle dynamics: the ideal gas pair correlation function is slightly distorted. This

is attributed to the fact that the thermostat compensates fluctuations that are natural within a

small cluster of particles. When the cutoff range rc for the square velocity average is increased,

systematic errors decrease proportionally to rc
-3/2; hence, the systematic error can be made

arbitrary small.

1. Introduction
To simulate complex liquids on microsecond time scales and
length scales intermediate between the atomistic scale and
the macroscopic scale, several techniques are available. In
some techniques, an underlying lattice is used like in time-
dependent Ginzburg-Landau theory1,2 and in Lattice Bolt-
zman simulations.3,4 Other techniques are particle-based, like
Dissipative Particle Dynamics (DPD),5-7 Voronoi Dissipative
Particle Dynamics,8 and Stochastic Rotation Dynamics.9 In
a particle-based simulation, the time evolution of a set of
interacting particles is followed by integrating their equations
of motion according to the laws of classical mechanics. When
particles interact by a pairwise potential only, the natural
thermodynamic ensemble is the microcanonicalNVE en-
semble, where energyE is conserved. However, in many
cases, it is desirable that the simulation generates anNVT
ensemble, whereT is the absolute thermodynamic temper-
ature. To this end, a “thermostat” is applied to the system.

The Nose´-Hoover thermostat10,11is a common choice for
canonical molecular dynamic (MD) simulations. The basic
idea behind this is to introduce a new internal degree of
freedom into the Hamiltonian of the systemH, representing
the thermostat coupling. This in turn modifies the equations
of motion and introduces one extra equation for the
thermostat variableR, which has to be integrated together
with the other equations:

where pi is the momentum of particlei with massmi at
position r i, T is the momentary value of the system
temperature as defined above,U(r i) is the potential energy
of the system, andts is the thermostat coupling parameter
(the rise time), which controls energy transfer back and forth
from the thermostat. In the last equation,R acts as an
effective friction parameter. MD simulations, in this case,
are actually performed in a microcanonicalNVE′ ensemble,
with modified HamiltonianH′. Nevertheless, the thermody-* Author e-mail: rob.groot@unilever.com.

mi

dr i

dt
) dpi;

dpi

dt
) -∇iU - Rpi;

dR
dt

) (T - T0)/ts (1)
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namic averages in thisNVE′ ensemble are equivalent to an
average in the canonicalNVT ensemble for the original
HamiltonianH, but with rescaled particle momentum. This
thermostat is global because the momentary value of the
temperature is based on a global definition. Obviously, the
Nosé-Hoover thermostat is non-Galilean invariant, because
all calculations are performed in a reference frame in which
the center of mass of the system is at rest. This is the only
frame where velocity rescaling and particle friction relative
to the coordinate frame preserve total momentum. This
restriction also means that the thermostat is not suitable when
external forces (like external pressure or gravity) are acting
on the system and accelerating the center of mass. The
thermostat effectively brings an additional external friction
force, which means that hydrodynamics is artificial. The
same holds for total angular momentum; if it is nonzero,
the thermostat introduces an external friction torque. Gener-
ally, this thermostat does not conserve local (angular)
momentum. These drawbacks are due to the fact that
effective thermostating forces are noncentral and nonpairwise
additive. These disadvantages are removed in the pairwise
noise and friction thermostat that is implemented in DPD.5-8

In the DPD method, pairwise additive and central forces
are introduced: a dissipative forceF ij

D and a random force
F ij

R, which act together with the conservative force-∇iU.
These forces are tuned in such a manner so that the system
evolution in phase space is governed by the Liouville
equation, so that it obeys the fluctuation-dissipation theo-
rem.6 By construction, the DPD thermostat is local and
Galilean invariant and, therefore, preserves hydrodynamics.
The main disadvantage of DPD is that the resulting stochastic
equations of motion are difficult to integrate self-consis-
tently.12 Self-consistent integration requires several force
calculations per time step, which decreases computational
efficiency. An implementation that is not self-consistent7

(single force calculation per time step) leads to some artifacts.
One of these is that the pair correlation function of the ideal
gas deviates from 1,12 which means that nonphysical interac-
tions are present between particles. The second disadvantage
of DPD is that it simulates fluids with comparable diffusion
coefficientD and kinematic viscosityν ) η/F, resulting in
Schmidt numbers Sc) ν/D close to 1.7 Depending on the
application, this could be a disadvantage, because for most
common liquids the Schmidt number is on the order of 103,
but for diffusion-limited problems, this can be viewed as an
advantage.

A completely different thermostat is the Andersen ther-
mostat,13 which implements a Monte Carlo scheme to sample
the equilibrium velocity distribution. The velocity of a
randomly chosen particle is replaced by a velocity drawn
from a Maxwell distribution. This thermostat is local by
nature, but it does not preserve hydrodynamics. Recently,
Lowe14 proposed a generalization of this as an alternative
to DPD. The idea is to change the relative velocities of pairs
of particles, rather than acting on single particles. To this
end, the relative velocity is projected on the line connecting
their centers, and this value is replaced by a value drawn
from a Maxwell distribution. One might interpret this process
as the exchange of a virtual particle between the two real

particles. It is the momentum carried by these virtual particles
that causes a viscosity increase. By construction, the Lowe-
Andersen thermostat is Galilean invariant, local, and pre-
serves hydrodynamics. The viscosity of the fluid sampled
with this thermostat is linearly proportional to the exchange
frequency, which in turn determines thermostating efficiency.
To have good thermostating, a relatively high exchange
frequency must be used, which in turn leads to very viscous
fluids. In some cases, this can be a disadvantage, because a
low Schmidt number cannot be accessed.

Recently, a thermostat that is able to simulate both at low
and at high Schmidt numbers was proposed by Stoyanov
and Groot.15 This new thermostat also acts on pairs of
particles, but at each time step, a random choice is made
between the Lowe-Andersen thermostat and a local version
of the Nose´-Hoover thermostat. Just as in DPD, a velocity-
dependent pairwise force is introduced

whereψ(r) is smooth smearing function andR is a fixed
coupling parameter. The idea behind this is that particles
will experience a friction force if the temperature is too high,
but they are accelerated when the temperature is too low.
Generally, when the system is close to equilibrium, the force
in eq 2 (nearly) vanishes, so that this thermostat avoids the
problems encountered in DPD to integrate the equations of
motion. There is, however, a subtle point in this formulation
which leads to a nonlocal interaction. This is that the
temperatureT is defined as aglobal average over local
squared velocity differences. The consequence of this is that
the thermostat switches off when the global temperature
equals the temperatureT0 that is aimed for, even if the local
temperature is too high in one part of the system and too
low in another part. We will show below that this situation
may arise in an inhomogeneous system, where the initial
state is not in pressure equilibrium. Because of adiabatic
expansion, one part of the system then cools while the other
part heats. Such an off-equilibrium temperature distribution
may pertain for a relatively long time until heat diffusion
has equilibrated the system spontaneously. To force the
system to the desired temperature throughout the system in
such situations, a truly local thermostat is needed, based on
a local definition of temperature. This will be described
below.

2. Pairwise Nose´-Hoover Thermostat
The basic idea behind the Stoyanov-Groot thermostat is to
combine two thermostats coupled in parallel. The first is a
thermostatsimilar to the Nose´-Hoover thermostat (NHT)10,11

but which is Galilean invariant and acts on pairs of particles,
rather than on single particles. The second is the Lowe-
Andersen thermostat (LAT),14 which is a pairwise analogue
of the Andersen thermostat.13 For each particle pair, a choice
is made between NHT and LAT with probabilityP ) Γδt,
whereδt is the integration time step andΓ is the Lowe-
Andersen exchange frequency. We will concentrate on the
pairwise Nose´-Hoover thermostat here.

The pairwise analogue of the Nose´-Hoover thermostat
is implemented by applying a thermostating force acting on

Fij ) R ψ(rij/rc) (1 - T/T0)[(vi - vj)‚eij]eij/δt (2)
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pairs of particlesi andj within a cutoff distancerc, as in eq
2. The coupling parameterR is constant during the simula-
tion, unlike in the Nose´-Hoover thermostat. The advantage
of this thermostat is that it conserves both total linear and
angular momentum in the system, which is a necessary
condition for restoring proper hydrodynamic behavior. A
similar type of thermostating force was independently
suggested recently by Phares and Srinivasa,16 for implement-
ing molecular internal degrees of freedom in energy-
conserving molecular dynamic simulations. In that imple-
mentation, the local internal temperature of particlesi andj
follows from a differential equation describing heat flow.
In the formulation by Stoyanov and Groot,15 temperature is
a local average of square velocity differences. To guarantee
Galilean invariance, the temperature must be defined in a
comoving frame for each particle. Within this frame, the local
mean square velocity of the neighbors within a cutoff radius
is determined. When the average is taken over all such
determined local mean square velocities, the system tem-
perature is defined as

whereú(r) is a smearing function for the temperature, chosen
such thatú ) 0 for r > 1. The cutoff valuerc in the force
(eq 2) and in the temperature (eq 3) could be different in
principle. The parameterMij appearing in eq 3 is the reduced
massmimj/(mi + mj) of particlesi andj. For particles of equal
mass,Mij ) 1/2. Because at equilibrium the velocities and
particle positions are independent, it is straightforward to
prove that the above temperature definition coincides with
the equilibrium thermodynamic temperature.

The fact that the momentary value of the temperature (eq
3) is calculated on the basis of all particle velocities and
coordinates of the system leads to a global thermostat. As
we will see later on, this subtle global nature of this
thermostat is important for systems far from equilibrium.
Therefore, we also define a truly local momentary temper-
ature as

The thermostating force then can be modified so that it
contains only local particle temperatures; hence

However, in practice, MD simulations are usually performed
with a relatively low particle density. This means that the
local temperature defined through eq 4 is not very efficient
in terms of temperature control, because of a large variance
in the local temperature around its mean value. For such a
local pairwise thermostat, the fluctuations aroundT0 are
typically an order of magnitude larger than that for the

thermostat based on a global temperature, if in both cases
the same smearing function is chosen.15

3. The Global Temperature Problem
Why a global temperature definition does lead to problems
when the thermostatic force of eq 2 is used can be illustrated
by the following example. Let us take a simulation box of
dimensions 30× 10 × 10 rc

3, whererc is the cutoff radius
of the interaction that we shall take as our unit of length.
The left half of this box is filled with 4500 A particles
(leading to a mean densityF ) 3), and the right half of the
box is filled with 1500 B3 trimers. Each trimer is made by
linking three B particles by harmonic springs with spring
constantC ) 4. The A and B particles interact with the soft
potential

We take the repulsionsaAA ) aBB ) 25 andaAB ) 42.
Following Groot and Warren,7 this corresponds to a phase-
separating system withø parameterø ≈ 5. This is such a
low miscibility that no trimers dissolve in the A phase and
only a fractionφ ) 0.2% of the A beads dissolve into the B
phase. This implies that the two phases do not exchange
particles in practice; they only exchange heat and momentum.

Because the trimer liquid lacks entropic degrees of freedom
as compared to the monomer liquid of the same density, the
pressure of a trimer liquid is lower by2/3FkT, whereF is the
monomer density. Consequently, the equilibrium density of
the B phase is higher than that of the A phase. The system
is integrated using the standard velocity Verlet algorithm,
using step sizeδt ) 0.05, which is a safe step size for this
potential. The pairwise Nose´-Hoover thermostat is used,
based on a global temperature definition. When we start the
simulation with equal densities of beads in both halves of
the system, it starts off-equilibrium. In an adiabatic simulation
(the natural ensemble when the thermostat is switched off),
the A phase should cool under expansion, whereas the B
phase should heat up. This is indeed observed to happen in
the simulation. When the overall mean temperature, that is,
the global temperature defined in eq 3, matches the desired
temperatureT0, the thermostat force in eq 2 effectively
vanishes for all particle pairs. Consequently, the thermostat
does not remove any local deviations from the desired
temperature, and such temperature variations can thus persist
for a long time. This is illustrated in Figure 1, where the
temperature is plotted as function of thex coordinate through
the simulation box, for three different evolution times:t )
14τ0, 39τ0, and 114τ0. The temperature profiles are averaged
over 450 time steps around the mean evolution times. Note
that we use the units of length, mass, and energy asrc ) m
) kBT0 ) 1, and thus, we have the unit of timeτ0 )
rc(m/kBT0)1/2 ) 1.

The interpretation of this result is that the trimer phase on
the right-hand side of the system is heated adiabatically early
on in the simulation, and that heat is slowly spreading
afterward. Thus, the temperature variation should follow
Laplace’s law,∂θ/∂t ) Dh∇2θ, whereDh is the heat diffusion

kT )

∑
i>j

ú(rij/rc) Mij(vi - vj)
2

3∑
i > j

ú(rij/rc)

(3)

kTi )

∑
j

ú(rij/rc) Mij(vi - vj)
2

3∑
j

ú(rij/rc)

(4)

Fij ) Rψ(rij/rc) [1 - 1/2(Ti + Tj)/T0][(vi - vj)‚eij]eij/δt (5)

Uij ) { 1/2aij(1 - rij/rc)
2 if rij < rc

0 if rij > rc
(6)
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constant andθ(x,t) ) T(x,t) - T0. For a pure wave mode,
this is solved byθ(x,t) ) θ0 exp(-t/τ) sin(kx), whereτ-1 )
Dhk2. To check this behavior, the local temperature variation
is fitted to a sine function, and the amplitude is plotted as
function of time in Figure 2. This shows that the amplitude
indeed decays as a single exponential. From the decay time
τ ) 42 ( 1, we find a heat diffusion coefficientDh )
L2/4π2τ ) 0.54( 0.01, whereL ) 30 is the system size in
thex direction. This diffusion constant is comparable in size
to the particle diffusion constantD ) 0.36( 0.01 and the
kinematic viscosityν ) 0.26 ( 0.01 for single-particle
systems with repulsion parametera ) 25. Although this
behavior is physically quite reasonable, the problem now is
that thermal equilibration in the system is essentially
governed by heat transfer as far as temperature inhomoge-
neities are concerned. Thus, the response time depends on
the system size asτ ) L2/4π2Dh ≈ L2/21 for the present
repulsion parameters. Hence, if a truly locally isothermal
simulation is desired, the thermostat has to be adapted. This
is described in the next section.

4. Local Nosé -Hoover Thermostat
As mentioned in section 2, a truly local pairwise Nose´-
Hoover thermostat can be constructed on the basis of eqs 4
and 5, but this suffers from the large fluctuations in the local
temperatureTi. To solve this problem, we need to define a
slowly varying variableθi, which is a smoothed average over
the local temperatureTi. Two options are open to obtain

such a slowly varying local temperature: by making a time
average for each individual particle and by making a spatial
average around each particle. The first option makes the
thermostat slower. However, because the pairwise Nose´-
Hoover thermostat based on a global temperature is an order
of magnitude faster than DPDsit restores the correct
temperature within a few MD stepssthere is room to trade
off thermostating speed for accuracy.

A time-averaged particle temperature can be defined
following the update scheme:

which is then substituted in the thermostat force

To test this thermostat, we used the weight functionsψ(r)
) ú(r) ) (1 - r) for r < 1 andψ(r) ) ú(r) ) 0 for r > 1;
3000 particles were simulated in a box of dimensions 10×
10 × 10 rc

3 for the potential given in eq 6, witha ) 25 and
time step δt ) 0.05. Parameterλ in eq 7 is a mixing
parameter that determines the rise time of the thermostatts
∼ 1/λ. This is analogous to the ordinary Nose´-Hoover
thermostat, eq 1. In the actual implementation, the velocity
correction for each particle is stored in an array dvi. The
sum over neighbors is done in the force loop, where for each
pair of neighboring particlesFijδt (from eq 8) is added to
dvi and subtracted from dvj. In the final velocity update step,
dvi is added to the velocity of each particle.

ForR ) 0.3 and 0.5, the deviation of the temperature from
its set value is shown in Figure 3. This shows that the
deviations from the desired temperature are in the third digit.
Moreover, the temperature decreases withλ, for both values
of the thermostat force. This means that the thermostat is
overdamped for too-small rise times and underdamped for
too-large rise times. For a well-chosen value of the mixing
parameter, the system is critically damped, which occurs at
λ ≈ 0.01 forR ) 0.3,λ ≈ 0.025 forR ) 0.4, andλ ≈ 0.04
for R ) 0.5

Obviously, we would like to have critical damping so that
the temperature is exactly the desired value, and we would
like to have a fast response of the thermostat. But these two
requirements are incompatible within this scheme. Moreover,

Figure 1. Temperature profile through the system at time t
) 14, 39, and 114.

Figure 2. Amplitude of the temperature variation as a function
of time. Error bars for the first points are within the size of the
symbols.

Figure 3. Temperature deviation from 1 for two values of
the thermostat force, as a function of the mixing parameter.

θi(t + δt) ) (1 - λ) θi(t) + λTi(t) (7)

Fij ) Rψ(rij/rc) [1 - 1/2(θi + θj)/T0][(vi - vj)‚eij]eij/δt (8)
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we find that the temperature autocorrelation function shows
slowly decaying oscillations. An example is shown in Figure
4, for the parametersR ) 0.4 andλ ) 0.025. To check if
this problem is caused by oversteering, the force amplitude
of the thermostat was lowered toR ) 0.3, and to maintain
the same temperature, the mixing parameter was reduced to
λ ) 0.01. For these parameters, however, the oscillations in
the correlation function do not disappear. To summarize, a
straightforward generalization of the Nose´-Hoover thermo-
stat to a purely local implementation does not lead to
satisfactory results. The thermostat is typically slow and
oscillatory.

To improve the performance of the thermostat, two
scenarios have been studied. First, the local smoothed
temperature on each particle is averaged over that of the
neighboring particles to obtain a wider spatial average

The last term is an average over the local smoothed
temperature of the neighbors of particlei. Mixing the local
mean temperature with the average neighbor temperature has
the advantage that a spatial average is generated iteratively.
However, the influence of parameterµ on the mean tem-
perature and on the temperature autocorrelation function is
quite small. In practical terms, this scheme does not lead to
an improvement over eq 7 for the range 0< µ < 1, and the
correlation time remains large. Therefore, a variation of eq
9 has been studied, where the neighbor temperature is the
measured temperature of the previous time step, rather than
the smoothed temperature variable:

This scheme works very well forR ) 0.4, λ ) 0.05, andµ
) -0.01, that is, for anegatiVe value ofµ. The temperature
thus obtained isT ) 0.999, and the correlation time isτ )
2.1τ0. This is 2.6 times faster than forµ ) 0, which is shown
in Figure 4. For the same parameters, eq 9 leads to the same
temperature, but to a longer correlation time,τ ) 3.7τ0. A

negative value forµ implies that the change in the smoothed
temperature variableθi depends not only on the deviation
of the local temperature from the smoothed temperature but
also on its time derivative. This can, in turn, be interpreted
as the mechanical work acting on a particle, as dTi/dt ≈
2/3〈Mijvij‚dvij/dt〉i ) 1/3〈vij‚f ij〉i. Hence, this thermostat changes
the local temperature by two physical effects: by heat flow
and by mechanical work. A similar mechanical work term
in the temperature update was put forward by Phares and
Srinivasa.16 In practical terms, by adding the second term in
eq 10 with a negative value ofµ, we gain the freedom to
move the temperature up in Figure 3 and obtain the correct
temperature for larger values ofλ and, hence, for a shorter
correlation time.

Does this mean that all problems with this thermostat are
solved? A severe test is to study the ideal gas. For this
system, the diffusion constant should diverge and the pair
correlation should be 1. This is indeed the case with the
Stoyanov-Groot thermostat, which is based on a global
temperature. When a purely local temperature definition is
used, however, this thermostat starts to compensate for the
local temperature fluctuations that are natural within clusters
of small numbers of particles. Just as with the Lowe-
Anderson thermostat, this induces an interaction between the
particles, which destroys their individual conservation of
momentum. Consequently, the mean free path becomes finite
and the diffusion constant no longer diverges. An example
of this is shown in Figure 5, which gives the mean square
displacement for an ideal gas at densitiesF ) 1, 3, and 10
in a box of size 10× 10 × 10, with thermostat parameters
R ) 0.1,λ ) 0.1, andµ ) 0, over 50 000 time steps of size
δt ) 0.05. By fitting this to the solution of the Langevin
equation,15 〈[r(t) - r(0)]2〉/6t ) D[1 + D(e-t/D - 1)/t], where
we have putm ) kT ) 1, the diffusion constant is obtained.
This gives diffusion constantsD ≈ 327,D ≈ 381, andD ≈
400 for the three densities, respectively, that is, large but
finite values.

As a further check, the pair correlation function was
studied. This shows a slight deviation fromg(r) ) 1, as
shown in Figure 6. The deviation is quite small, but this
deviation indicates that the thermostat induces an artificial
conservative force between the particles, just as DPD does.

Figure 4. Temperature autocorrelation for R ) 0.4, averaged
over 105 time steps, for λ ) 0.025 and µ ) 0.0 (full curve)
and for λ ) 0.05 and µ ) -0.01 (dashed curve).

θi(t + δt) ) (1 - λ - µ) θi(t) + λTi(t)

+ µ∑
j

ú(rij) θj(t - δt)/∑
j

ú(rij) (9)

θi(t + δt) ) (1 - λ - µ) θi(t) + λTi(t)

+ µ∑
j

ú(rij) Tj(t - δt)/∑
j

ú(rij) (10)

Figure 5. Mean square displacement for the ideal gas at
density F ) 1 (+), F ) 3 (O), and F ) 10 (b). The dashed
curve is the ballistic result ∆r2/6t ) 1/2t for a divergent diffusion
constant.
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For densityF ) 10, the maximum deviation is less than
0.009, but if for the same thermostat parameters the density
is lowered, the deviations increase. This can be expected,
because the mean number of neighbors of any particle is
proportional to Frc

3. Because the relative noise in the
measured temperature of each particle is inversely propor-
tional to the square root of the number of neighborsN, and
because the deviations in the pair correlation are driven by
these fluctuations, one may expect that the ideal-gas total
correlation function scales as

Hence, for a fixed cutoff radius and variable density, we
expect thatF1/2[g(r) - 1] is independent of the density. A
glance at Figure 6 illustrates that, for a density range varying
over a factor of 10, this scaling roughly holds for larger
values (r > rc/2). This implies that the errors introduced by
the thermostat can be made arbitrarily small by increasing
the cutoff rangerc. In practical terms, a cutoff that contains
some 40 neighbors leads to systematic errors of about 0.5%.

5. Discussion and Conclusions
The thermostat introduced recently by Stoyanov and Groot15

is analyzed for inhomogeneous systems. In this thermostat,
the temperature is obtained as an average over the whole
system, and thus, it was anticipated that this could lead to a
subtle nonlocal interaction.15 This will not destroy hydro-
dynamic behavior, because momentum is locally conserved,
but the consequence of such nonlocality should be investi-
gated to ascertain the method. Here, it is found that, although
the system as a whole is simulated in anNVTensemble, the
Stoyanov-Groot thermostat locally conserves energy rather
than temperature. Consequently, local temperature variations
can be long-lived, although they do average out by thermal
diffusion. To obtain a faster local temperature equilibration,
a truly local thermostat must be introduced. To conserve
momentum and, hence, to simulate hydrodynamic interac-
tions, the thermostat must be Galilean invariant.

Such a local Galilean invariant thermostat is introduced
here. This scheme is very much comparable to Dissipative
Particle Dynamics,5-7 but the main difference is that no
random numbers are used. This implies that the simulation
method is faster than DPD, and because of the close

similarity to DPD, it sheds light on the known artifacts in
the results for the ideal gas. Generally, all thermostats
produce some artifacts, and the choice of method is usually
a tradeoff between the nature of the artifacts and the problem
investigated.

In the present thermostat, a local temperature is defined
on each particle. Thus, a locally isothermal ensemble can
be constructed. The local temperature is obtained from the
local mean-square velocity around each particle. To arrive
at a smoothly varying local temperature, a convolution over
the past square velocities is taken by mixing the actual
measured value with the smoothed temperature by a few
percent. This is very similar to the original Nose´-Hoover
algorithm. For a fast and accurate thermostat, the local
smoothed temperature must be coupled to the actual tem-
perature and its time derivative. This can be done with an
update scheme based on the actual local temperature and
that of the previous time step.

Simulations show that this local Nose´-Hoover algorithm
has a similar artifact as Dissipative Particle Dynamics: the
pair correlation function of the ideal gas is slightly distorted.
This is attributed to the fact that the thermostat compensates
fluctuations that are natural within a small cluster of particles.
Consequently, when the cutoff rangerc for the square
velocity average is increased, systematic errors decrease
proportionally torc

-3/2. In practice, however, the error is on
the order of a few tenths of a percent.

As mentioned above, the choice for a particular thermostat
depends on a tradeoff of requirements. If it suffices to
simulate in the localNVEensemble with a global temperature
control, the Stoyanov-Groot thermostat can be used. One
special feature of this thermostat is that the fluid viscosity
can be given any desired value, by switching between a low-
viscosity local Nose-Hoover thermostat and a high-viscosity
exchange process with probabilityP.15 For P ) 0, the ideal
gas has a divergent diffusion coefficient and zero viscosity,
while for P > 0, it has a finite diffusion coefficient.
Moreover, the temperature deviation from the required
system temperature is at least an order of magnitude smaller
than that for standard DPD, while the equilibrium properties
of the system are very well reproduced. At the same time, it
is computationally more efficient than self-consistent DPD,12

by offering better temperature control and greater flexibility
in terms of adjusting the diffusion coefficient and viscosity.

The same flexibility in simulated fluid viscosity is inherent
in the present Galilean invariant thermostat, which simulates
a truly locally isothermal system, but at the price of a slightly
reduced accuracy in the temperature control. The presented
thermostat can be applied in any conventional particle-based
molecular dynamics simulation, including atomistic force
fields. As a generalization, in a two-phase system, one can
choose three different exchange frequenciesP11, P22, andP12.
Thus, if phases 1 and 2 are mutually insoluble and ifP12 >
P11 g P22, parameterP12 will introduce an excess surface
viscosity of the resulting interface. With an extra surface-
active component in the system, this would open up a new
class of simulations where both bulk and surface viscosities
and diffusion coefficients could be adjusted at will. Finally,
simulation of dynamic intrusion and viscous fingering, as

Figure 6. Total correlation function of the ideal gas at density
F ) 1 (+), F ) 3 (O), and F ) 10 (b).

g(r) - 1 ∝ N-1/2 ∝ rc
-3/2 (11)
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well as spinodal decomposition in fluids of largely different
viscosities, is straightforward.
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Abstract: The difficulty in exploring potential energy surfaces, which are nonconvex, stems

from the presence of many local minima, typically separated by high barriers and often

disconnected in configurational space. We obtain the global minimum on model potential energy

surfaces without sampling any minima a priori. Instead, a different problem is derived, which is

convex and hence easy to solve, but which is guaranteed to either have the same solution or

to be a lower bound to the true solution. A systematic way for improving the latter solutions is

also given. Because many nonconvex problems are projections of higher dimensional convex

problems, Parrilo has recently shown that by obtaining a sum of squares decomposition of the

original problem, which can be subsequently transformed to a semidefinite program, a large

class of nonconvex problems can be solved efficiently. The semidefinite duality formulation also

provides a proof that the global minimum of the energy surface has either been found exactly

or has been bounded from below. It additionally provides physical insight into the problem through

a geometric interpretation. The sum of squares polynomial representation of the potential energy

surface may further reveal information about the nature of the potential energy surface. We

demonstrate the applicability of this approach to low-dimensional potential energy landscapes

and discuss its merits and shortcomings. We further show how to apply it to geometric problems

by obtaining the exact distance of closest approach of anisotropic particles. Efficient molecular

dynamics simulations of mixtures of ellipsoids are illustrated.

Introduction
The thermodynamic and kinetic properties of molecular
assemblies in chemistry, physics, and biology are often linked
to their underlying potential energy surface (PES).3-5 Even
in the simplest cases, exploring potential energy surfaces or
even just important regions becomes computationally de-
manding very rapidly. This is primarily due to the noncon-
vexity of the underlying potential energy surface. A key step
in understanding thermodynamic properties of systems as
diverse as nanoscale clusters, proteins, and lipid membranes
is the identification of the global minimum. Definite proof
typically requires exhaustive sampling of every other mini-
mum in configurational space, a prohibitive task given that

the number of local minima on the surface typically grows
exponentially with the number of particles in the system.3,6

A series of approaches has been proposed to tackle this
problem with various degrees of success. Most stochastic
methods are variations of the Monte Carlo (MC) method with
additional steps introduced to aid barrier crossing between
local minima,7-9 although genetic-based algorithms10,11have
also been used. Deterministic approaches usually derive from
global optimization techniques12-14 or molecular dynamics.15

Methods that deform the potential in order to eliminate local
minima include hypersurface deformation techniques,16 such
as the distance scaling method17 and the very successful MC
basin-hopping method.18

A commonality in most methods is that they require
extensive sampling of the local minima of the potential
energy surface itself prior to finding the global minimum.* Corresponding author e-mail: s.yaliraki@imperial.ac.uk.
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Not only is this process time-consuming, sensitive to initial
conditions, and susceptible to trapping due to high barriers,
it crucially provides no proof that a given point on the PES
is indeed the global minimum other than that it is the lowest
visited to date by the algorithm. It is usually not possible to
evaluate how close such a minimum would be to the correct
answer to further guide the search. Furthermore, all methods
rely to a greater or lesser extent on the topology of the PES
being “well behaved” in the sense that the global minimum
is connected to other low lying local minima so that it can
be reached from them.

A complementary strategy is to abandon the detailed
atomic potentials and replace them instead with simpler
models. Such coarse-grained models have a rich history and
have had successes in recent years in the modeling of both
proteins and lipid membranes (for recent reviews, see, for
example, refs 19 and 20). These vary from simple to more
detailed and have been successful in predicting structural
properties as well as thermodynamic phase behavior. The
successes of these models seem to share in common an
accurate representation of the architecture and shape of the
protein and/or lipid. Evidence is accumulating that shows
that once this is well represented many of the properties of
the units and their assemblies can be captured especially
when their mechanical properties play a role.21,22At the same
time, the shape of the units is often anisotropic. This may
be more obvious in lipid molecules, but it turns out to be
often the case in proteins as well. In describing such shapes,
anisotropic coarse-grained potentials have an advantage over
spherical ones in that they capture the interactions properly
without introducing artificial long-range potentials or other
schemes. Anisotropic potentials have a long history,23-27 but
their use has often been hampered by computing the distance
of closest approach correctly and efficiently, a cumbersome
task often solved by brute force. It would hence be desirable
to capture the shape properties correctly and at the same time
have a systematic way to check how close the approximation
is from the true answer, that is to have an estimate of the
error in comparison with the true problem.

Here we outline a different strategy to address such
questions arising from exploring complex (nonconvex)
landscapes. A key idea is that instead of sampling the
underlying nonconvex function, we approach it from below.
A different problem is sought, whosesolutioncoincides with
the solution of the problem we are interested in. For this
approach to be successful, it must be coupled both with a
rigorous and systematic way to find such problems that can
be easily solved and with a way to evaluate how close the
two solutions are. An important mathematical concept that
provides such a link is that many nonconvex problems turn
out to be projections of higher dimensional convex problems.
The great advantage of the latter is that they are efficiently
solved since the local minimum is the global minimum.
Furthermore, they also allow for physical insight into the
system because they possess duality properties. This duality
provides geometric interpretations to the original problem
and allows us to monitor how close the solution of the
derived problem is to the true solution we are seeking. This
is coupled with a systematic way to improve on our nonexact

solutions. The combination of these features makes this
approach appealing because physical insight is revealed about
the system while seeking the solution itself.

The approach, originally developed independently by
Parrilo1,2 and Lasserre28 by drawing together results from
two seemingly unconnected fields, algebraic geometry and
convex optimization, is based on obtaining a sum of squares
(SOS) representation of the original problem. They observed
that many nonconvex problems can be represented by finding
a suitable globally non-negative polynomial function which
is an accurate representation of the nonconvex problem in
Euclidean space in which the problem is originally defined.
Parrilo and Lasserre realized that although this function must
by necessity be nonconvex in the Euclidean space, if well
chosen, it may be convex in the vector space of monomials
which form a basis for the polynomial. The obvious difficulty
is how to choose such a function. Searching the entire space
of globally non-negative polynomials is an impossible task;
however, the space of SOS functions forms a significant
subset of this space. A SOS polynomial is defined as any
polynomial that has the following decomposition

where thepi(x) are polynomials. Suitable subsets of the space
of SOS functions can now be found because this search turns
out to be convex in the coefficient space of the function and
hence efficiently computed using modern convex optimiza-
tion techniques such as semidefinite programming (SDP).
An interesting question is what happens if a suitable SOS
cannot be found. The answer, based upon an important
theorem in algebraic geometry,2 is that a lower bound will
always be produced in a minimization problem of the type
described here, and furthermore this bound can be improved
asymptotically to the exact minimum by increasing the
complexity of the SOS polynomial in a specific and
systematic manner. A central idea is the systematic lifting
of a polynomial function in itscoefficientspace (rather than
its variables) to a SOS function.

Here we apply this approach in two different but important
problems in molecular applications. First, in section II we
give the main concepts of the theory and its relation to
physical observables by showing how to locate the global
minimum in a complex landscape without sampling other
minima in configurational space. As a result, it is independent
of initial conditions and of any requirement that the minimum
be closely related to any other. Either the exact result is found
together with a proof, or a lower bound is obtained. In no
case is the original function deformed. In the Appendix, we
show how to use the method, both in theory and in practice,
to obtain a SOS decomposition. By going through each of
the steps of an example, we show how the method is
implemented and comment on possible choices available.
In section III we apply it to a series of low-dimensional
examples that exemplifies a range of difficulties encountered
in complex landscape problems and which highlight the
different capabilities and versatility of this method. In section
II.B we show how the SOS approach can be further used to

f SOS) ∑
i)1

r

(pi(x))2 g 0 (1)
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elegantly and efficiently solve exactly the problem of distance
of closest approach of anisotropic particles and interactions.
We further show how this can potentially lead to efficient
MD simulations by giving an illustration with ellipsoid
particles. In section IV we discuss the advantages and
shortcomings of the approach and outline future directions.

II. Theory
A. SOS Decompositions.A different approach to locating
the global minimumU* of a multivariable polynomial,
U(xi,...xn) ≡ U of degreed is to look for the largest real
numberλ such thatU - λ remains non-negative everywhere:

If we could find the largestλ for which this is true, then we
would have found the global minimum ofU(x). In this
formulation, this problem is at least as difficult to solve as
the original problem of locating the global minimum.
However, if instead of insisting that the above condition be
satisfied, we ask instead thatU(x) - λ can be decomposed
as a SOS,1,2,29 that is replace eq 2 with the following
condition

then the problem becomes considerably easier to solve. Using
the definition of eq 1 for a SOS function leads to

where pi are polynomial functions of degreed/2 in the
variables ofU.

Being a SOS is a sufficient condition for a function to be
non-negative, although not a necessary one. However, the
set of SOS polynomials forms a large and significant subset
of the set of non-negative polynomials and for reasonably
low degree polynomials they are nearly identical. Therefore
replacing the non-negativity condition of eq 2 with the SOS
condition of eq 4 is a relatively minor relaxation to the
problem. When the optimalλ is not the exact global
minimum of the function, then it is a lower bound on the
global minimum. In fact in a case where only a lower bound
is obtained it is possible to improve that bound asymptotically
toward the global minimum by increasing the dimensionality
and/or degree of the sum of squares relaxation as we will
show later. Indeed, bothλ andf SOSare guaranteed to bound
the original problem from below.29

The next step then becomes obtaining the SOS decom-
position together with the optimalλ that gives the closest
answer to our original problem. The problem becomes
tractable by additionally exploiting the theorem1 that for
globally non-negative polynomial functions, there exists a
positive semidefinite matrix,Q g 0, such that

so that the problem of eq 4 can now be formulated
algebraically.z(x) is the vector of monomials ofU with
degree less than or equal to half the degree ofU and provides

a basis for the SOS function decomposition. Monomials are
the individual terms (without the coefficients) which when
summed together make up a polynomial. Assuming the
largest degree monomial in a polynomial is of even degree
2d, then the monomials which are needed in the basis vector
z are all monomials onx1, ..., xn of degreee d. It can be
seen that the size of the monomial vector is therefore at most
( d
n+d). Since the variables inz are not algebraically inde-

pendent, the matrixQ is not unique and may be positive
semidefinite in some representations but not in others. The
problem now becomes a search for a symmetric positive
semidefinite matrixQ that satisfies the constraints imposed
by eq 5. Note that the original nonconvex problem in the
variables ofU has been mapped to a different problem,
namely obtaining the polynomial coefficients of the SOS
representation, which is equivalent to obtaining the matrix
elements ofQ, while Q remains positive semidefinite andλ
is optimal.

Formally the SOS optimization problem can then be
written as

wherebi are the coefficients of the energy functionU - λ,
and the linear constraints on the components ofQ are to
ensure that the relevant entries inQ sum up to the coefficients
of the polynomial. A concrete example of how theAis appear
is given explicitly in the Appendix.

B. SDP and Duality. It turns out that eq 6 is in the form
of a primal SDP. SDPs30,31 are a class of optimization
problems over positive definite matrices solvable by poly-
nomial time algorithms such as the very successful primal-
dual interior point methods.32,33 Such methods compute the
optimal solution as well as provide certificates (proofs) of
optimality. These certificates are based upon a duality theory
in which two problems are solved simultaneously. The dual
problem solution provides a lower bound on the primal
problem. The difference between the primal and dual
solutions, referred to as the duality gap, proves whether an
exact solution has been found or provides the lower bound
to the solution.

We have shown how the original polynomial minimization
can be recast as the SDP given by eq 6. In the mathematical
community the focus is typically on the primal, with the dual
only used to provide the duality gap. However, as we show
here there is relevant and interesting physics in the dual
problem as well. In our case, the primal problem gives the
lower bound to the global minimum as well as the SOS
decomposition, while the dual provides the location of this
bound in the configurational space.

What has been described so far can be regarded as the
primal form of a SOS optimization, in which we have sought
to bound the global minimum from below and hopefully
exactly. In this primal form the basis has been the monomials
that define the polynomial and the variables in looking for
the sum of squares decomposition have been the coefficients.

U(x) - λ g 0, λ ∈ R ∀x ∈ Rn (2)

U(x) - λ g f SOS, λ ∈ R, ∀x ∈ Rn (3)

U - λ ) ∑
i)1

r

pi
2 g 0 (4)

U(x) - λ ) f SOS) z(x)TQz(x), whereQ g 0 (5)

Max : λ

Subject to :Q g 0 (6)

Tr (AiQ) ) bi ∀i ) 1, ...,m
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There is also a corresponding dual form of SOS optimization.
One way to consider the dual problem is that the basis is
now a vector of coefficients and the variables are the values
of the monomials. The new variables form the matrixY :)
zzT. The effect of this is that if sufficient monomials have
been included inz the convex representation of the function
is obtained and the coordinates of the global minimum can
be found by minimization. Once a solution is obtained, it is
possible to confirm if it is correct by verifying whether it is
of rank 1.

Both the primal and the dual SOS optimization problems
are exactly primal and dual semidefinite programs, respec-
tively, and may be solved using polynomial time primal-
dual interior point methods. This latter problem, although
in higher dimensions, is now convex and amenable to
efficient solutions by SDP. Additionally, the minimization
of the potential is carried out concurrently with the search
for the SOS coefficients. The theoretical elegance of this
methodology coupled with efficient computational techniques
allows for SOS decompositions to be found in polynomial
time (as long as either the degree of the polynomial or the
number of variables are fixed) and additionally provides the
proof that the result is indeed a lower bound to the global
minimum. If the answer is not exact, then a lower and upper
bound on the true solution is known.

C. Convexity and Duality. Duality appears in many
places in chemical physics, albeit without this name. It is
intimately connected with convexity.34 Multidimensional
convex functions obey a range of useful properties, one of
which is that at each point there is at least one hyperplane
tangent to the graph, whose slope is the derivative of that
function. In fact, this plane belongs to a family of planes
that separate the entire configurational space in two parts,
below and above the function. Convexity ensures that they
never cross the function in more than one point. To
demonstrate how duality is related to this, we restrict
ourselves to a one-dimensional parabolaf(x) ) x2, but the
argument is completely general. The separating planes now
become straight lines (Figure 1). There is a set of lines with
slopey which lie below the parabola as long asyx - d e x2

whered is the depth. The line will touch tangentially the
parabola whend ) 1/4y2. Each point on the parabola can be
represented as a line which touches the parabola with
different slopesy. The envelope of these lines reproduces
the parabola itself. In fact, by looking for the maximum slope
y, we obtain simultaneouslyf(x). This is in fact what the
Legendre transforms do in thermodynamics where, for
example, the Gibbs and Helmholtz free energy are coupled
with pressure and volume, respectively. This interpretation
was already recognized by Tisza.35 The dual emphasizes the
geometric interpretation of the problem, and in that sense
its variables can be interpreted as generalized Lagrange
multipliers. It further clarifies how we can obtain information
about a function by lookingoutside and bounding it
externally from below.

D. Different SOS Representations- Beyond Simple
Functions. In many cases what makes finding the global
minimum energy configuration difficult is as much related
to the constraints imposed on the system as to the energy

surface itself. In these cases it is necessary to include such
constraints in the initial statement of the optimization
problem. We shall call these constraints necessary constraints.
There is also another type of constraint that is often used in
optimization, called redundant constraints. These are con-
straints which repeat what is already stated in another
constraint in the problem statement. Although appearing
useless at first glance these play a very important role in
duality theory in that they bring the lower bound produced
by a dual problem closer to the exact solution. By adding
these constraints which appear useless in the primal form of
the problem, additional variables are added in the dual
(lifting) which allows a better bound to be found on the
primal objective function.

Once again the analogy carries to SOS optimization.
Additional constraints which initially may have appeared to
add complexity to the problem allow the formation of
progressively better SOS representations which although
being higher in dimension, form better representations of the
original function when projected back to the original space.
Given a problem

we can recast this problem as the following SOS problem

Figure 1. How convexity and duality are related. A set of
lines with slope y lie below the parabola f(x) ) x2, as long as
yx - d e x2 where d is the depth. The line will touch
tangentially the parabola when d ) 1/4y2. Each point on the
parabola can be represented as a line which touches the
parabola with different slopes y. The envelope of these lines
reproduces the parabola itself. In fact, by looking for the
maximum slope y, we obtain simultaneously f(x). The relation-
ship between convexity and duality appears in many places
in chemical physics. An example of such a relationship are
the Legendre transforms in thermodynamics.

min : U(x)

subject to :gi(x) g 0 i ) 1, ...,m (7)

max : λ

subject to :U(x) - λ + ∑
i)1

m

pi(x)gi(x) g 0 (8)
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wherepi(x) are undetermined SOS polynomials. These SOS
polynomials can be thought of as generalized Lagrange
multipliers in the space of non-negative polynomials. By
fixing an upper bound on their degree we are again presented
with having to solve a semidefinite program. Such repre-
sentations allow for significantly more elaborate sum of
squares relaxations to be found in a systematic manner.
Indeed such liftings can be carried out until an exact solution
has been obtained or the SDP becomes too large for the
computer to solve.

The steps in the methodology are summarized in the
flowchart in Figure 2. In the Appendix we show how the
method works in practice through a simple example.

Results
A. Global Minimum. To demonstrate the SOS approach in
physical applications, we apply it now to model potentials
that highlight the versatility of the method in dealing with
typical aspects of landscapes that make them difficult to
study. Once the problem is formulated theoretically as
described above, we use third party Matlab toolboxes to carry
out the SOS decomposition: SOSTOOLS, a tool for produc-
ing the SOS decompositions of polynomial optimization
problems36 and SeDuMi37 or SDPT3,38 SDP solvers which
use primal-dual interior point methods. Other minimizations
for comparisons were implemented in the Matlab optimiza-
tion toolbox.

1. Multiwell Potential. To demonstrate the method we
apply it first to a potential with many minima whose values
are very close to the global minimum but are separated by
high barriers (see Figure 3). The typical ratio of barrier
height/local minima energy difference is 80. In addition, the
minimum closest in energy to the global minimum is furthest
apart in domain space. This type of poor connectivity
behavior is not uncommon in potential energy surface
problems where a number of nodes on the disconnectivity
graph39 have energy levels that are almost identical.

The SOS approach provides the global minimum which
in this case is proven to be exact from the duality gap and
correctly identifies its location in the coordinate space (Table
1). Additionally, the SOS decomposition we obtained is a
faithful representation of the original function (Figure 3). A
general feature of the SOS optimization, once formulated
theoretically, is that it is carried out once, unlike other
methods which may depend on a good initial guess or on
the location of the initial conditions, and it provides all the
information simultaneously.

We have compared to two other common minimization
approaches: the downhill simplex method40 and the BFGS
quasi-Newton scheme,41 which is used in the basin-hopping
algorithm. Unlike SOS, both methods were applied iteratively
from a grid of starting points spanning the domain space of

Figure 2. Schematic flowchart of a SOS optimization. The
original global energy minimization problem is reformulated
in a series of steps: (1) a polynomial optimization including
any constraints is transformed to (2) a maximization of a real
number λ which will keep the function non-negative. A
sufficient but not necessary condition for this to be true is that
the function is a SOS, so the problem is rewritten as (3). The
constraints can be incorporated as well, and algebraic
geometry guarantees the validity of this equation. The ad-
ditional terms provide a series of hierarchical approximations
to the true solution. (4) A function being an SOS is equivalent
to finding a positive semidefinite matrix Q where z is a vector
of monomials of U. Note that Q relates the coefficients of U
and contains λ. Finding Q is equivalent to the semidefinite
program given in (5), with the primal (left) and dual (right)
problems. Each step is an exact reformulation of the previous
apart from (3) which is guaranteed to give an optimal bound
to the original problem. When expressed in the appropriate
monomial basis the problem of locating the coefficients of Q
becomes convex and hence efficiently solvable. However, the
SOS function (3) is still a nonconvex function in configuration
space and can be a good representation of the original
function.

Figure 3. SOS optimization on a multiwell potential U(-) with
8 minima, the leftmost being the global minimum. The second
minimum, farthest away in domain space, is very close in
value to the global minimum. The global minimum is correctly
identified. The SOS function f SOS(*) is in excellent agreement
with U. Here, U ) 0.01x - 128.1x2 + 2688x4 + -21504x6 +
84480x8 - 180224x10 + 212992x12 - 131072x14 + 32768x16.
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the problem with the grid density being increased until the
global minimum was obtained. To succeed in finding the
global minimum, at least 10 separate runs from starting points
on an evenly spaced grid of points spanning the domain were
required. This is in fact more attempts than the number of
minima in the domain. The point however remains that these
algorithms have no way of establishing that the minimum
that they locate is in fact the global minimum.

We note that there is nothing special about the form of
the potential presented here. We have tried successfully
several multiwell examples with different polynomial rep-
resentations, more asymmetric wells, and separations with
identical success. Interestingly, the method can identify the
global minimum even if the wells are nearly degenerate with
arbitrarily close energy. In fact, a true degeneracy is reflected
in the eigenvalues of the dual solution matrix and can hence
be identified and located in the dual solution matrix. This
can be very useful in locating often missed degenerate
minima by looking at the dual.

The formalism holds for multidimensional problems, and
so a generalization of this problem to higher dimensions
works in the same fashion. The global minimum (U )
-14.036, location) [-0.9798,-0.9798,-0.9798,-0.9798])
is identified among on the order of 4100 densely spaced
minima (Figure 4 a) of the four-dimensional version of the
same potential. At the same time, a 10-dimensional version

with now disconnected minima dispersed in a higher 10-
dimensional space (of the order of 59 000 minima) worked
equally well for uncoupled (Table 1) or coupled variables
(Figure 4b).

2. Golflike Potential. A different set of energy landscapes
exhibit flat regions with deep and narrow wells which
become especially challenging and rapidly intractable for
searching algorithms. The reason is that the flat regions
provide no energy differences that can guide any search.
Exhaustive searching is the only option, which becomes
intractable very rapidly as the domain increases. We were
able to successfully locate the global minimum of a delta
function embedded in a two-dimensional infinite region. Such
an example is shown in Figure 5 where the function is almost
flat everywhere except in two locations where almost
identical delta function wells are present. Note that we have
included the entireR2 domain. The SOS approach correctly
identifies the minimum and its location (Table 1). This is
also true when the higher energy well becomes wider. The
power of this approach comes from the following general
simultaneous reasons: (i) the solution is always approached
from below so the flatness of the function does not enter,
(ii) the minimum is very narrow in configurational space,
however, in the lifted space of the coefficients this is no
longer necessarily true, and (iii) the set of equations linking
the coefficients of the function intersect the cone of positive

Table 1. Summary of SOS Optimization Results for the Multiwell, Müller, and Golflike Potentialsa

1D multiwell 10D multiwell Müller golflike

CPU time (s) 0.65 6840.00 10.06 0.80
lower bound -2.106 [-2.106] -193.685 -146.674 [-146.674] -3.539 [-3.537]
configuration -0.980 see below (*) (-0.557,1.449) (4.994,3.995)
duality gap 3.857E-06 7.56E-04 1.366E-4 0.002
primal 2.105998 193.6848 146.6743 3.537
dual 2.106002 193.6855 146.6745 3.539

a The CPU time in a standard PC in seconds, the lower bound value with the exact global minimum in brackets, the configurational coordinates
of the minimum, the duality gap, and the final values of the primal and dual problem. The 10-dimensional multiwell example was defined as
follows: U ) ∑i)1

10 a1xi + a2xi
2 + a3xi

3 + a4xi
4 + a5xi

5 + a6xi
6 where a1 ) 2, a2 ) 230, a3 ) -28, a4 ) -1000, a5 ) 1, a6 ) 1000 and the global

minimum of -193.685 was located among approximately 59 000 minima at (*)[0.7369, 0.7369, 0.7369, 0.7369, 0.7369, 0.7369, 0.7369, 0.7369,
0.7369, 0.7369].

Figure 4. (a) A 2D projection of a four-dimensional 16th degree polynomial multiwell potential with 4096 minima given by
U(x1, x2, x3, x4) ) ∑i)1

4 a0 + a1xi + a2xi
2 + a3xi

4 + a4xi
6 + a5xi

8 + a6xi
10 + a7xi

12 + a8xi
14 + a9xi

16 where a0 ) 1, a1 ) 0.5, a2 )
-130.1, a3 ) 2688, a4 ) -21504, a5 ) 84480, a6 ) -180224, a7 ) 212992, a8 ) -131072, a9 ) 32768. SOS optimization
sucessfully identified the global minimum of U ) -13.977 to within 0.026 at the point [-0.9792, -0.9792, -0.9792, -0.9792].
(b) A 2D projection of a 10-dimensional 6th degree polynomial multiwell potential given by U(x1, x2, ..., x10) ) ∑i)1

5 a1xi + a2xi
2 +

a3xi
3 + a4xi

4 + a5x5 + a6x6 + ∑i)6
10 b1xi + a2xi

2 + a3xi
3 + a4xi

4 + a5x5 + a6x6 + ∑ i)1,...,9
j)i+1,...,10

r1ijxixj - r2xi
2xj

4 where r1ij and r2ij are

different numbers chose randomly between 0 and 10. The global minimum (-196.36) is located at [-0.7237, 0.7468, 0.7431,
0.7487, -0.7226, 0.7477, 0.7463, 0.7491, 0.7531, -0.7319]. There are 45 different projections onto different pairs of coordinates.
The duality gap is -2.316E - 3.
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definite matrices. The possible solutions are now on the
boundary of this space and no longer on the interior and
hence easy to distinguish near degeneracies even if discon-
nected in configuration space.

3. Mu1 ller Potential. The Müller potential42 is commonly
used43,44 as a nontrivial test for reaction path methods due
to the complexity of its minima structure that leads to a
highly contorted reaction coordinate which requires a sharp
change of direction at the saddle. The potential surface
(Figure 6) contains three minima, with the global minimum
of -146.7 at (-0.558, 1.442)

whereA ) (-200, -100, -170, 15),a ) (-1, -1, -6.5,
0.7), b ) (0, 0, 11, 0.6),c ) (-10, -10, -6.5, 0.7),xi )
(1, 0, -0.5, -1), yi ) (0, 0.5, 1.5, 1). Its domain is
constrained in order to exclude areas where the function is
not well behaved. The SOS approach allows for constraints,
both equality and inequality, to be incorporated on an equal
footing as can be seen in eq 3 of Figure 2. We can take
advantage of this powerful tool here by excluding parts of
space that are not of interest in the formulation of the

problem. The definition of this function includes an expo-
nential so in order to apply the method here we fitted the
function in a least squares sense to a polynomial of degree
16,Uf, which contains 153 monomials, 67 of which are odd.
(The RMS error normalized by the data range was 0.0015
over the points sampled.) This leads to the minimization of
Uf subject to a series of inequality constraints,gi

wheresi are additional SOS functions with unknown coef-
ficients.

The SOS approach succeeded in locating the minimum
which is proven to be exact by the duality gap. It is
interesting to point out that the final SOS decomposition of
the potential is a good representation of the original function
(see Figure 6) which may allow for additional properties of
the function to be explored in different representations. For
example, we were able to correctly locate the elusive saddle
through eigenvector following on the SOS function. If more
faithful representations were sought, a better bound to the
function can be produced by systematically augmenting the
dimension of the basis (eq 3, Figure 2) at higher computa-
tional cost.

B. Geometry: The Distance of Closest Approach of
Anisotropic Coarse-Grained Molecular Units. 1. Formu-
lation. One of the primary challenges in coarse-grained
approaches to modeling of complex systems is to produce
realistic interparticle potentials and, in particular, to incor-
porate the geometry or shape of the coarse-grained particles
into such a representation of the physical system. In the
spherical case this is straightforward as the potential remains
isotropic after coarse graining and the interactions are simply
functions of the interparticle radial distance. In the general
nonspherical case, the interaction can be computed as a force
acting at the points of minimum distance between the
particles and in the direction of the minimum distance vector.
This force can then be resolved into a radial part acting on
the center of mass of the particles and a torque acting about
the center of mass. The principal difficulty with this approach
is how to compute the minimum distance between particles
of an arbitrary shape.25-27

To formalize this we represent two arbitrary geometrical
shapes asA andB in the real spaceRn, and we define the
minimum distance problem as findinga ∈ A andb ∈ B such
that the distance||a - b||2 is a minimum:

Finding the minimum distance of closest approach between
A andB can be formulated as a SOS problem, that is we

Figure 5. Plot of a golflike potential. U is given by (-1/π)
((e1/((x-5)2+(y-4)2+e1

2))+(e2/((x+7)2+(y+6)2+e2
2))), e1 )

0.09, e2 ) 0.1 defined over the entire R2 domain (left). The
area close to the origin (blue circle) is reproduced at greater
magnification on the right. The two minima are U(5, 4) )
-3.5369 (global) and U(-7, 6) ) -3.1832. In this case the
SOS optimization produces a lower bound of U ) -3.539.
The configurational coordinates are obtained correctly to within
numerical accuracy.

Figure 6. Contour plot of the original fitted Müller potential
(a) and its SOS representation (b). The global minimum was
identified correctly. f SOS (b) is the projection to the original
domain space from the lifted space of the SOS function
including the inequality constraints. Much of the original
function is preserved within the first order of eq 3, Figure 2.

U(x, y) )

∑
i)1,...,4

Ai exp[ai(x - xi)
2 + bi(x - xi)(y - yi) + ci(y - yi)

2]

(9)

max : λ

subject to :Uf - ∑
i)1

4

sigi - λ g 0

g1 : x g -1.5g2 : x e 0.7 (10)

g3 : y g -0.5g4 : y e 2.0

min : ||a - b||2
such that :a ∈ A, b ∈ B. (11)
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search for a function such that (see Figure 2, eq 3)

wheresi(a, b) are SOS polynomials andg1(a) g 0, g2(b) g
0 defineA andB, respectively. By “search for a function”
we mean “find the coefficients of” such a function. Note
that other SOS representations of eq 8 may be required
depending on the problem, but we have chosen the most basic
representation to make this introduction as clear as possible.

Finally, in analogy to obtaining the global minimum
described in the previous section, we can rewrite eq 8 as

whereλ is a real number. The two steps of finding the SOS
polynomial and finding its minimum can now be performed
simultaneously by solving a semidefinite program. By using
the duality, we can also obtain the proof if the minimum
distance between the two geometrical shapes has been
obtained.

This SOS approach provides a useful general mathematical
framework for studying interactions between arbitrarily
shaped coarse-grained particles, convex or nonconvex. A
popular shape for anisotropic representations is the ellip-
soid.45-48 In this case, it turns out that the equations presented
above simplify greatly since ellipsoids have a useful matrix
representation, namely as symmetric positive definite ma-
trices whose eigenvalues determine the length of its semiaxes
and eigenvectors give their directions.49

Equation 7 now becomes

wherec1 andc2 are the centers of the ellipsoids, andA and
B are the symmetric positive definite matrices corresponding
to particlesA andB, respectively. The search for a globally
non-negative representation is now trivial since the norm
functions will always be quadratic forms and hence sum of
squares.

2. Implementation to MD. We have obtained the
minimum distance of closest approach exactly within nu-
merical accuracy as confirmed by the duality gaps and
infeasibility information. For an example see Figure 7. We
found this to hold for different orientations and particles of
varying and disparate size and eccentricity. Typical values
reported for the primal and dual objectives were 5.3024e +
04 with a difference in further than the 6 significant figure.
Furthermore, the formulation of eq 10 allowed us to use a
more efficient solver50 since it met the definition of a
“second-order cone program” (SOCP) which is a simpler
subset of semidefinite programs. Another advantage of this
approach is that we can obtain the minimum distances for
all pairs of ellipsoids in any current configuration at once in

a single step (see Figure 8). Here we show only 32 particles
in order to illustrate all the distances at once. Typically, we
calculate the minimum distance between approximately
12 000 pairs which takes of the order of 6 s.

To show that this can be implemented in an MD simula-
tion, we simulate an NVE ensemble of a binary A-B system
of 240 ellipsoids interacting through a Lennard-Jones
potential in a box of dimensions 21σ, 20σ, 16σ. The unit of
length isσ, unit of energy isε11, while the mass of particle
is 1, and the initial temperature is 0.5. Periodic boundary
conditions are applied at the sides of the simulation box.
The ellipsoids have semiaxis lengths of 3.0σ, 0.5σ, 0.5σ.

||a - b||2 - s1(a, b)g1(a) - s2(a, b)g2(b) g 0 (12)

max : λ

such that :||a - b||2 - s1(a, b)g1(a) - s2(a, b)g2(b) -
λ g 0 (13)

min : ||(c1 + a) - (c2 + b)||2

such that :||A-1a||2 e 1 (A) (14)

||B-1b||2 e 1(B)

Figure 7. The exact distance of closest approach (6.355763)
between two ellipsoid particles given by the SOS approach.
Notice that this vector (blue continuous line) differs markedly
both in direction and magnitude from the intercenter vector
(green dashed line). The semiaxes lengths for the ellipsoids
are {8, 1, 1} and {4, 2, 2}, respectively. Their center vectors
are [-4, 0, 3] and [8, 0, 6], respectively. The minimum distance
vectors are [-1.299203, 2.018481, 7.809342] and [4.874321,
1.910192, 6.302155]. The duality gap (-1.18E - 7) verifies
the result. The approach works for arbitrary ellipsoids in any
orientation.

Figure 8. The exact distances of closest approach for all-
to-all pair interactions between the particles in a periodic box.
Here, only 32 particles are considered for illustrative purposes.
The result is obtained at one step.
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Lennard-Jones interactions are calculated based on distance
of closest approach between pairs of ellipsoids using the
following parameters:σij ) 1.0, ε11 ) ε22 ) 1.0, while
ε12 ) 2.0. Two cutoff parameters are employed. The first
(rcutcom ) 9.0) is a center of mass based spherical cutoff
above which distances between ellipsoids are not calculated.
A second (rcutmd ) 4.0) based upon the distance of closest
approach between the two ellipsoids is then applied to this
remaining set. The simulations were run with time step
∆t ) 0.005. Initially the randomizedA/B particles were
arranged in a cuboidal array with the principal semiaxis
uniformly oriented parallel to thex axis. Maxwell-Boltz-
mann distributed linear velocities were assigned, while the
initial angular velocities were zero. The forces and torques
were then calculated following the standard way for rigid
body dynamics. Time integration of the linear velocities was
carried out using a standard leapfrog algorithm, while the
angular velocities were integrated using Omelyan’s algo-
rithm.51 The orientation of the ellipsoids was described using
quaternions to avoid the singularity issue associated with
Euler angles. By step 500 nearly all of the orientation
correlation has disappeared (Figure 9b), while by step 15 900
(Figure 9c) significant regions of demixing have formed.

IV. Discussion
The SOS approach1 is a rigorous and systematic way to
approach complex problems by exploiting both their alge-
braic and geometric properties. We have applied it here to
the identification of the global minimum of model potential
energy surfaces which exemplify features that make this
problem difficult in physical systems of interest such as
narrow and disconnected wells embedded in flat or contorted
regions. We have demonstrated the method on low-
dimensional problems in which it is possible to gain an
understanding of how the method works and how it is
different to other approaches. We have also shown that it
can be used to solve geometric problems such as obtaining
the distance of closest approach of anisotropic coarse-grained
particles. It is clear that no method will outperform all other
methods for all problems, and it may well be that heuristic
approaches may outperform the more formal SOS approach
on a given subset of problems. However, the appeal of the

SOS approach stems from its generality due to its deep
theoretical foundations and efficient computational algo-
rithms.

Another advantage comes from the added physical insight
that can be gained by formulating the problem in this way
where duality holds. An immediate consequence of duality
is the ability to produce a proof when the exact answer has
been reached without sampling or comparing to other
minima, in contrast to almost all other methods. Second, the
geometrical interpretation attached to the dual can lead to
insight into the problem, including the identification of
degeneracies and symmetries. Furthermore, there is freedom
in how to pose a problem, so that constraints (equalities and
inequalities) can be incorporated as variables or new variables
can be introduced which can lead to efficient answers. This
is particularly useful for dealing with more complex poten-
tials that include trigonometric functions and so fitting could
be avoided by introducing new variables. This may extend
the applicability of the method to certain nonpolynomial
functions.

Unlike other methodologies that approximate the functions
either by subtracting or adding extra terms, which is known
to often alter the behavior of the system especially in
multidimensional problems, in this approach the original
function is never deformed nor linearized. Rather, an entirely
different and higher dimensional problem is sought, which
is both convex solvable and whose solution in the space of
the original variables coincides with that of the original
question. Unlike gradient-based and Monte Carlo methods
that use the original function, this approach bounds the
function externallyfrom below. This is one of the reasons
that poorly connected and/or nearly degenerate minima
separated by high barriers do not pose the difficulties
encountered in the usual sense.

As the complexity of problems attempted increases, it is
possible that the exact solution may not be found. In many
cases, a “close enough” answer may be adequate. Here, we
can quantify the gap between our answer and the exact
solution. If the lower bound solution is not adequately close,
then further refinement can be sought by seeking a higher
dimensional monomial basis by introducing SOS functions,
which can be thought here as a generalization of Lagrange
multipliers. Accuracy can be systematically increased at the

Figure 9. Snapshots from an NVE ensemble MD simulation of a mixture of 240 ellipsoids with semiaxes lengths {3.0σ, 0.5σ,
0.5σ} in a box of dimensions {21, 20, 16}. The exact distances of closest approach of all-to-all particles are obtained in one step
through the approach described in the text. There are typically 12 000 interactions per configuration. The simulation is initialized
in a regular cuboidal array of randomly mixed A and B particles (a) (step 1). By step 500 much of the orientation correlation has
disappeared (b), while by step 10 000 (c), a significant region of demixing has formed.

Exploring Model Energy and Geometry Surfaces J. Chem. Theory Comput., Vol. 2, No. 3, 2006583



expense of more computational cost, since there is a proof
of the existence of the exact answer in such liftings to higher
dimensions. In that respect, this method is closer in spirit to
a variational approach but one which is guaranteed to be
optimal and may lead eventually, at least in principle, to the
right answer of the original problem. Unlike other global
approaches, the method allows for insight into the nature of
the PES rather than just providing a number. For example,
having an explicit SOS polynomial representation of the
problem can potentially be useful for studying other proper-
ties of the system besides its global minimum. The method
also allows for exploiting the geometrical properties of the
system which can lead to more efficient ways to simulate
dynamics of coarse-grained systems which are often aniso-
tropic.

A number of challenges remain due to the significant
scaling of the number of the new variables that occurs as a
result of the lifting process which means that, for physical
problems, the current limitations on size of SDPs solvable
using primal-dual interior point methods need to be over-
come. Excluding symmetries and symmetry operations is a
promising way in that direction. This is the focus of ongoing
research.
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Appendix: How To Obtain the Global
Minimum and a SOS Decomposition in
Practice
We describe here in detail the process for obtaining a SOS
decomposition as well as the global minimum of the function
from the SOS decomposition in order to demonstrate how
the method works in practice. Note that the decomposition
and optimization are carried out simultaneously. We choose
a very simple quartic polynomial function to exemplify the
method by showing explicitly all the steps involved:

For the purposes of this example we omit any constraints.
The global minimum (0,0) is straightforward to obtain, but
the decomposition is not immediate by standard techniques.
The emphasis here is in the implementation of the method
in the available software.

1. The first step is to rewrite the problem as a polynomial
optimization problem in the form of eq 1 in the flowchart
of Figure 2, whereU is the function to be minimized subject
to all the constraints:

Although in this example this is straightforward (U is given
above and there are no constraints), in certain cases it may
be the most difficult step in the calculation.

2. The next step is to introduce an additional real variable,
λ ∈ R, such that the minimization problem becomes now a
maximization (eq 2, Figure 2):

Although this appears to be a trivial step, it has important
theoretical consequences as described in the section Theory
and also practical implications. For example, note that the
function to be maximized now is a linear function, while all
the nonlinear parts are in the constraints. There is no effect
on the underlying problem itself, but the benefit is that
solutions to the problem (optimal points) that may have been
on the interior of the domain space are now on the surface.
This makes it possible to find them more efficiently. Our
example now becomes

3. Solving this problem still remains very difficult and
often impossible. However, requiring that 2x4 + 2x3y -
x2y2 + 5y4 - λ is a SOS instead turns out to be easier to
solve. Although not necessarily exact, it often gives a good
solution to the original problem we are interested in. In this
example, this is equivalent to (eq 3, Figure 2)

4. We now show how to obtain the SOS decomposition.
Once we have written our problem in the form above, we
can submit it to the software SOSTOOLS which will do
precisely that. To proceed, we must define the degree of the
SOS basis we want to use. The maximum basis isd where
2d is the maximum degree of the function of interest
including the constraints. (In this example,d ) 2.) We now
write out the entire vector of monomials whose total degree
is less thand

which in our example is

The ordering is not particularly important, but we have
chosen the ordering that allows for the easiest interpretation
of results from SOSTOOLS. If there are symmetry or
physical reasons that exclude certain solutions, then we can
take advantage of that and not include them in the monomial
basis. Additionally, if the problem is of very high dimension,
we can start by looking for an approximate solution with a
reduced basis and subsequently refine the calculation by
increasing the monomials in the basis.

U ) 2x4 + 2x3y - x2y2 + 5y4, x, y ∈ (-∞, ∞)

min : U(x)

subject to :g(x) g 0

h(x) ) 0

max : λ

subject to :U(x) - λ g 0

g(x) g 0

h(x) ) 0

max : λ

subject to : 2x4 + 2x3y - x2y2 + 5y4 - λ g 0

min : -λ

subject to : 2x4 + 2x3y - x2y2 + 5y4 - λ is SOS

z ) [x1, x2, ...,xn, x1
2, ...,xn

2, x1x2, ...,xn-1xn, ...,x1
d...,xn

d]

z ) [1, x, y, x2, xy, y2]
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5. The basis of monomials allows us to construct a matrix
Q. Finding the SOS decomposition is equivalent to finding
a suitable positive semidefinite matrix,Q G 0, such that

This Q matrix is anr × r symmetric matrix in unknown
variablesqij. The problem now becomes (eq 4, Figure 2)

So in this example we want to find the entries ofQ such
that

andQ remains positive semidefinite.
6. Note that the entries ofQ and the coefficients of the

monomials of the function of interest define a set of linear
constraints. In our example, this leads to the following set
of linear equations:

In fact, our original problem can be rewritten as

where theAi are matrices representing the coefficients in
the linear constraints. For example,A10 is

andb10 ) 0. It turns out that the linear objective function to
be minimized, the linear constraints, and the constraintQ G
0 form a statement of a general class of problems, semi-
definite programs, that are solved efficiently and possess
interesting duality properties. If we defineC to be a 6× 6
matrix with zeros everywhere except a-1 in the (1, 1) entry
andb with

then we have the primal form of a semidefinite program1

wherem is the number of constraints. The dual form is easily
formulated as

SOSTools now invokes an SDP solver to obtain the
solution we are interested in. Semidefinite programs are
commonly solved using path following interior point methods
in which the primal and dual formulations are solved
simultaneously. Commonly used solvers include SeDuMi and
SDPT3. Both solvers are indeed variations of the primal-
dual interior point algorithm and will solve this problem very
easily. For small to medium sized problems SeDuMi is
extremely robust indeed, but in larger sparse problems we
found SDPT3 to be more effective at finding solutions. For
this example, we report solutions from SeDuMi. Once the
SDP solver has completed its solution a number of checks
must be made to ensure proper convergence. The checks are
more or less standard for most SDP solvers such as SeDuMi
or SDPT3.

(a) Check that the primal solution is feasible.
(b) Check that the dual solution is feasible.
(c) Check the duality gap.
The duality gap is defined as the difference between the

primal and dual solutions. It must be checked manually, and
in our example the primal solution is-8.1518E - 10,
the dual solution is-6.0227E - 10, and the gap is
-2.1291E - 10. This gives us the proof that we have found
the exact minimum.

7. Upon solving the semidefinite program, a primal and
dual solution matrix are produced. These will allow us to
locate the global minimum and find the SOS decomposition.
In our example, the solution matrices are

From the primal solution matrix we can extract the global
minimum of the function to beλ ) q11 ) 0.000. Interpreta-
tion of the dual solution matrix is obtained by noting that

U - λ ) zTQz

min : -λ

subject to :zTQzg 0

U - λ ) [1xyx2

xy

y2
]T [q11 - λ q12 q13 q14 q15 q16

q12 q22 q23 q24 q25 q26

q13 q23 q33 q34 q35 q36

q14 q24 q34 q44 q45 q46

q15 q25 q35 q45 q55 q56

q16 q26 q36 q46 q56 q66

][1xyx2

xy

y2
]

q11 - λ ) 0, q13 ) 0, 2q16 + q33 ) 0, q36 ) 0, q66 ) 5,

q12 ) 0, q15 ) q23 ) 0, q35 + q26 ) 0, q56 ) 0, 2q14 + q22 ) 0,
q43 + q45 ) 0, 2q46 + q55 ) -1, q24 ) 0, 2q45 ) 2 q44 ) 2

min : - λ

subject to :Tr (Ai, Q) ) bi, ∀i ) 1, ..., 15

Q G 0

[0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

] (11)

b ) [0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0,-1, 0, 2, 2]

min : Tr (C, Q)

subject to :Tr (Ai, Q) ) bi, ∀i ) 1, ...,m,

Q G 0

max : bTy

subject to :C - ∑
i

Aiyi G 0

Primal:

[ 0.0000 0.0000 0.0000-0.0000 -0.0000 -0.0000
0.0000 0.0000 0.0000 0.0000-0.0000 0.0000
0.0000 0.0000 0.0000 0.0000-0.0000 -0.0000

-0.0000 0.0000 0.0000 2.0000 1.0000-1.3214
-0.0000 -0.0000 -0.0000 1.0000 1.6427-0.0000
-0.0000 0.0000-0.0000 -1.3214 -0.0000 5.0000

]
Dual:

[ 1.0000 0.0000-0.0000 0.0000-0.0000 0.0000
0.0000 0.0000-0.0000 -0.0000 -0.0000 0.0000

-0.0000 -0.0000 0.0000-0.0000 0.0000-0.0000
0.0000 -0.0000 -0.0000 0.0000-0.0000 0.0000

-0.0000 -0.0000 0.0000-0.0000 0.0000-0.0000
0.0000 0.0000-0.0000 0.0000-0.0000 0.0000

]
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the dual solution matrix in a sum of squares SDP solution
should correspond to the matrixzzT. Therefore we can
conclude that the first row and the first column are equal to
z provided the first entry inz is 1. Therefore we can read
off the location of the global minimum to be the vector
(x, y) ) (0, 0). It is important to check the rank of the dual
solution matrix which should be 1 if the relaxation is exact.

8. Finding the SOS decomposition: Before we do this it
is worth noting that the primal solution matrix can be divided
into 4 (3 × 3) submatrices and that only one of these is
nonzero. From this we can see that the SOS decomposition
in fact only requires a smaller basis of monomials namely
z ) [x2, xy, y2]. There are in fact ways of identifying such
reductions in basis size, and these will be discussed in a later
publication. To see the SOS decomposition, we must
factorize the matrix, and here we take the Cholesky
factorization of the (3× 3) matrix:

Each row contains a single square within the SOS with each
entry in each row being the coefficient of the corresponding
entry in z. So we can reconstruct the SOS as

The SOS decomposition is not necessarily unique, and other
decompositions may be also be found; however, the global
minimum and location will be unique provided that this is
the case for the energy function being minimized. If the
global minimum is not unique, then this will be evident from
the rank of the dual matrix which will be greater than 1.
Often the nonuniqueness is as a result of a symmetry in the
function which may not be apparent upon initial examination.
Examining the eigenvalues of the dual solution matrix gives
information as to in which degrees of freedom the degenera-
cies lie.
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Abstract: Coarse-graining of chemical structure of macromolecules in the melt is investigated

using extensive molecular dynamics simulation data which are based on a united atom force-

field model of polybutadiene. Systematically increasing the number, n, of the united atoms

approximated by an effective coarse-grained monomer, we study the influence of degree of

coarse-graining on the structure functions such as the segment-segment intermolecular and

intramolecular correlation functions. These results are compared to Monte Carlo simulations of

the corresponding coarse-grained bead-spring model and Chen-Kreglewski potential for chain

molecules. In contrast to the atomistic chemically realistic model of polybutadiene, the bending

and torsional potentials are not included into the coarse-grained models. Nevertheless, for a

range of intermediate values of n a good qualitative agreement between intra- and intermolecular

coarse-grained correlations of the atomistic model and the coarse-grained bead-spring model

is found on large and intermediate length scales, but deviations occur on length scales well

below one nanometer. The structure functions obtained for the Chen-Kreglewski chains exhibit

many artificial features.

1. Introduction
Understanding complex processes in real soft matter systems
such as, e.g., relaxation processes in polymeric systems or
the self-assembly and function of biological membranes is
only possible with physically adequate and computationally
effective models. Concerning different modeling approaches
one can distinguish between microscopic, mesoscopic, and
macroscopic models depending on the length and time scales
of described objects and processes. At microscopic scales,
the elementary degrees of freedom are due to atoms, and
one deals with the intermolecular interactions and the
atomistic structure of matter. Using molecular dynamics
(MD) and Monte Carlo (MC) simulation methods,1-4 one
can obtain many properties, including the structure functions,
which can be directly compared with corresponding experi-

mental data. This microscopic structure in real systems can
be experimentally probed by neutron or X-ray scattering.

The microscopic approaches require force-fields, which
capture the nature of the different interactions. Some
important types of interactions are the van der Waals
(dispersion), polar, and ionic interactions. Accurate inter-
atomic potential functions can be obtained from quantum
chemical ab initio calculations of small molecules, e.g., using
the Gaussian method. The force-field parameters can be also
optimized in an automatic parametrization method5 using
experimental density and heat vaporization data of liquids.
Such interaction potentials obtained for small molecules can
also be used in atomistic simulations of oligomers and
moderately long chains. In all-atom (AA) approaches,4,6,7 for
example, one explicitly describes all atoms in the simulation,
e.g., the carbon atoms with the chemically bonded hydrogen
atoms. However, this approach becomes inefficient for
macromolecules, although it can be successfully applied to
small and moderately large molecules. By ignoring hydrogen

* Corresponding author phone:+49-6131-3924104; e-mail:
yelash@uni-mainz.de.

† Johannes-Gutenberg Universita¨t Mainz.
‡ Georg-August Universita¨t Göttingen.
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atoms in the united atom (UA) approach or by replacing the
quantum mechanical potentials by computationally simpler
functions such as the Lennard-Jones potential one can
achieve an important improvement of the efficiency in
computer simulations, i.e., a speedup of about 2 orders of
magnitude in MD simulations. However, natural biological
macromolecules as well as many polymers of industrial
interest are usually consisting of several thousands up to
some millions of atoms. A simulation of a microscopic UA
model then often would require many more orders of
magnitude of computer time to equilibrate the system than
is available even on the fastest supercomputer. It is therefore
necessary to explore more efficient computational techniques.

A promising approach, which can also increase the
efficiency of simulations substantially and connect the
microscopic and mesoscopic scales, is called “coarse-
graining”.8-21 In this method one starts with a microscopic
description of real molecules and reduces the degree of
freedom, for example, by approximating several primary
chemical units (e.g., carbon groups) by an effective mono-
mer. Formally, a coarse-graining method can be related to
the renormalization group approach for critical phenomena,
in which an original HamiltonianH(x) of the system withx
degrees of freedom has to be replaced by an effective
HamiltonianF(m) with m coarse-grained degrees of free-
dom.9,10 One tries to carry out a mapping11-21 between the
interactions on the atomistic scale and suitable effective
interactions between the effective segments on the meso-
scopic scale, attempting to create as much similarity between
the physical properties of the atomistic model and the coarse-
grained model as possible. Although this approach has had
promising successes, it is clear that fine-scale structural
details are lost, and as a consequence the desired physical
properties of the system can only approximately be described.
The question arises which level of coarse-graining is optimal,
i.e., how many atoms (or united atoms, respectively) along
the backbone of a chain should be combined into an effective
segment. Some answers to this question can be found in the
quoted literature, but they are still incomplete.

Similar approximations as in the coarse-graining method
are used in deriving analytical models, where the details of
atomistic structure of real molecules are usually neglected.
In the first-order thermodynamic perturbation theory
(TPT1),22-25 for example, the theoretical monomer ap-
proximately represents several carbon groups of a real chain,
e.g., alkanes.26 In TPT1, a dimer consisting of two tangent
spheres can model alkanes such as butane, which has four
carbon groups. In a coarse-grained description one can tune
the “resolution” of the model by merging different number
of primary units. In this way it is possible to cover different
physical scales bridging the gap between the micro- and
mesoscopic scales. Hence, the coarse-graining approach is
an extensively developed area of modern science dealing with
molecular modeling.

Recently, the dissipative particle dynamics (DPD) method,
which is a mesoscopic particle-based simulation technique
intensively developed during the past decade,27-30 has been
applied tocis-polybutadiene.31 In contrast to the standard
molecular simulation techniques such as molecular dynamics

and Monte Carlo, the particles in DPD represent a small
amount of fluid which can include a large number of atoms.
The DPD-particles interact via a soft-repulsive potential (a
conservative force in DPD). In this method, however, it is
still a difficult problem to relate the interactions of the DPD-
particles to a microscopic interaction potential (which can
be obtained from the first principles). A further step beyond
DPD modeling of polymers is the soft-ellipsoid approach,32

in which the volume occupied by a chain molecule is
approximated by an ellipsoid.

In this paper, we study the influence of the scale over
which the coarse-graining is performed on the segment-
segment correlation functions and the bond angle distribution
of an atomistic UA model of polybutadiene.33 We compare
these results with Monte Carlo simulations of two coarse-
grained models for chain molecules as an input. Polybuta-
diene has been chosen due to the availability of extensive
molecular dynamic simulations34-37 and experimental data.35,36

Furthermore, a simple chemical structure and its importance
for the chemical industry makes polybutadiene attractive to
study.

2. Modeling Polybutadiene
2.1. United-Atom Model of Polybutadiene. The high-
frequency motions, e.g., the hydrogen atoms vibrations, occur
on very short time and length scales if compared to the
typical scales for the molecular motions. An exact treatment
of such motions can be very costly in computational
simulations on long time scales. In a first step, one can
approximate the entire functional group by one effective atom
located at the position of the carbon atom. This effective
group is then called united atom (UA). For example, each
carbon group of polybutadiene, i.e., a carbon atom with
bonded hydrogen atoms, can be replaced by one effective
atom, which is shown schematically in Figure 1. Using this
united atom model one can extend the investigation to longer
time scales. Furthermore, there is a possibility to refine the
results of the united-atom modeling later by reintroducing
the neglected hydrogen atoms.

We use the united atom force field model of polybutadiene
developed by Smith and Paul33 which is based on the results
of quantum chemical ab initio calculations. This model was

Figure 1. Schematic united atom (UA) model of polybutadi-
ene molecules. The carbon groups of polybutadiene, which
include one carbon atom and up to three hydrogen atoms (CH,
CH2, and endgroup CH3), are approximated by spheres - the
united atoms. The bond lengths between the united atoms
are set to fixed values depending on the type of the bond: r0

) 1.34 Å for CHdCH, r0 ) 1.5 Å for CH-CH2 (R-bond), r0 )
1.53 Å for CH2-CH2 (â-bond). The bending potential (eq 4)
describes the bond angle θ which can harmonically change
near the values 112° and 126° for CH2-CH2-CH and CH2-
CHdCH, respectively. The torsional potentials (eq 5) describe
the cis, gauche, and trans conformations, which can be
distinguished by the torsion angle φ.
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extensively tested in many molecular dynamic simulations
and has been shown to reproduce the experimental data for
dielectric spectroscopy,34 dynamic neutron scattering,35 and
relaxation processes36 in polybutadiene melts very well.

The potential energy of polybutadiene can be written as a
sum of the different contributions

whereasUbond is the bond length potential,Uangle is the
bending energy for the angle between two neighboring bonds,
Utors is the energy of the torsion angles, andULJ is the
Lennard-Jones interaction.

In the polybutadiene model, the bond lengths are rigid,
and the distances between the carbon groups have been set
to r0 ) 1.34, 1.5, and 1.53 Å forCHdCH, CH2-CH, and
CH2-CH2 bonds, respectively (see Table 1).

The potential energy of such bonds can be formally given
by the Dirac’s delta function

where the amplitude prefactorC is used here for dimensional
reasons:δ(r ) has dimension of inverse volume.

The bending contributionUanglecan be given by a harmonic
deviation of the angleθ from an equilibrium angleθ0

whereθ is the angle between three bonded carbon groups.
For computational reasons it is convenient to express the
bending potential eq 3 in terms of cosθ:

For modeling polybutadiene, two bond angles were used:θ
) 2.1973 rad (125.9°) for theCH2-CHdCH-type bonds and
θ ) 1.9487 rad (111.6°) for theCH2-CH2-CH-type bonds.

The rotations around the bonds involve the torsional
potential

where φ is the torsional angle (shown in Figure 5). The
torsional potential is a four-particle potential. One can
distinguish between five types of the chain conformations
in polybutadiene: the cis- and trans-types double bonds
CH2-CHdCH-CH2, the cis- and trans-typesR-bondsCHd
CH-CH2-CH2, and theâ-bondCH-CH2-CH2-CH.

The interactions between the atoms which are arranged
along the backbone of a chain at least four atoms away from

each other or between the atoms of different chains are
modeled via the Lennard-Jones potential:

The pair interaction parameters,εij and σij, which depend
on the type of the interaction between the different carbon
groups, can be found elsewhere33,37 (see also Tables 1-4).

For our purpose we utilize the molecular dynamics
simulation configuration trajectories of polybutadiene at
atmospheric pressure obtained by Krushev37 at temperatures
240 and 353 K, which are well above the glass transition
temperature of polybutadieneTg ≈ 180 K. The simulation
box consisting of 40 chains with 116 united atoms per
molecule has the edge size 47.665 and 49.33 Å, which at
these temperatures yields the polybutadiene density 0.9652
g/cm3 and 0.8676 g/cm3, respectively.

2.2. Coarse-Grained Bead-Spring Description of Po-
lybutadiene. Coarse-grained models have been applied to
different problems such as surfactant and lipid systems,38-45

to study the self-organization of rod-coil molecules,46 sur-
factant oligomers,47 diblock copolymers,48,49 chemically
reacting systems,50 nanoparticles,51 liquid bisphenol A-
polycarbonate,15,16,21and phospholipids.52,53

A widely utilized coarse-grained bead-spring model has
been developed by Kremer and Grest.54 The Lennard-Jones
potential describes the repulsion and dispersion forces

Table 1. Bond Lengths of Polybutadiene

bond type bond length r0 [Å]

CHdCH 1.34
CH-CH2 (R) 1.5
CH2-CH2 (â) 1.53

U ) Ubond+ Uangle+ Utors + ULJ (1)

Ubond(rij) ) Cδ(rij - r0) (2)

Uangle(θ) ) k
2
(θ - θ0)

2 (3)

Uangle(θ) ) k

2sin2θ0

(cosθ - cosθ0)
2 (4)

Utors(φ) )
1

2
∑
n)1

6

kn(1 - cosnφ) (5)

Figure 2. Bead-spring model for chain molecules based on
the Lennard-Jones and FENE potentials. Circles represent
the coarse-grained monomers. Springs represent the bonded
interactions between monomers via the LJ+FENE potential.
Nonbonded monomers interact via the Lennard-Jones poten-
tial. The corresponding potential curves are shown schemati-
cally on the right-hand side.

Figure 3. The Chen and Kreglewski interaction potential.61

The solid circles represent the “softened” segment diameter
σ, at which the molecules repel each other with interaction
energy +3ε. The interaction energy diverges at the hard-core
diameter 0.88σ (dashed circles). The corresponding potential
curve is shown on the right-hand side. For comparison, the
interaction energy in the hard-sphere and square-well models
diverges at diameter σ.

ULJ(rij) ) εij[(σij

rij
)12

- 2(σij

rij
)6] (6)
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between the segments for both the intermolecular and
nonbonded intramolecular interactions:

The interaction range of the Lennard-Jones potential is

infinite. In the simulations, however, it is computationally
effective to reduce the interaction range of the potential,
which does not change the qualitative phase behavior.55 In
the literature one can find different ways how to truncate
the interaction range of the potential. In this work we use a
cutoff at rcutoff ) 2 6x2σ,56,57 which is close to the minimum
of the pair correlation function beyond the second correlation
shell in the dense phase, thus minimizing the error of cutoff.
The potential is also shifted (by the last term in eq 7) in
order to avoid an energy discontinuity at the cutoff distance.

The interactions of the segments bonded along a backbone
are modeled via the FENE potential in addition to the
Lennard-Jones potential. FENE stands for finitely extensible
nonlinear elastic. This model is shown schematically in
Figure 2. In the coarse-grained bead-spring model, the
distance between the bonded segments can change to a
certain extent, e.g., upon variation of the pressure, yielding
an equilibrium distribution of bond lengths for fixed ther-
modynamic par-
ameters. The stretching of the bonds is restricted by a bond-
energy penalty, which diverges at the bond lengthr ) 1.5σ:

With this choice of the constants in the FENE potential the
maxima of the distance distribution for the bonded and
nonbonded monomers in a dense melt occur atr ≈ 0.96σ
andr ≈ 1.1σ, respectively. The parameters of the Lennard-
Jones, bond length and bending potentials can be further
optimized using results of the atomistic simulations and
experimental data to reproduce the observables.58 An opti-
mization of the bond angle parameter can be important to
reproduce, for example, the peaks of the pair correlation
function.59 For modeling flexible macromolecules of poly-
butadiene on the coarse-graining level no bending potential
(which is the coarse-grained analogue of the angular potential
eq 4) is included here, unlike for the modeling of lipids and
surfactants.

This bead-spring model is very well studied and has
already been applied to many different problems including,
recently, the coarse-grained modeling of polymer solu-
tions.56,57,60 For example, it has been shown that phase
behavior predicted by this model for mixtures of carbon
dioxide/hexadecane is in good agreement with experimental
data.

2.3. Chen-Kreglewski Potential for Chain Molecules.
Another coarse-grained model of chain molecules which we
study here is based on the Chen-Kreglewski (CK) poten-
tial.61 This interaction potential is the theoretical basis of
some analytical equations of state such as BACK61 and PC-
SAFT62,63equations. The “softened” repulsion introduced into
the Chen-Kreglevski potential is also used in the SAFT
equation.26 The potential is shown schematically in Figure

Figure 4. Segment-segment correlation functions from
atomistic simulations of polybutadiene at 240 K (solid) and
353 K (dashed) and atmospheric pressure.37 The intramo-
lecular correlations are the segment-segment correlations
along a polymer molecule. The intermolecular correlations are
the correlations of segments which belong to different mol-
ecules. The total radial distribution function is a sum of the
intra- and the intermolecular functions. The sharp (δ-function-
like) peaks at r ) 1.34, 1.5, and 1.53 Å correspond to the
double (CHdCH) and single (CH2-CH and CH2-CH2) bonds
of polybutadiene. The correlation peak at r ≈ 2.53 Å repre-
sents the distribution of the united atoms interacting via the
bending potential (eq 4). Several correlation peaks at 3 Å e

r e 4 Å are due to the torsional cis and trans interactions
(bonding four carbon groups along a backbone).

Figure 5. Coarse-graining of the intramolecular segment-
segment correlation function of polybutadiene (240 K). The
numbers are for the different degrees of the coarse-graining.
A bold curve is the correlation function calculated using the
UA MD data37 (also shown in Figure 4, however, the δ-type
peaks at r ) 1.34 Å, 1.5 Å, 1.53 Å are omitted here).

ULJ(r) ) 4ε[(σr )12
- (σr )6] + 127

4096
ε (7)

Table 2. Bending-Potential Parameters of Polybutadiene

type energy k [K] angle θ0 [rad]

CH2-CH2-CH 57899 1.9487
CH2-CHdCH 45010 2.1973

UFENE(r) ) -33.75ε ln[1 - ( r
1.5σ)2] (8)
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3. It is similar to the square-well potential; however, it has
an additional repulsive step (inverse well):

The height+3ε and the width 0.12σ of the repulsion step
were empirically determined by Chen and Kreglewski in
order to improve the description of the equation of state for
some small molecules, e.g., noble gases and short alkanes.61

Here we study the structure which can be obtained for a
dense melt in computer simulations using the Chen-
Kreglewski potential and compare these results to those from
the coarse-grained bead-spring model and from the atomistic
simulations. For modeling chain molecules using the Chen-
Kreglewski potential, the monomers are connected by rigid
bonds as it is assumed in many analytical theories for the
equations of state.

2.4. Simulation Details.The Monte Carlo simulations of
the coarse-grained bead-spring model and the Chen-
Kreglewski potential are performed using the computer code
which has been developed in the Condensed Matter Theory
Group at the University of Mainz for the Lennard-
Jones+FENE model64 and generalized to different interaction
potentials.65,66 For these potentials we generate chains with
m ) 29 beads per molecule. This number of monomers
represents a 4:1 mapping of an atomistic polymer with 116
united atoms per chain onto the coarse-grained chain
molecules. This mapping ratio has been found to be an
optimal degree of the coarse-graining for polybutadiene,
which we discuss later on in this paper. In the simulations
of the LJ+FENE chains, the simulation cell contains 160
chain molecules. For the CK model we use 40 chains per
cell. Initial configurations of the chain systems are generated
using the configurational bias method.1 After equilibrating
the chains, the MC simulations are performed in anNpT
ensemble, in which in addition to volume change (once per
MC step) we include the local displacement of randomly
chosen monomers (every monomer once per MC step) as
well as “reptation moves”67 where a monomer at one end of
the chain, which is chosen randomly, is cut off and added at
the other end of the same molecule (typically 100 attempts
per MC step).

The choice of the reduced temperature and pressure can
have a significant influence on the local packing of the
monomers in the coarse-grained simulations.68 Unfortunately,
it is not possible to simply utilize the values of the molecular
interaction parameter,ε, from a united atom model for a
coarse-grained one since due to a different representation of
the structure on the length scale of few monomers the energy
scales of these modeling approaches can be different by 1
order of magnitude: In the atomistic model, the monomers
are bonded at distancer0 ≈ 1.5 Å overlapping strongly and
forming a kind of flexible tube of the diameter≈4.5 Å. In
the coarse-grained model, a bead accounts for all possible
interactions of approximated united atoms with other ones;
therefore, the interaction energy of a bead is an average
interaction energy, which is very different from that in the
united atom model.

The reduced temperature and pressure for the coarse-
grained simulations are obtained using the results of our
recent investigation of phase diagrams of chain molecules65,66

which is based on Monte Carlo simulations, analytical
equations of state, and experimental data of polybutadiene.
The correlation of the experimental data of polybutadiene
at temperatures between 300 and 460 K and pressures from
the atmospheric one to 200 MPa has yielded an estimate of
ε/kB ≈ 269 K andσ ) 3.4 Å, from which one can calculate
reduced temperaturesT* ) 240 K/(ε/kB) ≈ 0.892 andT* )
353 K/(ε/kB) ≈ 1.312 and reduced pressurep* ) 105 Pa‚
(σ3/ε) ≈ 1.06‚10-3. Hence, the coarse-grained systems are
simulated here at the reduced temperaturesT* ≡ kBT/ε )
0.9 and 1.3 and reduced pressurep* ≡ pσ3/ε ) 0.001
yielding very similar thermodynamic states (i.e., a melt at
ambient pressure and temperature) for both the atomistic and
the coarse-grained models. The reduced monomer density,
F* ≡ Fσ3, obtained at these temperatures is 0.893 and 0.781
in LJ+FENE and 0.863 and 0.789 in CK simulations,
respectively.

3. Results and Discussions
3.1. Pair Correlation Functions of Polybutadiene.The
segment-segment correlation functions calculated from the
united atom molecular dynamics simulation data of poly-
butadiene37 are shown in Figure 4. The detailed structure
revealed in this figure represents different kinds of interac-
tions between functional groups of polybutadiene and dif-
ferent energy scales for these interactions, if compared to
the thermal fluctuations at the simulated conditions. At 240
K the structure is more pronounced (compare the height of
the minima and maxima ofg(r)) and more compact (compare
r at the extremes) than at 353 K. It is convenient to separately
investigate the segment-segment correlations for monomers
which belong to the same backbone (intramolecular) and to

Table 3. Torsion-Potential Parameters of Polybutadiene37

type k1 [K] k2 [K] k3 [K] k4 [K] k5 [K] k6 [K]

CH2-CHdCH-CH2 (cis or trans) 0 12083.3 0 0 0 0
CHdCH-CH2-CH2 (R- cis) 432.984 -20.1388 584.025 80.5552 191.319 -60.4164
CHdCH-CH2-CH2 (R- trans) -120.833 -367.533 1198.26 40.2776 45.3123 -30.2082
CH-CH2-CH2-CH (â) -498.435 -312.151 -2034.02 -35.2429 -125.868 -95.6593

Table 4. Lennard-Jones Parameters of Polybutadiene

interaction type energy ε [K] diameter σ [Å]

CH T CH 50.347 3.8
CH T CH2 51.102 4.257
CH2 T CH2 47.125 4.5

UCK(r) ) {+∞ : r < σ - 0.12
+3ε : σ - 0.12< r < σ
-ε : σ < r < λσ
0 : λσ < r

(9)
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different molecules (intermolecular). The total segment-
segment correlation function is the sum of the intra- and
intermolecular functions.

At first, we analyze the intramolecular correlations. The
three peaks at distancesr ) 1.34, 1.5, and 1.53 Å correspond
to the covalent bonds between the carbon groups:CHdCH
(double bonds),CH2-CH (R-bonds), andCH2-CH2 (â-
bonds), respectively. Of course, these sharp peaks are a
somewhat artificial feature of the fixed bond length constraint
used in the simulation. A more realistic description allowing
for a more accurate potential for the length of the covalent
bonds would result in peaks of finite (albeit small) width.
Therefore it is not relevant to keep such features for a coarse-
grained modeling. The fourth peak at distancer ) 2.53 Å is
somewhat broader due to the bending potential eq 4 which
restricts the relative positions of the next-nearest-neighbor
carbon groups along the backbone. Several peaks betweenr
) 3 Å and r ) 4 Å are due to the four-body interactions
which are modeled by the torsional potential eq 5 in the
simulation.37 At large length scales, the intramolecular
correlation function becomes smoother as the monomer
positions become uncorrelated and decays on the length scale
of the molecular extension.

The intermolecular correlation functions of polybutadiene,
which are also shown in Figure 4, exhibit the main peak at
distancer ≈ 5 Å, a wide correlation hole atr e 3 Å caused
by the excluded volume interaction of the Lennard-Jones
potential and typical oscillations for long length scales. The
intermolecular pair correlation function is much smoother
than for the intramolecular one because the nonbonded
interactions described by the Lennard-Jones interactions are
much softer.

3.2. Coarse-Graining of the Atomistic Model.Here we
investigate how the correlation functions develop if several
united atoms of the atomistic model are replaced by one
effective segment. Our aim is to find out the number,n, of
united atoms taken to correspond to one effective segment
which yield an optimal coarse-grained representation within
the bead-spring model, in the sense that similar conditions
are obtained. We denoten as a “degree of coarse-graining”
in the following. Since there is no unique way of mapping
a polymer molecule onto a coarse-grained molecule we
calculate the average positions of centers of mass without
accounting for the molecular masses of different carbon
groups, i.e.,CH, CH2, andCH3 are equivalently treated in
our approach.

Figure 5 shows the intramolecular correlation functions
obtained in the atomistic simulations of polybutadiene at 240
K and atmospheric pressure as well as for different coarse-
graining degrees,n, given by the numbers in the figure. One
can see that different choices forn have different impact on
the structure. For low degree of coarse-graining (e.g.,n ) 2
and 3), additional peaks appear which are not present in the
atomistic structure. At high degree of coarse-graining (n g
8 shown in the inset), the structure is nearly uniform, and
correlations can also be found on length scales shorter than
the size of the coarse-grained segments due to the overlap-
ping of the effective segments.

The intermolecular correlations are less sensitive to the
coarse-graining for small values ofn, in contrast to the
intramolecular correlations. In Figure 6 one can see that the
intermolecular correlation function only slightly changes for
n < 4. At first, the intermolecular correlations in the first
correlation shell (the peak atr ≈ 4.5 Å) increase due to the
loss of local internal structure. For the coarse-graining degree
n ) 4, the intermolecular structure becomes nearly the same
as in the atomistic model. In this approximation, butadiene,
which is the monomer of polybutadiene, is replaced by one
effective monomer. For a larger degree of coarse-graining,
the structure decreases, and we can observe the fusion of
the effective segments (e.g., forn ) 16, g(r) becomes
nonvanishing down tor ) 0).

The total correlations function for the optimal choice,n
) 4, of the coarse-graining degree is shown together with
the atomistic total correlations function in Figure 7. Although,
the correlation functions change with temperature, this effect
is not very strong for polybutadiene at 240 K to 353 K in
contrast to the variation ofn, which has a much stronger
impact on the structure functions. One can conclude that for

Figure 6. Coarse-graining of the intermolecular segment-
segment correlation function of polybutadiene at 240 K. For
n e 8, the correlation function changes quantitatively. For
larger degrees of the coarse-graining (e.g., n > 13), the
correlation peaks and minima disappear and the correlation
hole at r < 3 shrinks. A bold curve is the correlation function
calculated using the UA MD data37 (also shown in Figure 4).

Figure 7. Total segment-segment correlation functions of
polybutadiene for the optimal value n ) 4 of the coarse-
graining degree (thin curve). Bold curves are the correlation
functions calculated using the UA MD data37 shown in Figure
4.
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the pair correlation functions there is an optimal value of
the coarse-graining degree beyond which the intermolecular
structure simplifies drastically and the intermolecular cor-
relations nearly vanish. In this limit the polymer melt is
described as if it would result from an ensemble of
noninteracting ideal random walks, i.e., the well-known Flory
picture of dense polymer melts. On this extremely simplified
level of the description, all effects of chemical detail would
be lost. In the case of polybutadiene studied here this value
of n when correlations are essentially lost is between 8 and
16, which corresponds to approximation of three to four
monomers (butadiene) by one effective segment. Too small
values of coarse-graining degree, however, can produce
unphysical correlations such as curve 3 in Figure 5.

3.3. Structure of LJ+FENE and CK Chains. Discon-
tinuous potentials, e.g., the hard sphere and square-well
potentials, are widely used in statistical theories of molecules.
The reason for using such simplified potentials is, of course,
not a better representation of the physics of molecular
interactions in real substances by such models but is rather
pragmatic and dictated by the complexity of molecular
theories which have to deal, for example, with multiple
integration of the potential functions. Even for simple
potentials these theories frequently can only be solved in
analytical form using several approximations. However, such
a discontinuity of the steplike potential influences the
structure of fluids.

In Figure 8 the intramolecular segment-segment distribu-
tion functions are compared for the Chen-Kreglewski and
the LJ+FENE potentials for chain molecules withm ) 29
monomers/chain at two temperatures. This number of
monomers corresponds to the 4:1 coarse-graining of the
atomistic simulation data of polybutadiene (bold curve in
the figure). The molecular parameters,ε and σ, and the
reduced state parameters,p* ) 0.001 andT* ) 0.9 and 1.3,
are chosen the same for the CK and LJ+FENE potentials.

At two temperatures the overall agreement for the in-
tramolecular correlation functions from the coarse-grained
and atomistic models does not change significantly: Some

change of the structure occurs on length scales betweenr*
) 1 andr* ) 2 (i.e., in the range of the potential attractive
part). However, there are significant qualitative differences
in the correlation functions of the LJ+FENE (thin solid) and
CK (dashed) models. The distribution functions from the
LJ+FENE potential and the UA MD simulations are smooth
and continuous in the whole range of molecular distances,
as one would expect. However, the Chen-Kreglewski model
exhibits steplike jumps in the intramolecular correlations at
several distances: atr* ) 0.88 due to the excluded volume
interactions with a repulsive step, atr* ) 1.5 andr* ) 2
due to the square-well attraction and a strong peak atr* )
1 (the bond length). Such peaks have been already observed
in the atomistic simulations (Figure 4), which correspond to
the nearly unchanged bond lengths between the carbon
groups in real polymers. For the CK chains, however, this
peak is due to the implementation of rigid bonds between
the coarse-grained segments. The LJ+FENE model exhibit
a continuous, smooth maximum at bond distances (r* ≈
0.96). This peak can rather well be compared with the peak
in the coarse-grained structure of polybutadiene (bold curve),
although the last one is lower and broader.

The intermolecular correlation functions for the LJ+FENE
and CK potentials are compared with the 4:1 coarse-graining
of the atomistic data in Figure 9. The CK correlation function
(dashed) shows similar discontinuities as discussed above
for the intramolecular correlation function. The LJ+FENE
correlation function (thin solid) yields a correct qualitative
description of the 4:1 coarse-grained atomistic correlation
function (bold curve in the figure), although the LJ+FENE
structure is more pronounced. At higher temperature, the
agreement improves because the height of the LJ+FENE
main peaks decreases, and it approaches the atomistic one.

3.4. Bond Angle Distributions from Atomistic Model-
ing. The atomistic simulations yield the distribution of the
bond angle with two very pronounced peaks at 112° for the
CH2-CH2-CH groups and 126° for the CH2-CHdCH
groups. This distribution decreases rapidly for other values
of the bond angle. Figure 10 shows this bond angle
distribution calculated from the atomistic simulation data for
polybutadiene at 240 and 353 K and how this distribution
changes if several carbon groups are approximated by an
effective segment (for the 240 K curve). For increasing
degree of coarse-graining, the peaks shift to higher values

Figure 8. Intramolecular segment-segment correlation func-
tions obtained from the Monte Carlo simulations of the
LJ+FENE bead-spring chains (thin solid curve) and the
Chen-Kreglewski chains (dashed curve) for chains with 29
beads/molecule at reduced pressure p* ≡ pσ3/ε ) 0.001 and
reduced temperatures T* ) 0.9 and 1.3. Bold curves are from
the UA MD simulations of polybutadiene37 at 240 and 353 K.
(The bold curve in (a) is the curve 4 in Figure 5; however,
here the distance r* ) r/σ has been scaled by the effective
Lennard-Jones diameter σ ) 4.5 Å.)

Figure 9. Intermolecular pair correlation functions obtained
from the Monte Carlo simulations of the bead-spring chains
(thin solid curves) and Chen-Kreglewski chains (dashed
curves) for the same systems as in Fugure 8. Legends as in
Figure 8.
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of the bond angle and the structure becomes smeared-out.
For a coarse-graining degreen > 4 (i.e., if several butadiene
groups of polybutadiene are approximated by one monomer),
the peaked structure cannot be recognized any more in the
coarse-grained model. The bond angle distribution becomes
nearly uniform in the whole range of bond angle values.
Figure 11 schematically illustrates that different bond angles
can arise in a coarse-grained model even if in an atomistic
model only one bond angle exists. Forn ) 4, which we so
far identified as the best choice for the degree of coarse-
graining, a residual structure atθ ≈ 150° is, however, clearly
visible in the angle distribution function in Figure 10. This
means that on this coarse-graining level an effective bending
potential should be used in simulations trying to describe
polybutadiene, as in case of polyethylene.69

3.5. Bond-Angle Distributions from the LJ+FENE and
CK Models. For simplicity, the coarse-grained models
employed for the investigation here do not include explicitly
a bending interaction potential, which however can be very
important, for example, in the modeling of polymer crystal-

lization.69 As further motivation for this omission we note
that in the first-order thermodynamic perturbation theory of
Wertheim the chain molecules are modeled by flexible chains
of tangent spheres. The stiffness of the molecules is
considered as a second-order contribution to the free energy
and is ignored in that analytical theory of chain molecules.
To estimate the impact of simplifications due to ignoring
the stiffness, the bond angle distribution is investigated here
for polymer molecules.

The bond angle distributions for the coarse-grained
LJ+FENE and Chen-Kreglewski potentials are compared
in Figure 12 with the distribution functions obtained for the
4:1 coarse-graining of the UA MD data of polybutadiene at
two temperatures. The bending interaction in polybutadiene
is explicitly accounted for in the underlying atomistic model.
The LJ+FENE bond angle distribution is nearly homoge-
neous over a wide range of large values of the bond angle.
At θ ≈ 70° (cosθ0 ≈ 0.33), it exhibits a maximum and
vanishes rapidly for smaller bond angles. Hence, one can
speak about stiffness of the LJ+FENE molecules with the
equilibrium angleθ0 ≈ 70°, although no bending potential
has been included in the simulations. From the examination
of the correlation hole and the main peak in Figures 8 and
9 one concludes that these are effects of the excluded volume
interaction, which is explicitly present in the LJ+FENE
potential.

The bond angle distribution for the Chen-Kreglewski
chains exhibits steplike discontinuities similar to those
discussed in detail for the pair correlation functions. It is
worth mentioning here that in contrast to the bead-spring
model the CK angle distribution jumps to zero for small
values of the bond angle (θ ≈ 52°), which is due to the hard
sphere repulsion in the CK potential. For the LJ+FENE
model, this property decreases smoothly. Furthermore, there
is a minimum of the CK distribution function atθ ≈ 76°
(cosθ ≈ 0.24), which yields two equilibrium bond angles at
θ ≈ 96° (cosθ ≈ -0.1) andθ ≈ 62° (cosθ ≈ 0.47). This

Figure 10. Bond-angle distribution of polybutadiene at 240
K (bold) and 353 K (dashed) and atmospheric pressure
obtained using the UA MD simulation data.37 The atomistic
simulations at two temperatures yield qualitatively similar
distributions with two peaks at θ ≈ 112° and θ ≈ 126° for
CH2-CH2-CH and CH2-CHdCH groups, respectively. These
distributions change significantly for the coarse-grained mod-
els (numbered curves). For clarity, only the coarse-grained
results for 240 K are shown. The 4:1 curve for 353 K is shown
in Figure 12.

Figure 11. Schematic examples illustrating the bond angles
which can be found for effective chains in a coarse-grained
model if in the atomistic model only one bond angle is allowed
(for instance, the bond angle 120° between the connected
filled circles). Bold lines connecting the centers of the big,
open circles are bonds in a coarse-grained model.

Figure 12. (a) Bond-angle distributions obtained in the Monte
Carlo simulations of the bead-spring chains with 29 beads/
molecule at reduced temperatures T* ) 0.9 (solid) and T* )
1.3 (dashed) and reduced pressure p* ) 0.001. The 4:1
coarse-grained UA MD simulations of polybutadiene are at
353 K (dashed) and 240 K (solid, this is curve 4 in Figure
10). (b) Same as (a) but for the Chen-Kreglewski potential
instead of the bead-spring potential. Although, no bending
interaction is explicitly included in the coarse-grained LJ+FENE
and CK simulations, the distributions of the bond angles
become very inhomogeneous due to the excluded volume
interactions.
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artifact is caused by the square-well attraction. The LJ+FENE
potential yields a distribution function with one maximum
and, hence, with only one equilibrium bond angle atθ0 ≈
70°.

4. Conclusions
Mapping of an atomistic model of polymers onto a coarse-
grained one is a popular step to tackle the problem of
bridging in structure from the subangstrom scale to meso-
scopic scales, involving at the same time a considerable
speed-up of the simulation codes. However, such a mapping
necessarily is somewhat approximate, some information is
necessarily lost, and the question arises at which level of
coarse-graining one obtains the most reasonable compromise
between atomistic accuracy and simulational efficiency. This
is addressed in the present paper by a systematic comparison
between different levels of coarse-graining.

We conclude that there is a reasonable correspondence,
at least for the static structure functions, between correlations
of LJ+FENE chains and suitable coarse-grained atomistic
models, e.g., the coarse-graining degreen ) 4 for poly-
butadiene, i.e., when 4 united atoms yield one effective
subunit. Further investigations, for example, including
dynamics, would be of great interest in order to complete
the understanding of the coarse-graining effect on different
properties.

In contrast, the Chen-Kreglewski model for chain mol-
ecules yields many artificial features in their correlations
which have no counterpart in reality. As is well-known, the
CK model is widely used mostly as a starting point for the
approximate equation-of-state theories such as PC-SAFT.
However, our recent analysis of this theory has revealed a
variety of artifacts such as artificial gas-gas and liquid-
liquid equilibria causing also systematic deviations between
the equation of state and real data in regime of experimental
interest,65,66 while other theories based on the LJ+FENE
potential exhibit a much better description of chain mol-
ecules. Therefore, we suggest abandoning the discontinuous
potentials such as the CK potential as a starting point for
the description of polymers.
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(41) Düchs, D.; Schmid, F.J. Phys.: Condens. Matter2001, 13,
4853-4862.

(42) Marrink, S. J.; de Vries, A. H.; Mark, A. E.J. Phys. Chem.
B 2004, 108, 750-760.

(43) Nielsen, S. O.; Lopez, C. F.; Moore, P. B.; Shelley, J. C.;
Klein, M. L. J. Phys. Chem. B2003, 107, 13911-13917.

(44) Müller, M.; Katsov, K.; Schick, M.J. Polym. Sci.: Polym.
Phys. B2003, 41, 1441-1450.

(45) Stevens, M. J.J. Chem. Phys.2004, 121, 11942-11948.

(46) Sayar, M.; Stupp, S. I.Macromolecules2001, 34, 7135-
7139.

(47) Maiti, P. K.; Lansac, Y.; Glaser, M. A.; Clark, N. A.; Rouault,
Y. Langmuir2002, 18, 1908-1918.

(48) Srinivas, G.; Shelley, J. C.; Nielsen, S. O.; Discher, D. E.;
Klein, M. L. J. Phys. Chem. B2004, 108, 8153-8160.

(49) Binder, K.; Müller, M. Curr. Opin. Colloid Interface Sci.
2000, 5, 315-323.

(50) Yingling, Y. G.; Garrison, B. J.J. Phys. Chem. B2004, 108,
1815-1821.

(51) Izvekov, S.; Violi, A.; Voth, G. A.J. Phys. Chem. Lett. B
2005, 109, 17019-17024.

(52) Shelley, J. C.; Shelley, M. Y.; Reeder, R. C.; Bandyopadhyay,
S.; Klein, M. L. J. Phys. Chem. B2001, 105, 4464-4470.

(53) Shelley, J. C.; Shelley, M. Y.; Reeder, R. C.; Bandyopadhyay,
S.; Moore, P. B.; Klein, M. L.J. Phys. Chem. B2001, 105,
9785-9792.

(54) Kremer, K.; Grest, G. S.J. Chem. Phys.1990, 92, 5057-
5086.

(55) Smit, B.J. Chem. Phys.1992, 96, 8639-8640.

(56) Binder, K.; Müller, M.; Virnau, P.; MacDowell, L. G.AdV.
Polym. Sci.2005, 173, 1-104.

(57) Virnau, P.; Mu¨ller, M.; MacDowell, L. G.; Binder, K.
Comput. Phys. Comm.2002, 147, 378-381.

(58) Nielsen, S. O.; Lopez, C. F.; Srinivas, G.; Klein, M. L.J.
Chem. Phys.2003, 119, 7043-7049.

(59) Reith, D.; Meyer, H.; Mu¨ller-Plathe, F.Macromolecules
2001, 34, 2335-2345.

(60) Virnau, P.; Mu¨ller, M.; MacDowell, L. G.; Binder, K.J.
Chem. Phys.2004, 121, 2169-2179.

(61) Chen, S. S.; Kreglewski, A.Ber. Bunsen-Ges.1977, 81,
1048-1049.

(62) Gross, J.; Sadowski, G.Ind. Eng. Chem. Res.2001, 40,
1244-1260.

(63) Gross, J.; Sadowski, G.Ind. Eng. Chem. Res.2002, 41,
1084-1093.

(64) Virnau, P. Monte Carlo-Simulationen zum Phasen- und
Keimbildungsverhalten von Polymerlo¨sungen, Dissertation
Thesis, Universita¨t Mainz, 2003.

(65) Yelash, L.; Mu¨ller, M.; Paul, W.; Binder, K.J. Chem. Phys.
2005, 123, 14908-15.

(66) Yelash, L.; Mu¨ller, M.; Paul, W.; Binder, K.Phys. Chem.
Chem. Phys.2005, 7, 3728-3732.

(67) Binder, K. InMonte Carlo and Molecular Dynamics Simula-
tions in Polymer Science; Binder, K., Ed.; Oxford University
Press: New York, 1995.

(68) Heine, D. R.; Grest, G. S.; Curro, J. C.AdV. Polym. Sci.
2005, 173, 209-249.

(69) Vettorel, T.; Meyer, H.J. Chem. Theory Comput.2006, 2,
616-629.

CT0502099

The Case of Polybutadiene J. Chem. Theory Comput., Vol. 2, No. 3, 2006597



Multiscale Modeling of Poly(ethylene
oxide) -Poly(propylene oxide) -Poly(ethylene oxide)
Triblock Copolymer Micelles in Aqueous Solution

Dmitry Bedrov,* Chakravarthy Ayyagari, and Grant D. Smith

Departments of Materials Science & Engineering and Chemical Engineering,
UniVersity of Utah, 122 South Central Campus DriVe, Room 304,

Salt Lake City, Utah 84112

Received December 28, 2005

Abstract: We present a multiscale modeling approach for simulation of poly(ethylene oxide)-
poly(propylene oxide)-poly(ethylene oxide) triblock copolymer micelles in aqueous solution.

We rely on systematic elimination of computationally expensive degrees of freedom yet retain

implicitly their influence on the remaining degrees freedom in a coarser-grained model. Quantum

chemistry (QC) calculations, atomistic explicit solvent (AES) molecular dynamics (MD) simula-

tions, and coarse-grained implicit solvent (CGIS) simulations have been applied to investigate

physical properties of these important self-assembling triblock copolymers. High-level QC

calculations have been used to parametrize classical atomistic force fields that implicitly take

into account and reproduce the important energetic and structural features due to correlations

of electronic degrees of freedom. AES MD simulations utilizing the QC-based force fields have

been used to provide structural and conformational properties of polymers in aqueous solution

which were subsequently used for parametrization of the CGIS model using the Inverted

Boltzmann method. The CGIS simulations were then employed to investigate structural properties

of two PEO-PPO-PEO micelles (EO13-PO30-EO13 and EO99-PO65-EO99 also known as

Pluronic L64 and F127, respectively) in aqueous solution.

I. Introduction
Poly(ethylene oxide) (PEO) and PEO-based copolymers,
including PEO-poly(propylene oxide)-PEO or PEO-
PPO-PPO, triblock copolymers (also known as Pluronics),
are utilized in a wide variety of applications in aqueous
environments including protein crystallization,1,2 modification
of surfaces for biocompatibility,3,4 control of particle ag-
gregation in solutions,5,6 and drug delivery.7 At room and
physiological temperatures PEO of any molecular weight is
soluble in water at any concentration, while PPO has very
limited solubility in water for short oligomers only. In dilute
solutions at room-temperature PEO-PPO-PEO copolymers
can usually dissolve in water. As the temperature or
concentration of polymer increases PEO-PPO-PEO tri-
blocks form isolated micelles (usually spherical in shape but

with other shapes possible depending on the triblock
architecture) with PPO units in the core and PEO chains
forming the corona. Upon further increase in polymer
concentration or temperature, the supramicellar structures
such as disordered gels and crystals as well as cylindrical
and lamellar morphologies can form. The formation of
micelles and supramicellar structures is quite sensitive to
solvent quality. Slight changes in temperature,8 small addition
of cosolvent,9 or change in pH10 can significantly alter the
phase behavior of PEO-PPO-PEO aqueous solutions by
shifting the delicate balance between hydrophilic and hy-
drophobic interactions in the system.

A typical Pluronic chain contains about 50-300 ether
monomers, while a Pluronic micelle formed in aqueous
solution consists of up to 100 chains and has a diameter of
several nanometers.11 Dynamic light scattering measurements
of micellization kinetics for Pluronic chains in water upon* Corresponding author e-mail: bedrov@cluster2.mse.utah.edu.
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increasing solution temperature have shown that formation
of micelles is a complex multistage process.12,13For example,
for L64 Pluronic (EO13-PO30-EO13) the micellization was
found to consist of three processes: (1) The fast process
associated with unimers joining/leaving incipient micelles
with characteristic relaxation time on the order of micro-
seconds. (2) The relaxation of micelle size distribution, a
process during which the initially formed micelles adjust their
size in accordance with equilibrium micelle size distribution
corresponding to imposed thermodynamic conditions. During
this process, the initially formed micelles can collide and
merge into one larger micelle, or a large micelle can split
into smaller micelles, or a micelle can dissolve into unimers
which can then join other micelles. While the nature of
operative mechanism for this process is a topic of ongoing
debate, the characteristic relaxation time for this process for
L64 Pluronic is on the order of milliseconds. (3) A process
observed only for some Pluronics at temperatures much
higher than the critical micellization temperature and has
been associated with clustering of micelles. This process
has operative relaxation times on the order of seconds. It
was also found that all these kinetic processes slow dramati-
cally with increasing molecular weight of the Pluronic
chain.12

Taking into account the slow kinetics of formation and
relatively large dimensions of Pluronic micelles it is im-
practical to expect conventional, brute force atomistic
molecular simulations (molecular dynamics (MD) or Monte
Carlo (MC)) to be able to model these systems. For example,
a simulation of a single L64 micelle consisting of 40 triblock
chains and hydrated by water would involve about 150 000
atoms. For such a large system accessing the operative time
scales for the first (fast) micellization process is unrealistic
even with utilization of massively parallel architectures. To
date the modeling of Pluronics solutions has been limitted
either to self-consistent field lattice models14-16 or mean field
density functional theory approaches (MesoDyn).17-19 In both
cases, an ideal Gaussian chain representation of Pluronic
chains and mean-field approximations were employed, while
thermodynamic parameters (interaction between species)
were either determined semiempirically17,18 or based on
incomplete physical models.14-16 While these mean field
approches allow computationally expedient prediction of
solution morhology and phase behavior, their ability to
incorporate important atomistic scale phenomena (i.e.,
hydrogen bonding, changes in hydration structure, hydro-
phobic interactions, local conformations, solvent clustering,
etc.) operative in these systems is very limitted.

In this paper we discuss an alternative approach to study
Pluronic micelles in aqueous solution using a multiscale
modeling hierachy in which computationally expensive
degrees of freedom are systematically eliminated, while their
contribution/influence on thermodynamics, structure, and
conformations is implicitly retained in the coarser-grained
model. We demonstrate for L64 and F127 Pluronics that our
multiscale modeling approach can be used to efficiently study
Pluronic micelles both at atomistic and coarse-grained levels.

II. Development of the Multiscale Model for
Pluronic Chains in Aqueous Solution
The strategy of our multiscale modeling relies on systematic
elimination of computationally expensive degrees of freedom
while retaining implicitly their influence on the remaining
degrees freedom in the coarser-grained model. For each level
of coarsening we employ the corresponding most accurate
and effective method/simulation technique available to
investigate physical properties of the system at that level.
Then, using the obtained information we parametrize a
coarser model that incorporates all essential physics/
phenomena observed at the finer level. Here, we briefly
outline the general strategy of our multiscale modeling
approach:

(1) We perform high-level quantum chemistry (QC)
calculations on model compounds and their clusters to
determine relative conformational and binding energies. Due
to computational expense of high-level QC calculations this
investigation is limited to short (one-three repeat units)
oligomers and clusters with relatively few molecules (e.g.,
an ether oligomer with two water molecules). Optimal
geometries, relative conformational energies, and cluster
binding energies as a function of molecules separation and
orientation obtained from QC calculations are subsequently
utilized in parametrization of fully atomistic force fields for
classical MD simulations where all subatomic scale degrees
of freedom and correlations are averaged out and represented
implicitly through effective nonbonded van der Waals
interactions and through simplified intramolecular potentials
that describe bond and bend vibrations and dihedral rotations.

(2) Using parametrized QC-based force fields we conduct
extensive atomistic, explicit solvent (AES) MD simulations
of low molecular weight polymeric systems (e.g., PEO and
PPO oligomers in aqueous solutions). These simulations
serve two purposes: they (a) allow us to validate the
developed force fields by direct comparison of thermophysi-
cal, structural, and dynamical properties obtained from MD
simulations with data available from experiments and (b)
provide us with a vast amount of molecular scale structural,
conformational, and dynamic properties/correlations that help
to identify important interactions/correlations which can be
used to parametrize coarse-grained models.

(3) Using conformational and structural properties obtained
from AES MD simulations we parametrize the coarse-
grained, implicit solvent (CGIS) model in which polymer
chain segments or monomers are represented as single force
centers (beads) and solvent is treated implicitly. Langevin
dynamics or Lattice-Boltzmann simulations are then con-
ducted using the CGIS representation of polymer chains.
These simulations are about 3 orders of magnitude compu-
tationally less expensive than simulations with the AES
model, therefore allowing us (a) to simulate realistic size
polymers (e.g. Pluronic chains) and (b) to significantly extend
the accessible time scales (e.g., extend the simulation time
window up to the range where the first process of micelli-
zation can be resolved for some Pluronics).

(4) Finally, equilibrium configurations of polymeric
systems obtained from CGIS simulations can be reverse
mapped back to the AES model, and AES MD simulations
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can be conducted in order to investigate atomistic scale
structural and dynamic properties/correlations in the system.

Below we discuss in detail each step of our multiscale
modeling strategy as applied to Pluronics in aqueous solution.

A. Quantum Chemistry Calculations and Force Field
Fitting. To parametrize the atomistic force field for PEO
and PPO in aqueous solution previously we have conducted
quantum chemistry calculations for 1,2-dimethoxyethane
(DME) and 1,2-dimethoxypropane (DMP) compounds in the
gas phase and studied the conformational energetics and
rotational energy barriers in these oligomers. We also have
calculated complexation energy of these ethers with water
as a function of their separation for two different paths.20

Details of these calculations can be found in refs 20-23.
Molecular geometries, conformational and complexation
energies, and electrostatic fields surrounding the model
molecules determined from QC were then utilized to
parametrize intra- and intermolecular interactions for the
classical MD simulations in which each atom is represented
as a single point force center. Local intramolecular interac-
tions were described by bonds, bends, and dihedrals, while
nonbonded intra- and intermolecular interactions were de-
scribed by Lennard-Jones or Buckingham potentials and
Coulomb interactions. The parameters for bonds, and bends,
were fitted to reproduce optimal geometries of compounds
obtained from QC calculations. Partial atomic charges
were fitted to reproduce the dipole moment of and an
electrostatic field around the molecule obtained from QC
calculations. Nonbonded van der Waals interactions were
then fitted to reproduce QC binding energies for the
molecular clusters (e.g. paths between DME or DMP and
water). Finally, the dihedral potentials for ethers were
parametrized to reproduce relative conformational energies
and rotational barriers obtained from QC calculations for
model compounds such as DME and DMP. The force field
parameters and details regarding force field parametrization
in general and specifically for ether/water systems can be
found in our previous work.20-23 In this study, the parameters
for the Lennard-Jones interactions between PPO atoms and
water were the same as used for PEO and water20 for
identical atom types (e.g. ether oxygen, ethylene carbons,
ethylene hydrogen, etc.), while the distribution of atomic
partial charges for each ether varied due to difference in their
chemical structure.

B. Atomistic, Explicit Solvent MD Simulations. The
force fields described above have been utilized extensively
in MD simulations of PEO and PPO melts24 as well as PEO
in aqueous solution.25,26 Specifically for the purpose of
parametrization of the CGIS model for Pluronic chains in
aqueous solution additional AES MD simulations of PEO
and PPO oligomers in water were performed at atmospheric
pressure and 298 K:

• PEO/water solutions with PEOMw ) 530 (12 repeat
units) at 0.17 and 0.52 weight fraction of PEO

• PPO/water solutions with PPOMw ) 349 (6 repeat units)
at 0.17 and 0.52 weight fraction of PPO

• PPO/PEO/water solutions with one PPOMw ) 349 (6
repeat units) chain and several PEOMw ) 215 (6 repeat
units) chains at 0.52 weight fraction of ether molecules.

All AES MD simulations were performed using the
simulation packageLucretius.27 Each system contained
several ether chains and up to 1000 water molecules
(depending on concentration) represented using the TIP4P
water model.28 Bond lengths have been constrained using
the SHAKE algorithm.29 A reversible multiple time step
integrator30 was employed with a 0.75 fs time step for bends
and torsions, a 1.5 fs time step for nonbonded and the real
part of electrostatic interactions within 6.0 Å, and a 3 fstime
step for nonbonded interactions for separations between 6.0
Å and 10.0 Å as well as for the reciprocal part of the Ewald
summation.31 Systems were equilibrated over 3 ns using an
NPT ensemble, while production runs of 10 ns were
performed in anNVTensemble withV equal to the average
value obtained from theNPT simulations.

These AES MD simulations provided us with structural
and conformational properties of ethers in aqueous solution.
In particular we focused on intermolecular pair correlation
functions between monomer (defined as-CH2-O-CH2-
for EO, and-O-CH(CH3)-CH2- for PO) centers-of-mass
in solution. In Figure 1, we show EO-EO, PO-PO, and
EO-PO intermolecular pair correlation functions,g(r), as
obtained from AES MD simulations for solutions with 0.52
weight fraction of ethers. The difference between EO-EO
and PO-POg(r) at short separations reflects the larger size
of the PO monomer. Particularly striking is the EO-POg(r)
which clearly shows unfavorable interaction of EO mono-
mers with PO monomers. Our initial expectation was that
the EO-POg(r) would lie somewhere between EO-EO and
PO-PO g(r), which is clearly not the case. This indicates
that despite the amphiphilic nature of PEO, PEO prefers to
minimize its interaction with the hydrophobic PPO chain in
the presence of water. This result, while unexpected, appears
to be consistent with density functional theory modeling of
Pluronic solutions where it was found that a relatively large
positiveø (effective Flory-Huggins parameter) is necessary
to describe PEO-PPO interaction in water.17,18 The PEO-
PPOø used in these studies was an order of magnitude larger
than the one estimated from SANS measurements for melts

Figure 1. Intermolecular monomer-monomer pair distribution
functions for ethers in aqueous solution at 298 K and 0.52
weight fraction of ethers as obtained from AES MD (symbols)
and CGIS (lines) simulations.
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of PEO-PPO block copolymers32 and about two times larger
than the PPO-PPOø in water.

In addition to intermolecular correlations we have analyzed
intramolecular correlations for PEO and PPO chains in water.
In Figure 2, we show the distribution of intramolecular
distances between centers-of-mass of two adjacent (1-2
interaction), separated by one (1-3 interaction), and sepa-
rated by two (1-4 interaction) EO or PO monomers. These
distributions characterize local conformations of PEO and
PPO chains in water and need to be accurately reproduced
in the CGIS model. More detailed discussion of local
structure and conformations in ether/water solutions as a
function of temperature and concentration can be found in
our previous work.25

C. Parametrization of the Coarse-Grained, Implicit
Solvent Model. In the CGIS model water is treated as an
implicit viscous solvent, while polymer chains are repre-
sented as bead-spring polymers where each bead represents
a EO or PO monomer. Our initial guess was to represent
EO (-CH2-O-CH2-) and PO (-O-CH(CH3)-CH2-)
monomer as a single spherical force center with the center
located at the center-of-mass of the corresponding monomer
in the atomistic model. While this was the simplest and
intuitively obvious geometric mapping between two models,
we were prepared to use a more complicated mapping (e.g.
representing a monomer with two or three force centers)

between two models. However, as we illustrate below, the
obtained agreement between CGIS and AES models did not
require any additional and more complex structural mapping.
The harmonic bonds and bends that connect ether monomer
centers-of-mass have been introduced, and the strength of
stretching and bending constants has been adjusted to
reproduce the 1-2 and 1-3 intramolecular distributions
obtained from AES MD simulations as illustrated in Figure
2. The force constants, equilibrium bond lengths, and bend
angles in the CGIS model for PEO and PPO are given in
Table 1. To reproduce 1-4 interactions one can either
introduce a dihedral potential or a specific nonbonded
potential that can be different from other nonbonded interac-
tions. In this work, we chose the latter approach, and the
resulting nonbonded potentials for intramolecular EO-EO
and PO-PO 1-4 interactions are shown in Figure 3. We
note that, in principle, the local intramolecular interactions
(1-2, 1-3, and 1-4) can depend on nonbonded intra- and
intermolecular interactions and vice versa, necessitating
iterative fitting of intramolecular and nonbonded interactions.
However, in this work, we found that the description of the
nonlocal (1-5 and greater) nonbonded intramolecular and
nonbonded intermolecular interactions had essentially no
influence on the description of the local (1-2, 1-3, and 1-4)
intramolecular interactions shown in Figure 2.

Figure 2. Intramolecular distributions of distances between
neighboring monomers (1-2), monomers separated by one
monomer (1-3), and monomers separated by two monomers
(1-4) for PEO and PPO chains in water as obtained from
AES (symbols) and CGIS (lines) simulations.

Table 1. Intramolecular Parameters for Ethers Bonds and
Bends in the CGIS Model

Ubond(R) ) 0.5*Kbond*(R0-R)2

bond type Kbond (kcal/mol/Å2) R0 (Å)

EO-EO 30.0 3.20
PO-PO 20.0 3.52
EO-PO 25.0 3.36

Ubend(R) ) 0.5*Kbend*(θ0-θ)2

bend type Kbend (kcal/mol) θ0 (deg)

EO-EO-EO 10.0 128.0
PO-PO-PO 5.0 110.5
PO-EO-EO 7.5 119.25
PO-PO-EO 7.5 119.25

Figure 3. Converged 1-4 nonbonded interactions in the
CGIS model.
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To parametrize nonlocal (1-5 and greater) nonbonded
intramolecular and nonbonded intermolecular interactions we
have employed the Inverted Boltzmann approach33 in which
a numerical potential is determined iteratively based on
deviation of properties obtained from short CGIS simulations
using the current iteration of the potential,Ui(r), and the
desired target properties obtained from AES MD simulations.
The intermolecularg(r) shown in Figure 1 for EO-EO, PO-
PO, and EO-PO monomers obtained from AES MD
simulations were chosen as the target functions,gtarget(r), that
we wish to reproduce from simulations using the CGIS
model. Thesegtarget(r) reflect all important correlations
between ethers in aqueous solution, and therefore the coarse-
grained potentials that reproduce these target functions would
implicitly incorporate important water-induced interactions
between the ethers. The initial guess for all interactions was
a Lennard-Jones type potential as illustrated in Figure 4 for
the EO-EO interaction. Short CGIS simulations using
Langevin Dynamics (LD) were performed for the system
exactly equivalent to the one used in AES MD simulations
(the same number of ether chains and volume of the
simulation cell), and the correspondinggi(r) were determined.
These simulations must be sufficiently long to allow accurate
determination ofgi(r). In our CGIS model all nonbonded
interactions were represented by numerical functions which
are not restricted to any particular analytical form. Based
on deviations betweengi(r) andgtarget(r) we predict the new
numerical potentialUi+1(r) for the i+1 iteration of the CGIS
model using the following expression

wherew(r) ) exp(-r) is a weighting function andkB is the
Boltzmann constant. Then, we repeat the CGIS simulations
to obtain the newgi+1(r) pair correlations and continue this
procedure untilgi(r) reproducesgtarget(r) as accurately as
possible. In Figure 4, we illustrate this process by showing
Ui(r) for EO-EO at several iterations, while in Figure 1 we
show the agreement between the final (8th) iterationgi(r)
obtained from CGIS simulations andgtarget(r) from AES MD

simulations. In the fitting nonbonded interactions we first
fitted the EO-EO and PO-PO interactions to matchgtarget-
(r) from AES MD simulations of solutions containing only
PEO or PPO chains, respectively. Using these potentials for
interactions between beads of the same type the cross-term
EO-PO nonbonded interactions were fitted to reproduce
EO-POgtarget(r) obtained from the PEO/PPO/water system.

In Figure 5 the final ether-ether nonbonded interactions
obtained for the CGIS model are shown. We point out that
all potentials have a nontrivial shape with oscillatory
modulations due to structure of the hydrating water around
the ethers that results in water-induced interactions which
are manifested ingtarget(r) and therefore reflected in the CGIS
potentials. We also note that the EO-EO monomer-
monomer interaction has a reasonably deep minimum at
separations around 4.8 Å indicating an apparent short-range
attraction between EO monomers in water. However, this
minimum is followed by a positive maximum and then by a
very shallow second minimum at larger separations which
results in an overall positive second virial coefficientB )
71 Å3 for EO monomers consistent with the solubility of
PEO in water. The PO-PO potential shows much stronger
attraction resulting in a negative second virial coefficientB
) -56 Å3 consistent with the poor solubility of PPO in
water. Finally, the EO-PO monomer-monomer potential
is repulsive for almost all separations yieldingB ) 193 Å3.

Finally, the monomer friction coefficient for CGIS LD
simulations of Pluronic micelles was set to yield a viscosity
of the effective solvent 100 times smaller than that of water
thereby facilitating equilibration and sampling of the micelle
structure. To establish an exact correspondence between time
scales in the CGIS simulations and real time units a head-
to-head comparison of motion and relaxation in the micelles
should be conducted for CGIS and AES simulations which
are currently underway. In this paper, we report all dynamical
properties as a function of the number of integration steps.
All systems were simulated using integration time step∆t
) (ε/mσ2)1/2 ) 0.003 whereε ) 0.189 kcal/mol is the lowest
energy in the EO-EO nonbonded interaction shown in
Figure 5,m is the mass of the EO monomer, andσ ) 4.213
Å is the size of the EO monomer defined as the smallest

Figure 4. The intermolecular EO-EO nonbonded interaction
in the CGIS model obtained after several iterations using the
Inverted Boltzmann method.

Ui+1(r) ) Ui(r) + w(r)kBTln( gi(r)

gtarget(r)) (1)

Figure 5. Converged nonbonded interactions in the CGIS
model obtained using the Inverted Boltzmann method.
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separation between two EO-EO monomers at which their
nonbonded interaction is zero (see Figure 5).

III. Multiscale Modeling of Pluronic Micelles
A. Coarse-Grained, Implicit Solvent Simulations of Plu-
ronic Micelles. Following parametrization of the CGIS
model the single micelle simulation for L64 (EO13-PO30-
EO13) and F127 (EO99-PO65-EO99) Pluronics has been set
up. For each Pluronic micelle we used a number of chains
within the range of aggregation numbers estimated from
SANS measurements.34-36 Specifically, we usedNagg ) 40
and 30 for L64 and F127, respectively. Initially, randomly
generated configurations of Pluronic chains were simulated
with an external field that imposed an attractive interaction
between the center of the simulation cell and all PO
monomers. This allowed us to quickly assemble a micelle
with all PO monomers within a spherical micelle core and
EO segments extending into the solution making the micelle
corona. Following this forced “micellization” we turned off
the external field and allowed the micelles to equilibrate their
structure during the CGIS simulation. Our primary objective
was to obtain equilibrium configurations of a micelle with a
fixed Nagg, and, therefore, it was necessary to confirm that
the complete decorrelation/relaxation of the micelle structure
occurs on time scales accessible to the CGIS LD simulations.
To characterize relaxation of the micellar structure we have
defined vectors that connect the micelle core center-of-mass
and PEO-PPO junction points for each chain. We then
calculated the time autocorrelation function (ACF)

whereθ is the angle between two intermolecular vectors,
and〈 〉 represents averaging over all possible intermolecular
vector pairs in the micelle. When the ACF, shown in Figure
6, decays to zero, the micelle configuration has completely
decorrelated relative to the time zero orientation of Pluronic

chains in the micelle. Figure 6 illustrates that even for the
relatively long chains of the F127 the micelle relaxation time
is on the order of 106 integration time steps, while simulations
using the CGIS model can be routinely performed over 108-
109 integration steps.

The CGIS simulations carried out over multiple charac-
teristic micellar relaxation times (defined above) provide us
with equilibrium configurations of Pluronic micelles inde-
pendent of how the initial micelle configuration has been
created for a givenNagg. Representative configurations of
L64 and F127 Pluronic micelles obtained from CGIS
simulations are shown in Figure 7. We note that over the
entire simulation for both micelles (108 time steps) none of
the Pluronic chains was able to leave the micelles despite
the fact that the structure of the micelles has relaxed multiple
times. In Figure 8 we show volume fractions of EO and PO
monomers (φEO andφPO) as a function of distance from the
micelle core center-of-mass averaged over the entire CGIS
simulation for both micelles. To calculate these profiles we
used the AES simulations of pure water and ether/water

Figure 6. The average time autocorrelation function for
relaxation of angles formed by two intermolecular vectors
connecting the micelle center-of-mass and PEO-PPO junc-
tion point for each chain as obtained from CGIS LD simula-
tions of L64 and F127 micelles.

ACF(t) )
〈cosθ(t)cosθ(0)〉 - 〈cosθ〉2

〈cos2θ〉 - 〈cosθ〉2
(2)

Figure 7. Representative snapshots of L64 and F127 mi-
celles in the CGIS model.
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solutions to determine specific volumes occupied by a bulk
water molecule (VW)29.8 Å3) and by EO and PO monomers
in aqueous solutions (VEO)62.3 Å3 andVPO)105.7 Å3). Then,
using configurations obtained from CGIS simulations the
local number density of EO and PO monomers (and hence
their volume fractions) have been determined, while the local
volume fraction of water,φw, has been calculated asφw ) 1
- (φEO+φPO) and is also shown in Figure 8. For both micelles
we observe a noticeable fraction of water in the micellar
core. Also shown in Figure 8 are values for the core (R1)
and corona (R2) radii reported for L64 and F127 micelles of
similar sizes by fitting the static structure factors from SANS
measurements using a core-corona form factor model and
hard-sphere approximation for the micelle interactions.35,36

The best way to make a direct comparison between experi-
ments and our CGIS simulations would be to calculate the
static structure factor for micellar solutions at finite concen-
trations and use the same models and fitting protocol as in
interpretation of SANS measurements. These efforts are
currently underway. In addition to volume fraction profiles
the CGIS simulations can provide detailed information on
configuration of polymer chains, fluctuations of micellar
shape, and intermicellar interactions/correlations.

B. Reverse Mapping onto Atomistic, Explicit Solvent
Model. The representative configurations of Pluronic micelle
obtained from CGIS simulations can be reverse mapped back
to the AES model for further, more detailed investigation of

structural, conformational, and short-time dynamical proper-
ties. In the reverse mapping procedure we begin with placing
the atomistic Pluronic chains along the contour of the coarse-
grained chains. To do this, we first generate atomistic
Pluronic chains in random configurations randomly placed
in a simulation cell. Then, for the center-of-mass of each
ether monomer in the atomistic model a corresponding
monomer in the CGIS model with a defined position in space
is assigned. An external field is then applied that forces the
center-of-mass of the atomistic monomer to occupy the same
position as the corresponding monomer in the CGIS model.
A short atomistic, implicit solvent LD simulation in the
presence of these external fields in which all intermolecular
interactions are turned off (phantom chains) allows all
atomistic chains to be placed along the contours of corre-
sponding CGIS chains for a given micelle configuration.
Since chains arrangement in the configuration from the CGIS
simulation already takes into account the excluded volume
interactions between ether monomers, the mapped atomistic
configuration has only minor overlap between atoms. In the
next step, the water molecules are inserted around and inside
the micelle proportionally to the water density profile (shown
in Figure 8). The unphysical overlap between water and ether
atoms is then removed by a subsequent short (several
picoseconds) AES MD simulation with upper bounds on
nonbonded forces. Figure 9 shows a snapshot of the AES
system of an L64 micelle reversed mapped from the
configuration obtained from CGIS simulations. The AES
system contains 30 000 water molecules.

Following the reverse mapping procedure, we are currently
conducting extensive AES MD simulations of single micelles
hydrated by water. Because the AES system is extremely
large the observation times will be limited to a few
nanoseconds which is sufficient for redistribution of water
molecules inside the micelles and accurate sampling of chain
local conformations, characteristics of hydrogen bonding, and

Figure 8. Volume fraction profiles of EO and PO monomers
and water for L64 and F127 micelles obtained from CGIS LD
simulations.

Figure 9. A representative snapshot of the L64 micelle in
water using the AES representation reversed mapped from
the CGIS configuration. Hydrogen atoms are not shown.
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other atomistic scale properties in the core and corona of
the Pluronic micelle. If the micellar structure obtained from
AES MD simulations using the reverse-mapped configuration
significantly changes/differs from predictions using the CGIS
model, the latter will be further revised based on the new
structural and conformational data obtained from AES MD
simulations and the cycle will be repeated.

C. Further Extension of Multiscale Modeling of Plu-
ronic Micelles. The CGIS simulations of preformed indi-
vidual micelles or ensemble of micelles can provide equi-
librium sampling of structural and conformational properties
of those micelles; however, they can hardly access the time
scales for the second process of micellization which estab-
lishes the equilibrium micelle size distribution in the system.
While at some thermodynamic conditions it is possible to
observe the individual events of Pluronic chains leaving/
joining the micelle or micelle breaking up into two smaller
ones, the CGIS simulations are not able to effectively access
the milliseconds time scales which would allow the sufficient
number of those events to adequately sample the equilibrium
micelle size distribution. Therefore, the multiscale modeling
protocol described above has to be further enhanced to
effectively access larger length and longer time scales and
to allow the prediction of the equilibrium distribution of
micelle sizes as a function of Pluronic concentration and
temperature. One of the approaches which we are currently
investigating is the Parallel Tempering method,37 modifica-
tion of which we have recently developed and successfully
applied for equilibration of model self-assembling polymer
networks.38 Other potential extensions of the multiscale
modeling of Pluronic micelles include coupling with single-
chain mean field approach,39,40density functional theory,17,18

and self-consistent theory approaches.15 However, for all
these methods it is important to establish the reliable method
to incorporate implicitly all important atomistic and molec-
ular scale physics and phenomena.
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Abstract: The Iterative Boltzmann Inversion technique (also known as the Inverse Boltzmann

Method) is generalized to polymer blends. We systematically optimize a mesoscale model against

the structure of the blend. A polyisoprene-polystyrene blend is used as an example. Atomistic

simulations of a blend of short chains in the miscible regime under melt conditions are taken as

a starting point. We optimize the mesoscale model and study the onset of phase separation

with increasing chain length. The mesoscale model phase separates at a chain length of 15

monomers where it was optimized, whereas the atomistic model shows only a preference of

chains to aggregate to neighborhoods of like chains. We discuss the differences of the

optimization between a blend and a homopolymer system in detail.

Ι. Introduction
Multiscale modeling of homopolymers has been successfully
applied using a variety of techniques.1-6 One particularly
successful technique is known as the Inverse Boltzmann
Method or Iterative Boltzmann Inversion (IBI).7-11 Reliable
models for a number of polymers have been developed using
this technique, and the corresponding static and dynamic
behaviors have been investigated. For example, recently, we
could show that we can semiquantitatively estimate the
entanglement length of polystyrene using this technique.11

The state of the art in the systematic modeling of polymer
blends is much less satisfactory. The main obstacle is the
lack of so-called “mixing rules”. Unlike in the case of atom-
istic simulations, the equivalence of, say, Lorentz-Berthelot
rules cannot be applied in structurally coarse-grained blends.
It becomes immediately clear that the unlike interactions
between different constituents have to be treated completely
independently from the like interactions because the nature
of these interaction stems from the interplay of the energetics
and the local chain packing. Especially, the latter cannot be
predicted for a mixture even if the behaviors of the pure
components are known. Moreover, the resulting potentials
may be concentration- and temperature-dependent because
any systematically optimized model depends on the ther-

modynamic state against which it was optimized. We recently
showed for a polystyrene model that the reliable temperature
range of an optimized model may indeed be very limited.12

In this light, we elucidate the possibility to optimize a
coarse-grained model for a blend of polyisoprene (PI) and
polystyrene (PS) as a test case. Experimentally, this system
is known to be miscible at short chain lengths,13,14 and de-
mixing is observed at longer chain lengths.14 We are em-
barking on this specific system because there are systemati-
cally coarse-grained models of the pure components avail-
able.8,10 This system has, for short chain lengths, recently
attained some attention due to its interplay of short and large
lengths and time-scale dynamics.13,15,16 Because atomistic
simulations are not able to equilibrate the terminal relaxation
even of miscible short-chain systems, a mesoscale approach
will be helpful for understanding such dynamic questions
as well.

This paper is organized as follows: We first briefly
describe the atomistic simulations on which the mesoscale
modeling is based. Then, we explain in detail how the
mesoscale modeling is performed with a focus on optimizing
interactions between different polymers. The large-scale
simulations are analyzed, and we finish with conclusions.

II. Simulation Investigations
A. Atomistic Simulations of a cis-PI and PS Melt Mix-
ture. Polymer blends ofcis-PI and atactic PS are investigated

* Corresponding author fax: 530-752-1031; e-mail: rfaller@
ucdavis.edu.
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in atomistic detail to obtain the input parameters for the
mesoscale model. Figure 1 shows the structures of the
atomistic monomers ofcis-PI and PS. We choose to simulate
chains of a length of 15 monomers in atomistic detail. These
are clearly oligomers; however, it has been shown that for
such lengths the chains are not completely dominated by end
effects17 such that a reliable structure optimization should
be possible. Longer chains would definitely not equilibrate
in reasonable computer time for an atomistic model. More-
over, experiments suggest that chains of this length should
be miscible, but an effect of the demixing at longer chain
lengths is expected.13 Our atomistic simulations are per-
formed at a variety of concentrations where the number of
PS or PI chains varies between 24 and 72 for the two
constituents. The subsequent optimization is based on a
system with 24 PS and 36 PI chains, corresponding to a blend
of 50 wt %. For the force field of PS, we use the Lennard-
Jones parameters of Jorgensen and Severance.18 The bending
potential from all of the angles, the torsion potentials for all
of the backbone and phenyl ring carbons, and the improper
potentials which keep the phenyl groups planar are taken
from refs 19 and 20. All 1-4 nonbonded interactions of PS
atoms are excluded. The bond lengths and angles for the
atomistic PI simulation and the potentials associated with
the bonds, angles, and improper dihedrals are adapted from
previous simulations.21,22 Atoms connected by any bonding
potentials do not interact by the Lennard-Jones potential.
Further nonbonded interactions are excluded following the
rules addressed in ref 23. All of the bond lengths are
constrained using the LINCS algorithm.24 The simulations
are conducted using molecular dynamics (MD) at 450 K and
a pressure of 101.3 kPa for 20 ns. Constant temperature and
pressure are ensured using the weak coupling method25 with
time constants of 0.2 ps for temperature and 1.0 ps for
pressure. A compressibility of 1.12× 10-6 kPa-1 is applied
to the three Cartesian directions independently. Simulations
are performed using the GROMACS software26 with a time
step of 2 fs and a cutoff for nonbonded interactions at 1.2
nm. Configurations are saved every 2000 steps. A detailed
analysis of the atomistic simulations in view of the local
dynamics will appear elsewhere.27

B. Mapping from Atomistic Scale to Mesoscale.Map-
ping simulation models derives the input parameters of a
mesoscale model from an atomistic simulation. The following
tasks need to be solved during the mapping. First, we need
to determine the location of superatom centers along the
chains. A superatom is the unit containing a number of
atomistic atoms which are grouped together and are repre-
sented by a single interaction center on the larger scale. The
principle of selecting the superatom center is that the
superbonds between superatoms can be represented with a

single harmonic potential.5,6 Moreover, we want the potentials
for superangles and -torsions to be simple or, ideally, to
vanish completely. For PS, we tried several possible positions
on the backbone or the side-group carbons. We calculated
the bond distributions along the polymer chains for all of
them. Only the superatom locations which result in narrow
Gaussian distributions for the bond lengths fulfill the above
requirement. The height-to-width ratio of the bond distribu-
tions defines the harmonic bond strength. The distance
corresponding to the maximum of the distribution defines
the superbond length. The superatom centers of PS were
finally chosen on the backbone carbons connecting to the
phenyl rings.10 The superatom centers of PI are placed on
the centers of the single bonds connecting two neighboring
atomistic monomers.8 The angle distribution and angle
potentials were determined from the atomistic simulation as
well. Three consecutive superatom centers form a superangle.
All angle distributions were normalized and averaged,
excluding the three superatoms closest to either chain end.
The resulting distributions are divided by the sine of the
corresponding angles as Jacobian and normalized.5,6 A
running average of length 3 is additionally applied. The angle
distributions are resolved to an accuracy of 1°. The angle
forces are calculated as the logarithmic difference between
two consecutive angle distributions. Again, a running average
of 3 is applied. A torsion potential is not needed for the
polymers under study.

In MD, generally, interactions between particles are chosen
to be analytic functions with a few adjustable parameters.
Our work derives a numerical potential for the nonbonded
interaction which is dependent on the radial distribution
functions (RDFs). These distribution functions are a good
choice to describe the structure of polymers, keeping the
identity of the polymer structure. We use IBI9 to reproduce
the structure by means of RDFs. Because this technique has
been discussed in detail in a number of publications,8-10 we
focus only on the modifications due to the blend. The
generalization to binary blends requires three potentials from
the corresponding distribution functions: PI-PI, PS-PS, and
PI-PS. We obviously first need two sets of superbond length
and superangle distributions, together with bending potentials
and angle potentials, which are directly transferred from our
earlier work.8,10

The IBI method obtains a numerical force field; that is,
the potential values are specified by a tabulation on a grid
of equidistant distances or angles. For the nonbonded
interaction, we use a grid resolution of 0.01 times the
repulsive core of the interaction as measured at its zero
passage (i.e., 0.01σ in the case of a Lennard-Jones poten-
tial). The whole procedure relies on serially executed
iterations.

In dense systems, individual distributions depend on the
full set of potentials through higher-order correlation. For
technical reasons, one can keep the majority of potentials
constant while iterating a particular one; the rest has to be
readjusted afterward, one by one. For practical purposes, it
is effective to start with those potentials that are least affected
by changes in the others. This is not a trivial a priori
knowledge but typically found during the initial steps of the

Figure 1. (a) PI monomer and (b) PS monomer.
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optimization. In our case, we found that the PI-PI and
PS-PS pairs are relatively independent of each other
compared to the degree to which they interdepend on the
PI-PS potential. This is not too surprising because we expect
a tendency to demix, and therefore, the PI-PI potential
should not change the PS-PS structure and vice versa.
Basically, the like pairs can be optimized in parallel.
Especially, the PI-PI structure is quasi independent of
PS-PS or, to a lesser extent, PI-PS potentials. The
PS-PS structure is influenced more strongly by the
PI-PS potential. Examples of RDFs during the optimization
are shown in Figure 2. All optimization focuses on the local
structure, that is, up to 1 nm for PI-PI and 1.8 nm for both
PS-PS and PI-PS. It has been shown in our earlier work
that the PI and PS structures have different sensitivities to
the neighborhood between 1 and 1.8 nm. After each iteration,
the radial distribution functiong(r) was checked carefully
to make sure all of the target structures were present, as well
as if there were any nonphysical structures involved. These
may stem from, for example, cutoffs. The potential at the
cutoffs should be set to 0 to ensure energy conservation. We
adjust the potential to 0 by shifting all values, keeping the
shape fixed. Our optimization obtains the correct structure
by removing unwanted features and optimizing to the
desirable structure as close as possible. First, we focus on
removing undesired features. Small humps or spurious
corners, as, for example, seen in 15th iteration of the
PS-PS RDF (cf. 4), are likely associated with humps or
spurious corners in the potential. Smoothing gets rid of the
above problems. When the general features are reproduced
and only smaller changes are needed, adjusting the initial
slope of the potential is a good starting point. This means
we do not optimize all length scales of the potential at one
time but focus on smaller windows, starting from shorter
length scales.10 During the optimization of the PS-PS pair,
we ran into a problem that the first peak in theg(r) around
r ≈ 1.2 nm was clearly wider than the target peak. We found
in this case that it was more efficient to change the slope of
the potential manually instead of continually optimizing
consistently according to the IBI

where∆V is the correction potential from a direct Boltzmann
inversion of the difference between the RDF of the corre-
sponding iterationg(r) and the atomistic targetgtarget.

The speed of convergence is influenced by the order in
which one optimizes the various potentials. We started the
optimization with the PI-PI potential, followed by the
optimization of PS-PS, and the interaction of PI-PS is dealt
with during the late stages of the PS-PS iteration.

C. Adapting the Pressure. We started with a purely
structural optimization of the PI-PS system. Our best
potential, however, yields a positive pressure ofP* ) 1.92
in dimensionless units defined equivalently to the standard
Lennard-Jones units.P* ) 1.92 corresponds toP ) 1.192
× 107 Pa as calculated byP ) P*ε/σ3.28 This does not reflect
the ambient conditions of the parent atomistic system. This

is a consequence of the simulation being run at a constant
volume and thermodynamic properties not being used in the
optimization. As a proof of concept that pressure correction
is possible in a blend, we tried to postoptimize the mesos-
copic system without lowering the quality of RDFs. The
potential of a system without charges is always attractive at
long ranges because of the dispersion interactions, and a
corresponding pressure correction technique has been sug-
gested.7 Consequently, we choose an attractive linear tail
function as a weak perturbation to the three potentials
previously optimized without pressure correction:

∆V(r) ) -kBT ln[ g(r)

gtarget(r)] (1)

Figure 2. (a) Iteration of PI RDFs, (b) iteration of PS RDFs,
and (c) iteration of PI-PS RDFs.
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with Ai taking small values ranging from 0 to-0.1kBT. The
Ai values are different for the three interactions. The corrected
potentials were taken as initial guesses in a reoptimization
of the potentials against the structure using IBI. After that,
the pressure was re-evaluated. Combined with optimum
results of the RDFs, an improvement toP* ≈ 1.3 is obtained.
This condition was reached after 10 iteration cycles. The
pressure correction focuses in the potential region beyondr
> 1 nm, which is not very important for the structural fit. It
shifts the whole potentials downward, thus providing for the
previously missing long-range attraction. However, we did
not find significant differences in the overall structure of the
system, and the fundamental results below are the same with
and without pressure correction.

The optimization took about 35 runs to obtain the resulting
RDFs. Each iteration runs for 3000τ, after which the system
with a new set of potentials could attain an equilibrium. We
confirmed that, between 1000 and 3000τ, the RDFs did not
change.

D. Mesoscale Simulation.The PI-PS blends are inves-
tigated in theNVTensemble for the mesoscale simulations.
The reduced temperature (T* ) kBT/ε) is set to 1, whereε is
the interaction energy between pairs of atoms.σ* is set to 1
nm. The density is 6.4175 monomers/σ3 according to the
atomistic parent simulation. The temperature is maintained
by a Langevin thermostat with a friction constantΓ ) 1.0

τ-1, where τ ) xσ2m/ε.28 We use an orthorhombic box
under periodic boundary conditions. The initial condition is
directly transferred from an atomistic simulation. The equa-
tion of motion is integrated with a time step∆t ) 0.005τ,
which is the smaller of the time steps used in the simulations
of pure PI and PS.8,10,11 Trajectories are stored every 2000
steps. The superbond length of PI is 0.2345 nm with a
strength of 0.0015kBT, while that of PS is 0.2545 nm with
a strength of 0.03kBT. The cutoff for the nonbonded
interactions is 1.910σ, which is the bigger of the PI and PS
cutoffs of the pure systems. The numerically optimized
potential from the system of the 36 PI and 24 PS chains of
length 15 is applied to all systems. The details of the inves-
tigated systems are listed in Table 1.

III. Results and Discussion
A. Structure. To test the transferability of applying bond
or angle structures to polymer blends, the bond length and
bond angle distributions and potentials of PS from both 48
PS chains systems and the blend of 36 chains of PI and 24
chains of PS were compared and plotted in Figure 3. The
bond distributions clearly show the same pattern in the pure
PS and in a polymer blend with 36 chains of PI; however,
the PS-PS-PS bond angle force shows some discrepancies.
These stem from the effect of local packing because a number
of the PS-PS intermolecular interactions are replaced by
PS-PI contacts. Here, we kept the intramolecular potentials
of the pure systems for transferability purposes.

During all of our simulations for optimization and analysis,
we ensured that the chains diffuse at least 2〈Rg

2〉 such that

the configurations are fully relaxed. We then checked each
system by monitoring the radius of gyration (Rg) and 〈Rg

2〉
to make sure that the systems attained equilibration. Our
results for the persistence lengthslp given by lp ≈ 0.65 nm
are independent of the chain length for 10e N e 80.

The RDFs of the atomistic and optimized mesoscale
simulations are plotted in Figure 4. These are both shown
for 15 monomers. This is the best potential after 35 iterations.
The optimization result is judged by the sum of the squared
difference between the target and the optimizedg(r).
Compared to a pure polymer melt, the iteration of blends is
technically more demanding in that mapping takes into
account the effects of three sets of potentials. Therefore, the
quality of the optimized RDFs is somewhat weaker than that
for pure systems. Because the PI-PI or PS-PS pair interacts
with the inter-PI-PS pair, iterating each pair induces
deviations in other pairs. Examples of radial distribution
functions during the iteration are plotted in Figure 2. Our
work provides the first application in the system of a binary
blend with reasonable consistency.

B. Phase Separation.Using our mesoscale model, we can
embark now on a study of the phase behavior of the blend
focusing on the following questions: What morphologies
do we obtain, and how do they depend on concentration?
How does an initially randomly distributed configuration
evolve into a phase-separated system? By increasing chain
length, where is the crossover between miscibility and phase
separation? The visualization of PI-PS blends with a fixed
mass concentration ratio of 1:1 shows the evolution of phase
separation in Figure 5. In the initial configuration of the
system with 36 PI and 24 PS chains, both of length 60, the
components are well-mixed, as shown in Figure 5a. Increas-
ing times of 300, 600, 1000, 2000, and 20 000τ show the
evolution of phase separation. Starting from the beginning,
the PS chains (dark red spheres) show a tendency toward
aggregation. At 600τ, the aggregated PS chains take on a
cylindrical shape with a few PS chains in the PI majority
phase. The PS region is only separated by several PI chains
in the middle (Figure 5d). The final snapshot at 20 000τ
shows the equilibrium. We now have a clearly lamellar
pattern as expected for an equiconcentrated mixture.

Besides the lamellar morphology shown for the 36 PI 60-
mer-24 PS 60-mer system, we investigate the phase
separation dependent on the PI chain length with a fixed
PI/PS weight ratio (50:50). Figure 6 shows lamellar shapes
for the 72 PI 10-mer-48 PS 10-mer and 36 PI 30-mer-24
PS 30-mer systems. Cylindrical shapes are observed in Figure
7 for 36 PI chains of length 45 with the 24 PS 30-mer and
for the 36 PI 60-mer-4 PS 30-mer system. In the systems
of 72 PI 10-mer-48 PS 10-mer, 36 PI 30-mer-24 PS
30-mer, and the above 36 PI 60-mer-48 PS 60-mer, the
weight ratio of PI to PS monomer weight concentration is
kept fixed at 50:50. We conclude that at balanced concentra-
tions the morphology of PI-PS blends is lamellar. As the
concentration of PI to PS monomers changes to 60:40, as in
the case of 36 PI 45-mer-24 PS 30-mer, or even higher to
66:34, as in the case of 36 PI 60-mer-24 PS 30-mer, the
systems prefer a cylindrical morphology, as shown in Figure

∆Vlim(r) ) Ai(1 - r
rcutoff

) i ) 1, ..., 3 (2)
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7. The radius of the PS cylinder decreases as the PI chain
length increases from 45 to 60.

Figure 8 shows a well-mixed configuration of the 72 PI
7-mer-48 PS 7-mer system at 10 000τ. Compared to chains
of lengths 10, 30 (in Figure 6), and 60 (in Figure 5), the
phase separation starts above 7 monomers. Note that, both
in atomistic simulations and in experiments, the system is
still mixed at 15 monomers, whereas we observe a phase
separation tendency. However, the atomistic simulations are
only 20 ns long, and the radial distribution functions for the
15-mers are by construction consistent between the atomistic
and mesoscale systems. This study shows again that one
structural characteristic alone leads typically to good poten-

tials but some discrepancies between the atomistic and
mesoscale models remain and the finite-size of the system
may play a role.

C. RDFs of Superatoms.Intermolecular pair distributions
of PI-PI and PS-PS monomers are calculated and shown
in Figure 9. Figure 9a illustrates that, at constant conditions
of 36 PI chains of chain length 30, the inter-PI-PI g(r)
increases with the PS chain length, which means the PI
monomers increasingly prefer a PI neighborhood. Phase
separation can explain this observation, as suggested by
previous results. Figure 9b shows that the correlation hole
dominates as the number of inter-PI-PI pairs decreases with
the increase of the PI chain length at a constant PS chain
length. A correlation hole means that with increasing chain
length the chain itself provides a non-negligible number of
neighboring monomers and, by this, suppresses the interchain
RDF.30,31The interchain radial distribution functions of like
monomers here probe for long chains, essentially a ho-
mopolymer system, because of the phase behavior. Figure
9d illustrates that at the same condition of 36 PI chains of
the 30-mer, as in Figure 9a, the PS-PS pairs decrease with
the increase of the PS chain length, opposite of the increasing
trend of the PI-PI pairs. Figure 9c demonstrates that the
number of PS-PS pairs increases generally with the increase
of the PI chain length in the mixture with 24 PS 30-mers,

Table 1. Characterizations of PS and PI Chains at Various Concentrations

PI PS

Nc box size Rg Rg
2 lp (bond) lp (nm) Rg Rg

2 lp (bond) lp (nm)

72PI7/48PS7 5.0774 0.3448 0.1206 1.5921 0.3733 0.3906 0.1539 1.9341 0.4922
72PI10/48PS10 5.7184 0.4795 0.2330 2.2002 0.5159 0.5272 0.2804 2.3639 0.6016
72PI14/48PS15 6.4574 0.6229 0.3940 2.5806 0.6052 0.7153 0.5188 2.6351 0.6706
72PI15/48PS15 6.5459 0.6234 0.3936 2.6317 0.6171 0.7139 0.5152 2.8987 0.7377
36PI30/24PS30 6.5459 1.0789 1.1930 2.7503 0.6449 1.1519 1.3598 2.6861 0.6836
36PI30/24PS45 6.9560 1.0801 1.1964 2.6889 0.6305 1.3821 1.9759 2.4283 0.6180
36PI30/24PS60 7.3228 1.0808 1.1944 2.6590 0.6235 1.7505 3.1953 2.6070 0.6635
36PI30/24PS80 7.7610 1.0777 1.1884 2.7108 0.6357 2.0348 4.2990 2.5715 0.6544
36PI45/24PS30 7.1441 1.4239 2.0921 3.0102 0.7059 1.1473 1.3491 2.6334 0.6702
36PI60/24PS30 7.6561 1.6746 2.9071 2.9246 0.6858 1.1192 1.2888 2.6019 0.6622
36PI80/24PS30 8.2473 2.0446 4.3507 2.8551 0.6695 1.0716 1.1775 2.7668 0.7041
36PI60/24PS60 8.2473 1.6873 2.8422 2.7252 0.6391 1.7793 3.2170 2.4545 0.6247
36PI80/24PS80 9.0773 1.9113 3.9538 2.9011 0.6803 1.9321 4.0789 2.6153 0.6656

Figure 3. Comparison of the intramolecular potentials in the homopolymer melt and the 50 wt % blend. (a) PS bond distribution
and (b) PS angle force.

Figure 4. RDFs of the PI-PS mixture melt.
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except for the 80-mer case, which we again attribute to a
correlation hole effect. Overall, the trends show that the
number of pairs of the fixed chain length and the number of
chain polymers increase with the chain length of the opposite
component, while those of the varying polymers themselves
decrease.

To test the dependence of phase separation on the chain
length, we increase the chain length of both polymers from
10 to 30, 60, and 80 monomers. The concentration of PI
and PS is kept fixed at 50:50 by weight. Pair distributions
of inter-PI-PI, inter-PS-PS, and PI-PS are calculated to
obtain a general picture of distribution. For comparison, the
atomistic parent simulations at length 15 are shown as well.
All intrapairs are excluded. Figure 10 shows that the
interchain radial distribution function of PI-PI does not
change as much as that of PS-PS or PI-PS. At the region
of distancer < 1.0 nm, theg(r) values of PI-PI pairs
decrease as the chain length increases from 10 to 30, 60,

and 80 monomers. The reason is the increasing radius of
gyration. The PI-PI interactions show that PI monomers
prefer their own neighborhood fromr > 1.0 nm up to 3.0
nm. The PS-PS RDF (Figure 10b) shows a consistent trend
of moving closer together as the chain length of PS increases.

Figure 5. Snapshots of 36 PI 60-mer-24 PS 60-mer systems at various times: (a) starting configuration (time 0), (b) t* ) 300
τ, (c) t* ) 600 τ, (d) t* ) 1000 τ, (e) t* ) 2000 τ, and (f) t* ) 20 000 τ. The light spheres represent the polyisoprene superatoms,
and dark red ones are polystyrene. The program RASMOL29 was used for the visualization.

Figure 6. Snapshots of polymer mixture systems at various
chain lengths: (a) 72 PI 10-mer-48 PS 10-mer at a unit time
of 10 000 τ and (b) 36 PI 30-mer-24 PS 30-mer at a unit
time of 10 000 τ.

Figure 7. Snapshots of polymer systems (a) 36 PI 45-24
PS 30 at a unit time of 10 000 τ and (b) 36 PI 60-24 PS 30
at a unit time of 10 000 τ.

Figure 8. 72 PI 7-mer-48 PS 7-mer at a unit time of
10 000 τ.
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Consider that the phase morphology does not change except
for a chain length of 80; increasing the chain length leads to
fewer contacts of PI-PS and correspondingly more PS-PS
interactions. Moreover, we expect the phase separation to
become stronger, that is, the PS region to have an even higher
PS concentration at long chain lengths. PI-PS (in Figure
10c) pairs have a peak and a valley at short distancesr <

1.5 nm and increase gradually to a value of 1.0 near 3.0 nm.
However, the number of PI-PS pairs decreases with the
increase of the chain length, indicating that the PI and PS
chains are more separated from each other. At the chain
length of 80 monomers, allg(r) functions show a different
trend; PI-PS pairs increase instead of decrease. This can
be explained by a cylindrical instead of a lamellar morphol-

Figure 9. (a) Inter-PI-PI g(r) at fixed 36 PI 30-mer, (b) inter-PI-PI g(r) at fixed 24 PS 30-mer, (c) inter-PS-PS g(r) at fixed 24
PS 30-mer, and (d) inter-PS-PS g(r) at fixed 36 PI 30-mer.

Figure 10. (a) Inter-PI-PI g(r) at fixed PI/PS ratio of 1:1, (b) inter-PS-PS g(r), and (c) inter-PI-PS g(r).
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ogy. Take the three RDFs as a whole; the PS-PS structures
have two peaks throughout the entire chain length. The peak
positions are at 1.5∼2.0 nm, which are at greater distances
than those of PI-PI. It indicates that PS-PS has a stronger
tendency to its own neighborhood. The PI-PS RDFs show
consistently unfavorable interactions.

IV. Conclusion
We have shown here for the first time that the Iterative
Boltzmann Inversion can be applied to a binary blend of
polymers. The resulting potentials lead to results in qualita-
tive agreement with expected experimental behavior. We are
able to equilibrate systems which are phase-separating and
observe the dynamics of the phase separation for the first
time by a systematically coarse-grained blend.

It is worth stressing that we expect that the resulting po-
tentials are dependent on concentration and temperature, and
further studies to elucidate the phase diagram are under way.
They are, however, stable under a change of chain length.

It is furthermore worth mentioning that there is no clear
and obvious order in which of the optimizations should be
conducted. The various potentials are strongly interdepen-
dent, and we observed that changing the order of optimization
can have a serious influence on the efficiency of the
convergence.

The phase separation sets in at around seven monomers,
which is shorter than in experiments and also shorter than
in the parent atomistic simulations. This again shows that
we cannot expect all observables to be in agreement when
we did not specifically optimize against them. It additionally
shows that we have to develop such polymer blend models
at short chain lengths in order to increase the number of
unlike contacts for optimization. For a close to equimolar
concentration, we find predominantly lamellar morphologies
as expected. Other morphologies can be reproduced as well.
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(1) Tschöp, W.; Kremer, K.; Batoulis, J.; Bu¨rger, T.; Hahn, O.
Simulation of Polymer Melts. I. Coarsegraining Procedure
for Polycarbonates.Acta Polym.1998, 49, 61-74.

(2) Baschnagel, J.; Binder, K.; Doruker, P.; Gusev, A. A.; Hahn,
O.; Kremer, K.; Mattice, W. L.; Mu¨ller-Plathe, F.; Murat,
M.; Paul, W.; Santos, S.; Suter, U. W.; Tries, V. Bridging
the Gap between Atomistic and Coarse-Grained Models of
Polymers: Status and Perspectives.AdV. Polym. Sci.2000,
152, 141-156.

(3) Müller-Plathe, F. Coarse-Graining in Polymer Simulation:
From the Atomistic to the Mesoscopic Scale and Back.
ChemPhysChem2002, 3, 754-769.

(4) Müller-Plathe, F. Scale-Hopping in Computer Simulations
of Polymers.Soft Mater.2003, 1, 1-31.

(5) Faller, R. Automatic Coarse Graining of Polymers.Polymer
2004, 45, 3869-3876.

(6) Faller, R. Coarse-Grain Modeling of Polymers.ReV. Comput.
Chem.2006, 23, in press.

(7) Reith, D.; Meyer, H.; Mu¨ller-Plathe, F. CG-OPT: A Software
Package for Automatic Force Field Design.Comput. Phys.
Commun.2002, 148, 299-313.

(8) Faller, R.; Reith, D. Properties of Polyisoprene Model
Building in the Melt and in Solution.Macromolecules2003,
36, 5406-5414.

(9) Reith, D.; Pu¨tz, M.; Müller-Plathe, F. Deriving Effective
Mesoscale Potentials from Atomistic Simulations.J. Comput.
Chem.2003, 24, 1624-1636.

(10) Sun, Q.; Faller, R. Systematic Coarse-Graining of Atomistic
Models for Simulation of Polymeric Systems.Comput.
Chem. Eng.2005, 29, 2380-2385.

(11) Sun, Q.; Faller, R. Crossover from Unentangled to Entangled
Dynamics in a Systematically Coarse-Grained Polystyrene
Melt. Macromolecules2006, 39, 812-820.

(12) Ghosh, J.; Wong, B. Y.; Sun, Q.; Pon, F. R.; Faller, R.
Simulations of Glasses: Multiscale Modeling and Density
of States Monte Carlo Simulations.Mol. Simul. 2006, in
press.

(13) He, Y.; Lutz, T. R.; Ediger, M. D.; Pitsikalis, M.; Had-
jichristidis, N.; von Meerwall, E. D. Miscible Polyisoprene/
Polystyrene Blends: Distinct Segmental Dynamics but
Homogeneous Terminal Dynamics.Macromolecules2005,
38, 6216-6226.

(14) Koningsveld, R.; MacKnight, W. J. Liquid-Liquid-Phase
Separation in Multicomponent Polymer Systems XXVII.
Determination of the Pair Interaction Function for Polymer
Blends.Polym. Int.1997, 44, 356-264.

(15) He, Y.; Lutz, T. R.; Ediger, M. D. Segmental and Terminal
Dynamics in Miscible Polymer Blends.J. Chem. Phys.2003,
119, 9956-9965.

(16) Lutz, T. R.; He, Y.; Ediger, M. D.; Pitsikalis, M.; Had-
jichristidis, N. Dilute Polymer Blends: Are the Segmental
Dynamics of Isolated Polyisoprene Chains Slaved to the
Dynamics of the Host Polymer?Macromolecules2004, 37,
6440-6448.

(17) Faller, R. Correlation of Static and Dynamic Inhomogeneities
in Polymer Mixtures: A Computer Simulation of Polyiso-
prene and Polystyrene.Macromolecules2004, 37, 1095-
1101.

(18) Jorgensen, W. L.; Severance, D. L. Aromatic-Aromatic
Interactions: Free Energy Profiles for the Benzene Dimer
in Water, Chloroform.J. Am. Chem. Soc.1990, 112, 4768-
4774.

(19) Müller-Plathe, F. Local Structure and Dynamics in Solvent-
Swollen Polymers.Macromolecules1996, 29, 4782-4791.

(20) Sun, Q.; Faller, R. Molecular Dynamics of a Polymer in
Mixed Solvent: Atactic-Polystyrene in a Mixture of Cyclo-
hexane and N,N-dimethylformamide.J. Phys. Chem. B2005,
109, 15714-15723.

(21) Faller, R.; Schmitz, H.; Biermann, O.; Mu¨ller-Plathe, F.
Automatic Parametrization of Force Field for Liquids by
Simplex Optimization.J. Comput. Chem.1999, 20, 1009-
1017.

(22) Schmitz, H.; Faller, R.; Mu¨ller-Plathe, F. Molecular Mobility
in Cyclic HydrocarbonssA Simulation Study.J. Phys. Chem.
B 1999, 103, 9731-9737.

(23) Faller, R.; Mu¨ller-Plathe, F.; Doxastakis, M.; Theodorou, D.
Local Structure and Dynamics oftrans-Polyisoprene Oli-
gomers.Macromolecules2001, 34, 1436-1448.

614 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Sun and Faller



(24) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E.
M. LINCS: A Linear Constraint Solver for Molecular
Simulations.J. Comput. Chem. 1997, 18, 1463-1472.

(25) Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren, V.; Haak,
J. R. Molecular Dynamics with Coupling to an External Bath.
J. Chem. Phys.1984, 81, 3684-3690.

(26) Lindahl, E.; Hess, B.; van der Spoel, D. Gromacs 3.0: A
Package for Molecular Simulation and Trajectory Analysis.
J. Mol. Model.2001, 7, 306-317.

(27) Pon, F. R.; Sun, Q.; Faller, R. Detailed Molecular Modelling
Study on the Local Dynamics in Polyisoprene-Polystyrene
Blends.2006, manuscript in preparation.

(28) Allen, M. P.; Tildesley, D. J.Computer Simulation of Liquids;
Oxford University Press Inc.: New York, 1987.

(29) Sayle, R. A.; Milnerwhite, E. J. RASMOL: Biomolecular
Graphics for All.Comput. Corner1995, 20, 374-376.

(30) Kremer, K.; Grest, G. S. Dynamics of Entangled Linear
Polymer Melts: A Molecular-Dynamics Simulation.J. Chem.
Phys.1990, 92, 5057-5086.

(31) Faller, R.; Pu¨tz, M.; Müller-Plathe, F. Orientation Correla-
tions in Simplified Models of Polymer Melts.Int. J. Mod.
Phys. C1999, 10, 355-360.

CT600065V

Systematic Coarse-Graining of a Polymer Blend J. Chem. Theory Comput., Vol. 2, No. 3, 2006615



Coarse Graining of Short Polythylene Chains for
Studying Polymer Crystallization

Thomas Vettorel†,‡ and Hendrik Meyer*,†

Institut Charles Sadron, 6 rue Boussingault, 67083 Strasbourg, France, and
Institut für Physik, WA 331, Johannes-Gutenberg UniVersität, Staudinger Weg 7,

D-55099 Mainz, Germany

Received December 21, 2005

Abstract: We derive coarse-grained models of polyethylene in the melt state with the aim to

study polymer crystallization. This requires a low level of coarse-graining: We use a mapping

of two CH2 groups onto one bead. The coarse-grained beads are connected with harmonic

springs, an optimized angular potential, and an optional torsional potential. Coarse-grained

potentials are derived from detailed all-atom simulations, and an optimized form of the force

field is then derived which achieves a good accuracy in reproducing the static properties of the

chains. We address the question over which temperature range such models can be used, and

in particular if the model is capable of reproducing the phase transition to an ordered state; it is

found that the qualitative behavior of short polyethylene chains is well described, and the

experimental melting temperature of C44H90 is approached when using the most accurate

optimized model.

1. Introduction
Despite the progress of computer power, the simulation of
complex materials with all atomic and electronic details
remains unfeasible for many relevant applications. So, much
effort is spent to construct simplified models retaining
properties of the original chemistry.1-3 Depending on the
properties one is interested in, more or less details can be
averaged out. Classical all-atom simulations can already be
considered as a coarse-grained model with respect to
quantum chemistry calculations by abandoning the electrons.
The next steps are united-atom models which eliminate the
pending hydrogens. A natural extension to coarser scales is
to lump groups of atoms into one sphere. One now needs
effective interaction parameters between these spheres which
can be obtained via distribution functions from simulations
on a more detailed level. The Boltzmann relationP(x) )
exp(-F(x)/kBT) relates the distribution with the associated
free energy, the so-called potential of mean forceF(x) ∼
-kBT ln P(x). One applies this to different distributions which
may occur, as bond lengths, angles, and torsions along chains

and radial distribution functions. One wants to avoid cross-
correlations between these degrees of freedom for reasons
of efficiency. So one should choose mapping centers such
that cross-correlations are as small as possible.4

There are several further difficulties by applying this proce-
dure: WhenP(x) is the radial distribution function,F(x) is
used as a pair potential. However,P(x) includes the effect
of many-body interactions. Take for example a dense Len-
nard-Jones or even a hard sphere fluid: The potential has a
single minimum or even no minimum; however, the radial
distribution function exhibits long-range oscillations. This
means that complex behavior is generated by a simple-look-
ing potential. It is thus justified to make some simplifying
assumptions about the interaction potential, e.g. about the
cutoff of the interaction, and an optimization starting from
the potential of mean force may be necessary. Different pro-
cedures for such an optimization process have been proposed
to work e.g. with functional forms4,5 or complete distribution
functions.6 Self-consistent optimization has been shown to
work with rather long cutoff distances.6-8 As we are working
in dense melts, and to optimize the computational perfor-
mance, we here choose rather short cutoff distances.

A related problem is that the distributions have been
determined at a certain state point and that it is a priori not
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clear how far the temperature or density can be modified to
still yield reasonable results. This is one question we address
in the present paper.

Another difficulty is the question of transferability when
different chemical species are mixed. This is already well-
known from the construction of atomistic force fields. Recent
attempts have been made with simultaneous optimization of
hydrocarbon substances9 and an example to handle tacticity
in polystyrene on a united monomer level.10 When going to
higher degrees of coarse graining, chemical specificity is lost
very rapidly.

Finally, the question arises of which level of coarse-
graining one should choose. Actually, when many particles
are lumped together, their effective interaction becomes very
soft.11,12 This is very popular in the context of so-called
dissipative-particle dynamics13 and may be very efficient to
handle phase separation of copolymer systems. For polymers,
the softness may result in the problem that bonds of
neighboring chains can cross each other, thus violating the
fundamental property of topological constraints. Some effort
has been spent by Padding and Briels14 to circumvent this
problem for the simulation of polymer rheology.

The present work is motivated by research on the polymer
crystallization process. In this context, the role of possible
precursor or transient phases is debated.15-18 Polymer crystals
exhibit not only positional order but also orientational and
conformational order. This means that a simulation model
must be able to represent the melt as well as a crystalline
state. This restricts the possibility of coarse graining to a
rather low level. We choose in this work the “united
monomer” representation, i.e., two backbone carbons per
coarse-grained bead.

The paper is organized as follows: Section 2 describes
the atomistic simulations we performed to get reference data
of distribution functions and describes then a coarse-grained
model of poly-vinyl alcohol “CG-PVA” which has already
been used to model polymer crystallization.19,20 Section 3
describes the derivation of coarse-grained models of poly-
ethylene on the “united-monomer” basis where still a lot of
choices are possible. Finally, we discuss in section 4 how
the optimized models perform when extending the temper-
ature range to get crystallization.

2. Simulation Methods on Different Scales
2.1. All-Atom Model: n-Alkanes. We performed all-atom
simulations of short polyethylene chains with the YASP
simulation program24 using a model derived from the OPLS
force-field. The OPLS-AA force field21 was developed on
the basis of preexisting force fields in order to simulate
organic compounds accurately. Parameters describing bond
stretching and angle bending interactions were taken from
the AMBER and CHARMM/22 force fields,22,23 ab initio
molecular orbital calculations were used for torsions, and
Monte Carlo simulations were used for nonbonded interac-
tions in adjusting the thermodynamic and structural proper-
ties.

The interactions described by this force field as given in
ref 21 are the following: connectivity interaction (harmonic
potentialUbond(b) constraining the distanceb between co-

valently bound atoms); angular interaction (harmonic po-
tential Uang(θ) that determines the angleθ between two
consecutive bonds); torsional interaction (3-term Fourier
series)

for the angleφ formed by two consecutive dihedrals (similar
potential terms exist for torsion angle involving both carbon
and hydrogen atoms); and nonbonded interactions (Lennard-
Jones potentialUmol(r) for atoms of different chains or of
the same chain provided they are far enough from each other
along the chain). The electrostatic interaction due to the
partial chargesqa at every atom is also taken into account
via the Coulomb interaction, which is cut off for distances
larger than 0.9 nm.

Figure 1 shows the distributions of the quantities that are
directly or mostly influenced by the above mentioned
interactions, considering the carbon atoms of the chains. The
bond lengths, bond angles, and torsion angles are mainly
determined by their corresponding potentials; however, some
influence by the other degrees of freedom exists as we shall
see later on. The radial distribution function (RDF) is
determined by all the different interactions, more or less
importantly depending on the distance. The quantities of
Figure 1 are the ones we shall consider while discussing the
coarse-grained description of then-alkane chains.

The YASP simulation package implements a constraint
algorithm (SHAKE) that has been used instead of the
harmonic potential parametrized in the OPLS-AA force field,
to access larger time steps by neglecting the rapid (and

Figure 1. Probability distributions for the following quanti-
ties: bond length, bond angle, torsion angle, and radial
distribution function (RDF). Only carbon atoms are considered
here; these quantities are the result of the interactions of the
force field. For the bond length distribution, the OPLS-AA
prescription (dashed-line Gaussian curve) is shown in com-
parison with the delta function enforced by the constraint
algorithm. The structure of the torsion potential exhibits the
three favorable states trans, gauche+, and gauche- which
determine the flexibility of the chains. The first four peaks one
can observe in the RDF are related to the three bonded
interactions.

Utors(φ) ) ∑
n)1

3 (12kn
tors(1 - cos(nφ - φn

0))) (1)

Coarse Graining of Short Polythylene Chains J. Chem. Theory Comput., Vol. 2, No. 3, 2006617



unimportant) vibrations around the average valueb0 of the
bond length. The YASP program makes use of the Berendsen
thermostat (velocity rescaling; the coupling time used is 0.2
ps) and barostat (coupling factor 2 ps× 10-6 kPa) to keep
temperature and pressure constant. Runs have been per-
formed at constant atmospheric pressure and various tem-
peratures. We also implemented a Langevin thermostat which
essentially yielded the same results.

The parameters for the torsional potential of eq 1 have
been adjusted (optimization of thekn

tors coefficients) in order
to reproduce the probabilities of trans and gauche states as
reported in other simulation studies where the parameters
of the force field had been optimized to recover accurate
static properties of short polyethylene chains.25 The optimized
values of the parameters are given as follows (no changes
were made to the terms involving both carbon and hydrogen
sites):

This optimization appeared necessary in view of the very
strong influence of the torsional potential on the chains’
conformation. Since torsions are the most flexible degree of
freedom of the chains, they are mainly responsible for
significant movements of the atoms on the local scale, and
they also statistically determine the characteristics on the
scale of the chain’s size.

Atomistic simulations are calibrated in absolute units; the
appropriate units here are nanometers (nm), picoseconds (ps),
and kiloJoule (kJ) per mole. The time step used is 0.002 ps.
We studiedn-alkane molecules in the melt at atmospheric
pressure andT ) 500 K for chains containing 8, 10, 13, 14,
15, 16, 30, and 44 carbon atoms, in simulations runs lasting
up to 20 ns. Table 1 summarizes a few quantities character-
izing the simulation of systems with chains of different
molecular weight atT ) 500 K.

The model described above has been simulated at various
temperatures, both above and below the experimental melting
temperatures of the differentn-alkanes. A continuous cooling
protocol has been applied in order to trigger the transition
toward the crystalline state, that comprises several different
phases well characterized experimentally.26 During cooling
(at rates between-0.05 and-0.5 K ps-1), no ordering of
the chains was observed. The dynamics of the systems rather
slowed as a glassy state was approached. Isothermal relax-
ation below the experimental melting point also could not
reproduce the crystalline structure. One possible reason for
this failure is a lack of precision in the model considered
here, but it can also be related to the fact that nucleation
barriers are rather high and thus makes nucleation in the
small simulation volume a rare event.

There are many force fields one could use in order to
simulate alkanes; the optimization of the parameters of such
data sets is a difficult task. It is therefore not straightforward
to find the most appropriate force field for a particular study.
Moreover the optimization used here totune the torsional
interaction is questionable. However, the results obtained for
static quantities show that the model still provides a
reasonable description ofn-alkane melts in the liquid state.

Furthermore, using this model to simulate the melting of
perfectly crystalline arrangements of the chains proved that
such structures are stable at low temperatures, and a “rotator”
phase (transitory phase showing a hexagonal symmetry; see
ref 26 for experimental details and ref 27 for early simulation
studies) was observed while the system transformed from
the solid to the liquid state. This fact demonstrates the ability
of the present model to account for the behavior of the low-
temperature phases of short polyethylene chains.

On the other hand, it is possible to observe a phase
transition using continuous cooling from the melt for
artificially stiff chains. Modifying the torsional interaction
to make the trans state much more favorable turned out to
enforce the crystallization of a C16H34 system at a temperature
Tcryst ≈ 350 K, which is large compared to the experimental
value (around 300 K), whereas one would rather expect to
find a crystallization temperature lower than the experimental
value when applying such high cooling rates. AtT ) 500
K, this unrealistically stiff model has a probability of trans
states more than 20% higher than our regularn-alkane model,
which results in a persistence length and a squared radius of
gyration, respectively, 35% and 15% larger.

There is another reason our all-atom simulations cannot
reproduce a crystalline configuration, at least for a reasonably
stiff model: One is restricted to studying very small systems
over short time periods, otherwise the computational time
needed becomes prohibitive. Therefore, the probability to
form a crystal is drastically lowered: As mentioned above,
the smaller the box, the lower the probability of a nucleation
event, and the very fast cooling rate hinders the rearrange-
ment of the chains in ordered conformations. This suggests
that there might be other possible simulation schemes that
would be more appropriate to approach the liquid-crystal
transition; more precisely, as crystallization implies a
modification of the chain’s conformation it is more important
to consider what happens on the length scale of the
monomers rather than on that of the individual atoms. This
is the idea the coarse-grained models rely on. We shall see
how the data obtained from all-atom simulations can be used
to develop a coarse-grained model that retains prominent
features of the molecules while making their simulation more
efficient and thus complex processes such as crystallization
accessible.

2.2. Coarse-Grained Model: CG-PVA.The CG-PVA
model is a coarse-grained model that allows a qualitatively
accurate description of a crystallizable polymer, in that the
typical semicrystalline structure is obtained after cooling
simulations.19,20 Figure 2 shows a schematic representation
of both the coarse-grained model and the underlying PVA
molecule: It can be seen that the coarser model lumps one
monomer (i.e. 7 atoms here) into one bead, thus making the
simulation much faster. The figure also represents the
different interactions between such coarse-grained beads.

Besides the gain in computational efficiency this scheme
is particularly interesting because the coarse-grained chain
still has a close link to the underlying atomistic description
via the definition of the effective potentials governing the
behavior of the coarse-grained monomers. These interactions
are determined using the all-atom simulation data, and thus

k1
tors ) 5; k2

tors ) -1; k3
tors ) 0.6 (2)
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the coarse-grained model is really designed so as to reproduce
the properties of the more detailed all-atom model.4

The interactions are the following: connectivity (harmonic
potentialUbond(b)), angular interaction (tabulated potential
Uang(θ), see below), and nonbonded interaction (soft Lennard-
Jones 6-9 potentialUmol(r), without attractive part). There
is no electrostatic interaction. Electrostatic effects accounted
for by an explicit potential in the all-atom model are here
absorbed in the effective nonbonded interaction.

The coarse-grained simulations were carried out using a
simulation program similar to the YASP package but
optimized for linear polymer chains and working with LJ
units (see below). It is based on a velocity-Verlet integrator
(time step 0.005τ) and uses the Langevin thermostat instead
of the Berendsen algorithm, with friction 0.5τ-1. The
pressure is kept constant via position rescaling (Berendsen,
coupling constant 10-5 kBTσ-3τ).

Figure 3 presents the three effective potentials. The main
difference when compared to the all-atom situation is the
absence of a torsional potential and the form of the angular
potential. The angular degree of freedom in the coarse-
grained model actually plays the role of torsions on the
atomistic scale: More precisely, the coarse-grained angleθ
is exactly determined by two consecutive torsional states of
the atomistic backbone. This is reflected in the structure of
the angular potential which displays three minima corre-
sponding to trans-trans, trans-gauche, and gauche-gauche
states of the underlying chain. Since in the all-atom case
thetorsionaldegree of freedom is most important for changes
in the chains’ conformations, theangulardegree of freedom
becomes the most important ingredient of the coarse-grained
model. The torsion angleon the coarse-grained leVel is far
less relevant and shows a weak structure only. The narrow
minimum at 180° in Uang(θ) is responsible for the possibility
that parts of the chains stretch (forming stems that constitute
the crystalline lamellae), and the other minima allow that
the folds between two stems are locally stable. In the melt
state at high temperature, the barriers can be crossed easily.
The procedure used to derive the coarse-grained effective
potentials was similar to what is presented in the next section
3 for the case of polyethylene.

The units used in the coarse-grained simulation are the
following (the same units will be used for the description of
the coarse-grained models of PE): length scale:σ ) 0.52
nm, average bond length between the coarse-grained mono-
mersb0 ) σ/2 (please note that there is no relation between

σ and the characteristic lengthσ0 entering the Lennard-Jones
potential definition, see eqs 4 and 6; mass scale: mass of
one monomer taken to be 1 (all particles identical); and
energy scale:kBT ) 1 for a reference temperature, hereT
) 550 K (temperature at which the data from atomistic
simulations of PVA were taken to perform the mapping).
The time scale cannot be determined in a straightforward
manner as for the length scale, which is directly related to
the way the mapping is performed. One possible way of
setting this scale consists of a mapping involving the
diffusion coefficient.

The properties of the CG-PVA model which allow for
describing crystallizable polymer melts and to recover the
correct qualitative structure are discussed in refs 19 and 28.

3. Coarse-Graining of the All-Atom Model
3.1. Derivation of Different Coarse-Grained Models.The
coarse-graining procedure consists of defining effective
interactions governing the behavior of particles on a larger
length scale than the original model (thus also enforcing a
longer time scale). The coarse-grained interactions are to be
adjusted such that the static properties of the two models
coincide. Obviously, since the coarse-graining process is
devoted to “losing” some (irrelevant) information contained
in the original model in order to make the simulation more
efficient, the definition of the coarse-grained model cannot
be unique, and choices have to be made so as to create an

Figure 2. Schematic representation of the CG-PVA model.
Atoms of the underlying molecule are shown to emphasize
the mapping of one monomer onto one coarse-grained
particle. The effective interactions between the latter are also
depicted.

Figure 3. Effective interaction potentials between monomers
in the CG-PVA model. The harmonic binding potential and
soft Lennard-Jones nonbonded potential have simple analyti-
cal expressions, while the angular potential, also determined
from all-atom simulations of PVA, has a more complex
structure and has to be tabulated. The minima correspond to
trans-trans, trans-gauche, and gauche-gauche states of the
underlying atomistic backbone and lead to the formation of
both stretched and folded parts of the chains at low temper-
ature.
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appropriate model. In the case we are interested in, poly-
ethylene (PE) melts and their behavior at low temperature
experience acquired using the CG-PVA model tells us that
a suitable coarse-grained model to access the semicrystalline
structure through cooling of a melt has to retain enough
features from the original chain. Moreover, the similarity of
the PVA and PE chains prompts us to define a coarse-grained
PE model in a way similar to the case of PVA. Since our
studies of CG-PVA have shown that the key parameter in
the model is the angular potential, it is natural to make the
same choice here.29 Thus we place the mapping centers on
every other carbon atom of the atomistic backbone, which
will yield a similar angular potential for the CG-PE model.

Figure 4 shows the influence of the degree of coarse
graining on the structure of the angular potential: We
computed the bond angle distributions for several choices
of mapping centers. It can be seen that, when defining coarser
models in which the interaction sites lie 2 or 3 carbons away
from each other, the structure of the distribution (and thus
of the effective angular potential to be derived) vanishes,
leading to a bead-spring model with a generic, average
rigidity as considered in the wormlike chain model.

Once the position of the mapping centers is chosen, one
still has to define the type and characteristics of the effective
interactions between such centers. In the case of simple linear
polymer chains as for PVA and PE, the most natural choice
is to define the very same type of interactions as for the
standard all-atom models. Then the parameters of the bond,
angular, torsional, and nonbonded interactions remain to be
determined. To this end, using the assumption that the
quantities constrained by the different effective interactions
are weakly correlated, one can invert the probability distribu-
tion measured from the detailed simulation data via the
Boltzmann formula in order to get the corresponding
effective potential:

Of course, this method can only be approximate, since the
quantityx is necessarily correlated to the other degrees of
freedom of the system, and thereforeU(x) is not, strictly
speaking, a potential energy. Furthermore,U(x) as defined
in eq 3 is only determined up to an additive constant, and a

particular reference can be chosen for the energy. The
inversion of the probability distribution is straightforward
and accurate for the stiff degrees of freedom like the bond
length. It becomes less obvious as the energy level of the
effective potential decreases and the target quantity becomes
more influenced by the medium. For the definition of the
nonbonded interaction from the measured RDF for instance,
more choices will have to be made for the form of the
effective interaction.

With this methodology, we can now create several
different coarse-grained models and adjust their parameters
so as to reproduce first the target distributionsP(x) and then
the other properties. Besides this, an obvious and very simple
choice for a coarse-grained model of PE consists of taking
the parameters from the CG-PVA model and modifying only
the most important interaction from the all-atom simulation
data, i.e., the angular potential. One can justify such an
approach by assuming that, the structures of PVA and PE
being overall very similar, the other parameters of CG-PVA
should constitute an acceptable approximation for alkanes.
We call this model “CG-PE0”; the modified angular potential
is derived in section 3.1.2, as part of the “regular” coarse-
graining procedure that we shall present now.

In the following, we focus on simulations of 100 chains
of N ) 22 monomers which match our results for C44H90

obtained with the all-atom model.
3.1.1. Connectivity.The stiffest interaction in the system

corresponds to the potential that ensures the connectivity of
the consecutive particles inside a chain. As for covalent bonds
between atoms in all-atom simulations (which in the case
of our alkane model are treated as rigid constraints, see
section 2.1), the fluctuations of coarse-grained beads around
the average bond length is very rapid and relatively unaf-
fected by the other interactions. Therefore the simplest
description of the bonded interaction consists of assuming a
harmonic form of the interaction

and determining the appropriate coupling constantkbond via
a fit of the data obtained from the all-atom simulations.
Figure 5 presents the target distributionPbond(b) and the

Figure 4. Comparison of the angular distributions obtained
for different choices of coarse-graining level at T ) 550 K.
The original (harmonic) bond angle distribution is also indi-
cated (AA). The distribution’s structure weakens for mapping
centers located 3 carbons away and completely disappears
for centers separated by 4 bonds.

Figure 5. Distribution of bond lengths between two consecu-
tive mapping centers measured from the all-atom simulation
data. The inset shows the good agreement with the Gaussian
distribution obtained using the harmonic potential of eq 4. The
target distribution is slightly shifted toward smaller bond
lengths.

Ubond(b) ) 1
2
kbond(b - b0)

2 (4)

U(x) ) -kBT lnP(x) (3)
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Gaussian fit reproducing well the all-atom data, except for
a slight shift of the distribution toward the lower bond
lengths. This effect is unimportant for our coarse-grained
models. The fitting parameter takes the valuekbond ) 11476
kBTσ-2; the average bond lengthb0 ) 0.2535 nm≈ σ/2 is
the reference length in the coarse-grained simulations, see
section 2.2.

3.1.2. Bond Angles.The bond angle distribution measured
between every other carbon atom in the atomistic simulations
exhibits a more complex structure than the bond length
distribution or angular distribution on the atomistic level, as
a result of the influence of the underlying torsional states as
already mentioned (cf. Figure 6). Here it is thus not possible
to find a simple analytic expression for the effective potential
Uang(θ), and one has to use the Boltzmann inversion

The resulting potential is also shown in Figure 6; the arbitrary
constantUang

0 has been set so that the reference angular
energy is 0 for trans-trans states. The structure of the coarse-
grained angular potential obtained forn-alkanes is much less
pronounced than the corresponding CG-PVA potential. Only
two of the three expected favorable states are observable,
the gauche-gauche state being almost totally absorbed into
the neighboring trans-gauche state. This comes from the
fact that the angular distribution is sharper in the case of
PVA, with very weak probabilities of transition between two
states. This is due to intrachain hydrogen bonds that stabilize
the conformations of the PVA chains. The absence of
hydrogen bonds in the PE melt causes the chains to become
more flexible. Nevertheless, we shall see that the specific
shape of the angular potential will strongly favor stretched
states and thus drive the crystallization at low temperature.

3.1.3. Torsions.The distribution of torsion angles mea-
sured from the conformation of four consecutive mapping
centers is shown in Figure 6 and can be inverted in the same
fashion as has been done for the angular degree of freedom
(except there is no sine from the jacobian in the Boltzmann
inversion) to yield an effective torsional potentialUtors(φ).

Although much less stiff than the angular potential (smaller
energy scale), it still clearly favors the trans configuration
of the coarse-grained chains. The trans state of the coarse-
grained backbone should not be confused with the trans state
of the original atomistic model, which determines the angular
interaction. The definition of a torsional interaction on the
coarse-grained level can be viewed as an attempt to fine-
tune the description of the chains’ flexibility on a larger
length scale.

The torsional potential derived for CG-PE appears weak
but still clearly favors the stretched conformations, thus it
seemed worth including it in the coarse-grained model. To
be sure about the influence, we constructed two models, one
with and another without torsions.

3.1.4. Nonbonded Interactions.The effective interactions
determined above are rather straightforward to parametrize,
using either an analytic expression or direct Boltzmann
inversion to map the data from all-atom simulations. Whether
using these mappings in coarse-grained simulations will yield
distributions that match the target functions is of course not
obvious, but the method is clear. In the case of the nonbonded
interactionUmol(r), it is not possible to neglect the influence
of the other degrees of freedom anymore, and more choices
have to be made. This is apparent when looking at the RDF
presented in Figure 7: The first peaks are directly related to
the positions of the nearest neighbors of one “monomer” (i.e.
an ethylene group in the case of the PE chains considered
here), and thus RDFs have to be calculated excluding these
contributions the effect of which has already been taken into
account when deriving the previous effective interactions.
Figure 7 also shows RDFs where respectively the first two
and three neighbors of one particle have not been considered
in the calculation, in comparison with the full RDF.

One possible solution to determineUmol(r) consists of
guessing a functional form as we did in the case of the
binding interaction in section 3.1.1; CG-PVA uses a softer
Lennard-Jones potential of the form

Figure 6. Bond angle and torsional angle distributions
measured from the all-atom simulation and the corresponding
effective potential derived from them using eq 3.

Uang(θ) ) -kBT ln
Pang(θ)

sinθ
+ Uang

0 (5)

Figure 7. RDF measured from the position of every other
carbon atom along the atomistic backbone. In the inset, the
same distribution is compared to variants calculated with the
2 closest neighbors excluded (RDF e2) and the 3 closest
neighbors excluded (RDF e3). The latter functions are used
in the Boltzmann inversion formula when deriving the non-
bonded effective potential in the case of a completely repulsive
potential and a potential with an attractive part.

Umol(r) ) ε0((σ0

r )9

- (σ0

r )6) (6)
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which is truncated and shifted at the position of the minimum,
yielding a fully repulsive interaction. It is possible to choose
such a functional form and then try to adjust the values of
the coefficientsε0 andσ0 in order to reproduce schematically
the trend exhibited by the RDF. However, this method cannot
be very precise, and it is possible to attempt to match the
RDF more closely either with an optimization of (ε0,σ0) as
presented in ref 4 or using the Boltzmann inversion on part
of the target RDF.

In any case, the first choice to be made is related to the
torsional interaction: Depending on whether an effective
interaction is included in the coarse-grained model or not
(in the case of CG-PVA, it was found unnecessary), the
mapping for the nonbonded interaction is different. The
reason for this is that we take the viewpoint that all
interactions which are explicitly taken into account by bonded
interaction potentials should not be considered in the
nonbonded potential. Thus, if torsions are included, the 1-4
interaction (i.e. particles separated by three consecutive
bonds) should be excluded from the nonbonded interaction
and from the target distribution. If no torsions are considered,
the 1-4 interaction should be also included in the RDF target
distribution.

Since these RDFs take into account the correlations
between any two particles in the system (except the close
neighbors along the chain), they contain several peaks
indicating the average positions of the neighbor shells. A
direct Boltzmann inversion of such a function would yield
a long-range potential which takes many-body interactions
into account. To avoid this, a cutoff distance has to be chosen
beyond which the effective potential is zero (see also ref 6).
Here again, many possibilities arise. Since an essential aim
of the coarse-graining procedure is to save computer time,
we wish to have a potential with the shortest possible
interaction range. Thus, the most natural possibilities consist
in cutting off the potential either at the firstminimum
(yielding a fully repulsive interaction, as in the case of the
CG-PVA model) or at the firstmaximum(so as to include
an attractive part). The latter options appear equally sensible,
since in the molten state the high density of the system
screens the nonbonded interactions beyond the nearest-
neighbor distance. Thus, keeping the density of the system
constant either in constant-volume or constant-pressure
simulations should yield equivalent results, at least for
simulations at the given state point. However, note that the
thermodynamic properties involving derivatives as the equa-
tion of state are strongly influenced by the attractive tail of
the potential. Thus, to ensure a better transferability in the
temperature or pressure range, a potential with an attractive
part is probably the better choice.

The simulation procedure applied consisted in a first
equilibration run at constant temperature and volume, using
for the density the value extracted from the all-atom
simulations. During this NVT simulation, the average pres-
sure is measured. This pressure is applied in the following
constant-pressure simulations for a second equilibration step
and the cooling-heating cycles. The value of the pressure is
arbitrary in our simulations and differs depending on the
model. The values of the pressure (inkBTσ-3) for the different

coarse-grained models are indicated in Table 2, together with
a summary of the force-field characteristics. It can be seen
that a lower pressure is sufficient to achieve the right density
in the case of the models with an attractive nonbonded
interaction.

In case surfaces are involved in the study, the model must
be optimized such that the applied pressure is 0. References
6 and 10 solved this by adding a linear term to the nonbonded
potential. However, one should probably include the pressure
(as well as other thermodynamic quantities as mentioned
above) in the optimization procedure. Here, we are only
interested in simulations of the melt and can treat the pressure
as a force-field parameter.

3.2. Optimization of the Coarse-Grained Models.The
prescription given above for the different coarse-grained
models has been tested in simulation; the first requirement
of the coarse-graining approach is that the target distributions
extracted from the all-atom simulation data are reasonably
well reproduced with the simplified scheme. This should
ensure that the static properties are very close in the two
simulation models.

The bond length distribution, as expected, exactly matches
(within the line width) the Gaussian function obtained by
inversion of the prescribed potential, whatever model is used.
This is not surprising since the latter potential is very stiff,
and therefore the bond interaction is not influenced by the
other degrees of freedom.

Contrary to that, the angular distribution shows significant
deviations from the target, for all models (cf. Figure 8). This
is very different from what has been observed for the CG-
PVA model for which the measured angular distribution
reproduces almost exactly the prescribed one (with only
minor differences which do not significantly affect the
population of the different, well-separated states). The reason
for that is the much smoother form of the angular distribution
for PE, as already mentioned above. In particular, it can be

Table 1: Static Properties of Different n-Alkanes Obtained
by All-Atom Simulationsa

system chains
duration

(ns) lp/b0

lp
(nm)

Rg
2

(nm2) Re
2/Rg

2
D

(nm2 ps-1)

C8H18 256 2 2.17 0.332 0.0707 7.78 0.01273

C16H34 84 20 2.33 0.357 0.205 7.93 0.00353

C44H90 100 4 2.35 0.359 0.831 6.98 0.0080
a For the three different chain lengths presented here, simulation

details (number of chains and length of the simulation runs) are
indicated, together with the following properties: Persistence length
lp (measured as the characteristic length of the vector orientation
decorrelation along one chain, for vectors joining every other carbon
atom), squared radius of gyration Rg

2 and end-to-end distance Re
2,

and diffusion coefficient.

Table 2: Summary of the Force-Field Characteristics for
the Different CG-PE Models

model
nonbonded

potential
torsional
potential

applied
pressure
(at T )1)

CG-PE1 repulsive explicit 3.73
CG-PE2 repulsive implicit 4.36
CG-PE3 attractive explicit 2.74
CG-PE4 attractive implicit 1.80
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noticed that the population of the trans-trans state is
significantly lowered for all coarse-grained models, whereas
the shoulder at 90° is higher than in the target distribution.
This effect seems slightly more pronounced in the case of
models having no explicit torsional potential, surprisingly
(one would expect the torsional potential to make the chains
stiffer, but this probably only occurs on larger length scales).
This lowering of the probability of trans-trans states is
probably due to the density of the melt which tends to
compress the chains and makes folded angular states more
favorable than the stretched states.

The torsional distribution that is enforced via an explicit
torsional potential appears to be well reproduced for the
models CG-PE1 and CG-PE3, whereas the other models have
a less pronounced distribution of torsional angles, showing
nevertheless the same trend (more favorable trans state), see
also Figure 10.

The RDF measured on the data obtained with the various
coarse-grained models proved to depart significantly from
the original function. These discrepancies are directly related
to the mismatch described above for the angular interac-
tion: The peaks associated with the angular states are too
low, and a shoulder appears between the first and second
peak in the global RDF, corresponding to the too large
proportion of folded states already observed. Apart from
these differences concerning the short-range particle-particle

correlations, one can notice that the subsequent peaks of the
RDF, associated to the neighbor shells, are shifted. These
long-range differences are more difficult to relate to the shape
of the effective potentials, which all necessarily have short
ranges. The mismatch between the coarse-grained and the
all-atom RDF varies with the type of coarse-grained model
but not qualitatively.

The previous observations show that the coarse-grained
models “simply” derived, i.e., with effective potentials
directly inverted from the target distributions, are not
sufficient to reproduce the correct behavior of a dense
polymer melt, even at high temperatures where one can hope
that the different degrees of freedom are relatively indepen-
dent from each other. This only works well in the case of
very sharp distributions. Thus, an additional step is needed
in the coarse-graining procedure: The effective potentials
associated with distributions that are not well reproduced in
the coarse-grained simulations have to be optimized.

The optimization of the effective potentials is an iterative
procedure during which one coarse-grained potential is
modified until the corresponding probability distribution
matches the target distribution.2,3 This has to be performed
for all the degrees of freedom that are not well described
compared to the reference all-atom simulation. In doing so,
it is sensible to consider the interaction in decreasing order
of intensity, i.e., the strongest potential should be optimized
first, and the method should be applied in turn to the other
interactions, ideally refining the model at every step (pro-
vided the different optimizations do not have contradictory
effects).4 The order in which the different potentials should
be optimized is therefore, in our case, the following:

Optimization of the binding interaction was not needed
for any of the models. The procedure would have been
slightly different than for the other potentials, since for this
degree of freedom we used an analytic form for the potential
(whereas it is tabulated for the other interactions). In that

Figure 8. Comparison of the angular distributions obtained
with the various models at T ) 1. The probability of trans-
trans states appears reduced compared to the target distribu-
tion from all-atom models.

Figure 9. Evolution of the angular distribution Pang(θ) during
optimization of Uang(θ) for the CG-PE3 model. The initial
distribution is obtained directly from the potential inverted from
the atomistic Pang

target(θ), i.e., without any optimization. After
optimizing Uang(θ) the distribution matches the target (Opt.
Uang(θ)) but deviates again after the optimization of the RDF
(Opt. RDF). The agreement is fine again after a second
optimization of both Uang(θ) and Umol(r) (Opt.).

Figure 10. Torsional distribution obtained for the different
coarse-grained models. The results for CG-PE1 and CG-PE3

which both include an explicit torsional potential are very close
to the target distribution, whereas the other two models exhibit
significant deviations; for CG-PE4, the distribution is almost
completely flat, indicating that no particular torsion angle is
favored. CG-PE2 has some structure identical in trend to the
stiffer models. (Gliding averages have been applied to the
data.)

Ubond(b) f Uang(b) f Umol(b) f Utors(b) (7)
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case, an optimization of the parameters (here,b0 andkbond)
using e.g. a simplex method is needed.

The angular potential is the potential that has to be
optimized first, and this is a particularly important step since
we know its prominent influence on the crystallization
process. The method consists of modifyingUang(θ) itera-
tively6 via

with Uang
n (θ) being the potential at stepn, Pang

n (θ) the
probability distribution of angles when applying this potential
in the simulation, andPang

target(θ) the target distribution from
the all-atom simulation. The optimization procedure was
observed to converge extremely fast, with most of the
changes already accomplished after the first iteration,
subsequent iterations only slightly refining the agreement
betweenPang

n (θ) and Pang
target(θ). Ten iterations were per-

formed, yielding a satisfactory agreement; the resulting
distributions at various steps during the optimization pro-
cedure are shown in Figure 9.

Since the measured torsional distribution was very close
to the prescription already, it was not necessary to apply the
optimization algorithm to this interaction; this is shown in
Figure 10.

The same procedure as described in the case of the angular
potential was applied to optimize the effective nonbonded
potential, and it also converged very fastsagain one iteration
was sufficient to yield a very small discrepancy between
RDFn(r) and RDFtarget(r) (the total RDF were used as a means
of comparison between thenth andn + first distributions).
After 10 iterations, the RDF did not change appreciably, and
the mismatch with the target RDF was small (but still
nonzero, especially in the case of CG-PE1 for which the
nonbonded interaction has a very short range and therefore
cannot strongly influence the large-r region behavior of the
RDF).

After optimizing Umol(r), it appeared that the angular
distribution has been modified as well and no longer matched
the targetPang

target(θ). This is not surprising, since the struc-
ture of the melt is necessarily strongly influenced by the
angular distribution. Therefore convergence of both the
angular distribution and the RDF at the same time cannot
be guaranteed. However, repeating the iterative process for
the angular distribution first, then for the RDF yielded
satisfactory results for both distributions, in the case of CG-
PE1 and even better for CG-PE3 (see Figure 11)swhich could
reproduce very accurately the RDF on a larger length scale
due to the larger cutoff inUmol(r); the optimized nonbonded
potential thus has a stronger influence on the large-scale
structure and facilitates convergence to the target distribution.
Again, 10 iterations were performed for each degree of
freedom, while most changes occurred after the first step.

The pressures that were used to maintain the density to
its value obtained from the all-atom simulation were,
respectively. 2.39 and 1.21kBTσ-3 for CG-PE1 Opt. and CG-
PE3 Opt., which is lower than the values of the unoptimized
models indicated in Table 2. This means that it is easier to

constrain the target density in the case of optimized models.
Figure 12 presents the final form of the angular and
nonbonded potentials, compared to the original CG-PE
model, i.e., before and after optimization. As a conclusion,
optimization of the coarse-grained potentials of the CG-PE
models appeared quite successful in improving the ability
to reproduce the static structure of the original all-atom
model, as can be seen from the values of the squared radius
of gyrationRg

2 which are 2.59 for CG-PE1 and 2.70 for CG-
PE3 and become 2.90 and 2.94, respectively, for CG-PE1

Opt. and CG-PE3 Opt.; this is comparable to the value 3.03
obtained forRg

2 with the corresponding detailed simulations
of C44H90.

Uang
n+1(θ) ) Uang

n (θ) + kBT ln
Pang

n (θ)

Pang
target(θ)

(8)

Figure 11. Comparison of the (total) RDF for the original
C44H90 model, CG-PE3, and its optimized form (after the
second optimization procedure). The inset shows the same
quantities in the case of CG-PE1. It can be seen that the RDF
is very well reproduced using optimized effective potential,
even better in the case of CG-PE3 which has an attractive
part and therefore a longer range.

Figure 12. Optimized angular and nonbonded potentials for
the CG-PE1 and CG-PE3 models. The original potential Uang-
(θ) is unique, whereas Umol(r) depends on the CG-PE model
(smaller or larger cutoff). One can notice that the optimization
process for CG-PE1 which is originally completely repulsive,
enforces the apparition of a slightly attractive part.
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3.3. Effect of the Temperature on the Mapping.In this
study of coarse-grained models forn-alkane melts, we make
the assumption that the effective potentials describing the
interactions between the beads are valid atany temperature,
even though they are determined from the atomistic simula-
tions at one temperature only. This is certainly justified in
case we only consider the melt at this particular temperature
or for small variations around it but is obviously wrong when
we use the simple coarse-grained model over a large range
of temperatures, as for a cooling toward the crystalline state
of the polymer system, as presented in section 4. Therefore
we will consider hereafter the effect of temperature changes
on the parameters in the models and check whether it can
be valid to make use of such a simplistic approach.

To check the validity of our simplified approach, we can
have a look at the different effective potentials and monitor
their behavior as the temperature is modified. The binding
potentialUbond(b) is a harmonic potential [see eq 4] whose
parameters were determined by a fit: One can calculate the
parametersb0 andkbond at other temperatures as well. Doing
so betweenT ) 350 K andT ) 550 K, it was found that the
parameters are temperature independent, i.e., that the change
in the bond length distribution observed for two different
temperaturesT1 andT2 is completely determined by the ratio
T1/T2. This comes from the independence of the bond length
from the other parameters in the system and is not surprising
when considering that, in this case, the harmonic interaction
on the coarse-grained level is directly related to the harmonic
interaction constraining the bond angles on the atomistic
level. Thus the effective binding potential is a true potential
energy for our models.

The angular potential is determined via the Boltzmann
inversion of an angular distribution. Figure 13 shows the
comparison of the effective potentials that are derived directly
from the atomistic simulations, without optimization, for
various temperatures. It is observed that in this case the
potentials are different; there is a temperature dependence
of the angular potential. To obtain another comparison of
the angular potentials and the effect of temperature, we
proceeded to the derivation of coarse-grained effective

potentials using atomistic simulation data at a lower tem-
perature, i.e.,T ) 350 K (corresponding toT ) 0.64 for
coarse-grained simulations). The method used was exactly
the same as presented in sections 3.1 and 3.2: After the
first derivation, the effective potentials were optimized to
yield a model CG-PE1

T)350. This model again signifi-
cantly improves the reproduction of the structure of the
atomistic model, with for instance a squared radius of
gyration Rg

2(T ) 0.64) = 3.13 instead of 3.62 before
optimization; this is to be compared to the value measured
in the atomistic simulation,Rg

2(T ) 350K) = 3.19. The
model CG-PE1

T)350 is the equivalent of the CG-PE1 model,
i.e., it has an explicit torsional potential and no attractive
part. The model CG-PE3

T)350 with an attractive part in the
nonbonded potential could not be optimized nor used, since
at the temperatureT ) 0.64 it already started to crystallize
during the equilibration phase of the simulation.

The inset in Figure 13 compares theoptimizedeffective
angular potentials of CG-PE1 (mapping done atT ) 550 K)
and CG-PE1

T)350: The two functions only slightly differ,
compared to the differences observed for the nonoptimized
potentials. The two potentials most notably differ (by
approximately 10%) at aroundθ ) 90° andθ ) 120°. This
shows that the optimized potentials are much closer to being
potential energies than the simply derived potential which
are in fact free energies and take into account a certain
amount of entropy corresponding to the influence of the other
degrees of freedom in the system.

The torsional potential was also computed from the
atomistic simulations at different temperatures; here the
changes were more drastic, since the probability distribution
of the angleφ is qualitatively different depending on the
temperature: The local minima on each side of the maximum
atφ ) 180° (see for instance Figure 10) are more pronounced
at temperatures lower than 400 K (not shown). The coarse-
grained models do not reproduce this tendency, and this
discrepancy could only be treated by introducing the ap-
propriate temperature dependence in the definition of the
effective potentials. However, one can argue that this is a
weak effect and that the torsional degree of freedom does
not play a key role for our models. Actually, cooling
simulations of CG-PE1 and CG-PE2 show that the two models
differing by the torsional potential have essentially the same
behavior and similar crystallization temperatures.

The observations for the nonbonded interaction are the
same as for the angular potential: The inverted potentials
are indeed rather different depending on the temperature
chosen for the mapping, but when optimized the mismatch
tends to disappear, as observed when comparing CG-PE1 to
CG-PE1

T)350. So once again the effective potentials deter-
mined for the optimized models are a good approximation
to potential energies.

Thus, it is possible as a first approximation to use coarse-
grained potentials mapped at one single temperature from a
reference (here an all-atom simulation) but only when using
optimizedmodels. For the latter, the correlations that might
exist between the different degrees of freedom are taken into
account during the optimization procedure, and the effective
potentials therefore correspond more closely to the ideal

Figure 13. Comparison of the effective angular potentials
Uang(θ) (no optimization) inverted from the atomistic simula-
tions data corresponding to equilibrium at several tempera-
tures. The curves differ particularly for the gauche-gauche
state at around 90° for the extreme temperatures, whereas
for the optimized angular potentials (inset) they are found to
be closer to each other (potentials for the models CG-PE1

and CG-PE1
T)350).
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potential energies. For our CG-PE models, it could be
checked that the effective potentials are not too different at
different temperatures (aboveTcryst of course), which means
that they are a good approximation to the “real” potentials.
However, this is still not a sufficient condition for the coarse-
grained models to reproduce the phase transition to the
crystalline state at low temperature; this is what is considered
in the next section.

4. Crystallization Simulations
Crystallization of the different models of PE could be
observed in nonequilibrium simulations consisting in a
continuous cooling, i.e., a steady decrease of temperature
imposed by the thermostating algorithm. Continuous cooling
has been performed at a constant rate of-5 × 10-6 τ-1 and
was followed by continuous heating (rate 2× 10-5 τ-1).

4.1. Time Scales.The use of identical cooling and heating
rates for the nonequilibrium simulations of the different
models is justified by the similarity of the time scales that
can be derived for CG-PE: The characteristic timeτR )
Rg

2/D takes the value 372τ, (54 τ depending on the model.
This allows us to estimate the time unitτ in the coarse-
grained simulations: ComparingτR ) 870 ps for C44H90 to
τR ) 372 τ, one obtainsτ ≈ 2.3 ps. It is possible with this
figure to compare more quantitatively the “efficiency” of
the two simulation schemes: The all-atom simulations’
integration time-step is 0.002 ps, whereas it is 0.005τ ≈
0.01 ps for the coarse-grained method.

This estimation implies that during cooling at the rate used
here, the temperature changes by about 10-3 during the
chain’s relaxation timeτR, meaning that the system is not
so far from the equilibrium, at least at the beginning of the
cooling run. AtT ) 0.6, the relaxation time is increased by
almost a factor 20, i.e., the chain relaxes during cooling of
0.02. This is still very rapid and means that the slowing down
should not be an important driving force of the crystallization.

Upon optimization of the potentials,D is observed to
increase slightly. The behavior of the diffusion coefficient
with temperature is examined in Figure 14; it is seen that
data for the coarse-grained models exhibit the same trend
typical of an Arrhenius law,D ∼ exp(-U/kBT). Using the
length and time scalesσ andτ, it is possible to compare the
coarse-grained and all-atom data and this shows that both
simulations yield a similar behavior, at least for high
temperatures. This also corroborates the statement that the
systems are not far from equilibrium during cooling. The
decrease ofD with 1/T is faster for the all-atom simulations
than for the coarse-grained models; this points out the
limitations of the simple coarse-graining procedure that does
not allow for reproducing the dynamics of the system on a
large temperature scale (note that the deviation has the same
trend as the deviation of the thermal expansion coefficient
shown in Figure 17).

4.2. Crystal Structure. Figure 15 shows the results for
cooling of the models with nonoptimized and optimized
potentials; they crystallize and melt at the temperatures
indicated in Table 3 (melting and crystallization temperatures
are determined as the inflection point in the behavior of the
volume as a function of temperature). The experimental value

for the melting temperature of C44H90 is Tmelt ≈ 360 K, which
corresponds toT ) 0.65 in the units relevant to our models.
It has to be pointed out that the crystalline structures formed

Figure 14. Evolution of the diffusion coefficient as a function
of the inverse temperature. The “coarse-grained” units are
used; the values for C44H90 have been rescaled by a factor
σ2/τ with τ ) 2.3 ps as derived from the mapping of the
relaxation times τR, i.e., τ ≈ 2.3 ps. The points corresponding
to the coarse-grained models show very similar behavior,
whereas the data for C44H90 depart from it at temperatures
lower than 500 K. This is to be connected to the mismatch in
the expansion coefficient shown by Figure 17. (The top and
right-hand axes show for reference the corresponding values
in units appropriate to all-atom simulations, i.e., K-1 and nm2

ps-1.)

Figure 15. Phase diagrams for the different coarse-grained
models and for CG-PVA: Evolution of the volume per
monomer as a function of temperature during continuous
cooling and subsequent reheating. The upper figure shows
the results for the nonoptimized models, and the phase
diagrams for the models with optimized effective potentials
are presented below. It can be seen that the model which
matches the high-temperature structure of the atomistic model
the best (CG-PE3 Opt.) also yields the melting point that is
closest to the experimental data for C44H90 (Tmelt ≈ 360 K).
(The simulation data have been smoothed.)
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during the cooling simulations of coarse-grained models
cannot reproduce all features ofn-alkane systems: The
crystals have a hexagonal symmetry due to the cylindrical
shape of the chains’ stretched parts. This is qualitatively
different from the orthorhombic (or triclinic, depending on
the chain length26) phase that is characteristic ofn-alkanes
and for the description of which the explicit treatment of
the hydrogen atoms is mandatory. However, the larger scale
features of the crystals, i.e., the lamellar-like structure, is
well reproduced, and so is the apparition of folds along the

chains for higher molecular weight molecules, as we shall
see later on.

The temperatures of crystallization/melting are correlated
to the probability of finding stretched states in the meltat
high temperature(T ) 1), showing the prominent influence
of the bond angle degree of freedom on the properties of
the model and particularly its low-temperature behavior.29

The nonoptimized models which have a too low probability
of trans-trans states compared to the original atomistic
model yield lower crystallization and melting points, since
chain rigidity favors formation of the crystalline phase and
also prevents it from melting at lower temperature. The
pronounced hysteresis found not only relates to the large rates
for cooling and heating but also depends on the activation
barrier to be overcome when melting the crystalline phase.

Since the results obtained from the simulations of the
coarse-grained models withN ) 22 (corresponding to
C44H90) appeared reasonable, it was interesting to extend the
simulation to longer chains, asn-alkanes are just short PE
molecules. The phase diagrams obtained forN ) 50 are
shown in Figure 16, and Table 3 summarizes the crystal-
lization and melting temperatures also forN ) 100. Simula-
tions were performed with 72 chains forN ) 50 and 192
chains forN ) 100; the cooling and heating rates applied
are the same as in the case ofN ) 22.

Note that the typical relaxation times increase asN2 in
this length region. Thus the temperature difference corre-
sponding to the relaxation time becomes significant for the
longest chains, and they may be already out of equilibrium.
The different models crystallize and melt at about the same
temperatures asN ) 22, whereas one might have expected
that the crystallization temperature increases with chain
length. The phase diagrams appear very similar for the longer
chainsN g 50, indicating a fast saturation ofTcryst andTmelt.
It is to be noted that the densities of the melt atT ) 1 are
not identical anymore depending on the model; the density
was a constraint in the derivation of the coarse-grained
models, as the value of the pressure has been adjusted so as
to reproduce the density of the all-atom simulation.

The density varies linearly with the inverse chain length
1/N due to chain-end effects (this has been checked for the
CG-PVA model, with chains fromN ) 10 to N ) 1000).
However, the proportionality coefficient necessarily depends
on the force field and therefore need not be the same for
different models. Another constraint could have been intro-
duced during the coarse-graining procedure to enforce the
density variation as a function of the chain length, or
temperature.

The morphology of the crystals depends on chain length
and on the force field used. For short chains, the melt turns
into a crystal of rods as the chains can still fully stretch upon
cooling, whereas for longer chains the qualitative behavior
of polymer systems is recovered: The chains are constrained,
and parts aggregate during crystallization before the whole
chain has had the possibility to stretch in order to reach the
all-trans state. This gives rise to ordered lamellar regions
and amorphous zones surrounding them. This is observed
in our simulations of CG-PE as well as for CG-PVA;20 the
crossover between the rod and the polymer regime is located

Figure 16. Phase diagrams obtained for chains of 50
monomers simulated with the different coarse-grained models
for PE. The hierarchy of the different coarse-grained models
is unchanged: The optimized CG-PE3 has the higher melting
point, and CG-PE1 the lowest. It is also worth noticing that,
for this longer chain length, the densities measured for the
different models do not match anymore, as was the case for
the system used for the mapping of the potentials (N ) 22,
density 2.1 at T ) 1). The phase diagram obtained for N )
100 is extremely similar to what is observed here.

Figure 17. Density of the melt vs temperature measured
during continuous cooling for the original atomistic model and
CG-PE. The expansion coefficients for the latter are much
smaller than for C44H90.

Table 3: Crystallization and Melting Temperatures
Measured during Continuous Cooling and Heating of the
CG-PE Models

N ) 22 N ) 50 N ) 100

model Tcryst Tmelt Tcryst Tmelt Tcryst Tmelt

CG-PE1 0.35 0.49 0.33 0.39 0.33 0.42
CG-PE2 0.40 0.52
CG-PE3 0.41 0.54 0.40 0.53 0.40 0.52
CG-PE1 Opt. 0.44 0.56 0.39 0.51 0.40 0.49
CG-PE3 Opt. 0.48 0.65 0.47 0.59 0.47 0.62
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aroundN ) 20 at such cooling rates. For the nonoptimized
(and therefore not stiff enough) models most chains are
folded once in the crystal (forN ) 22), and for the optimized
models all-trans states are obtained, with chains slightly tilted
as a result of the small size of the simulation box.

For N ) 50, the CG-PE1 Opt. model still has fully
elongated chains, CG-PE3 Opt. yields one well-ordered
lamella surrounded by amorphous chain parts, and the
nonoptimized models form more disordered structures. The
models having an attractive nonbonded potential prove to
be significantly denser at low temperature. The structure of
the crystals obtained for the different models can be
characterized by the proportion of trans-trans states at low
temperature, which is above 90% forN ) 22 (92% for the
nonoptimized models and 98% for the stiffer optimized
models) and slightly smaller forN ) 50 as a result of more
disorder in the final configurations.

5. Conclusions
We have constructed coarse-grained models of PE in the
same spirit as the CG-PVA model, this means on a “united-
monomer” level with two CH2 groups per CG-bead, and
including at least an angular potential beyond the bead-spring
interactions. It has been shown that such models yield good
results in the description of the melt in the sense that
optimizedcoarse-grained models successfully reproduce the
structure obtained through the more detailed (all-atom)
simulations of C44H90. This simplification scheme yields a
reasonable agreement with the structural properties of the
original model in equilibrium at high temperature (it was
optimized to this end). It also allowed us to reproduce
qualitatively the features of the crystals that develop at low
temperature, whereas this could not be achieved using the
all-atom simulations. Furthermore, the refinement of the
coarse-grained models via optimization of the angular and
nonbonded potentials made it possible to approach the
experimental value of the melting point. Even though the
agreement with this value does not necessarily mean that
the model describes completely the system under consider-
ation, it is still very interesting that with a rather simple
method one is able to obtain an effective model which
achieves very good qualitative agreement with experiment.

The results of the present study show that the coarse-
graining procedure used to address the crystallization of PVA
can be applied to the even more generic PE and yield both
the same qualitative results for the crystalline state (which
is interesting because of the abundant literature about
crystallization of PE) and a simplified model that reproduces
accurately many static properties of the melt at high
temperature.

One of the main reasons for the success of our coarse-
graining approach lies in the chosen “scale” at which the
mapping is performed, i.e., the position of the mapping
centers. The choice to retain every other carbon atom from
the original backbone is indeed crucial, since this leads to a
shift of the different interactions (the binding potential is
related to the atomistic bond angles, the angular potential to
the torsions, and the torsional potential has very little
influence): Thus the global structure of the model is

preserved, while the unimportant degrees of freedom are
averaged out without losing the connection to the underlying
all-atom description. The angular potential in its structure is
reminiscent of the torsional states, and this connection
captures the most important features of the chains we are
modeling. Simulations of CG-PVA-like models with a
structureless angular distribution such as the ones obtained
for coarser models (see Figure 4) only led to the glassy state
upon continuous cooling since nothing drives the crystal-
lization anymore in this case. To be consistent when deriving
a coarse-grained model the way we described it here in the
case of more remote mapping centers, one would need to
take into account the bond length distribution which is not
Gaussian anymore but presents several peaks. However, this
is not likely to lead to the formation of an ordered state at
low temperature since nothing would then force the chains
to stretch.

The process of coarse-graining consists of discarding part
of the information available from a system; by doing so one
makes the simulation more efficient but also introduces
possible inconsistencies in the new models. Even though the
high-temperature structure has been shown to match rather
precisely the properties of the original all-atom model, the
continuous cooling simulations revealed that the expansion
coefficient of the CG-PE models do not correspond to the
values measured from the atomistic simulations: Figure 17
compares the particle density for both simulation schemes,
indicating the mismatch. The value obtained for C44H90 (all-
atom data yield a result close to 9× 10-4 K-1 between 350
and 450 K) is rather close to the experimental data (6×
10-4 K-1 is reported in the melt30), while the coefficient
measured for the different CG-PE models is much smaller;
this also explains why crystallization is easier to observe
using the coarse-grained than the atomistic models. To
improve the model, one certainly has to better reproduce the
thermodynamics of the model, in particular the compress-
ibility and the thermal expansion coefficient. This was also
found to be a prerequisite to successfully reintroduce
atomistic details into the simulation.31

This work shows that except for extreme cases, the
optimization of the coarse-grained potentials is both needed
and very efficient (optimization was found unnecessary e.g.
for very flat potentials as in the case of torsions for CG-PE
or for very sharp potentials such as the angular potential of
CG-PVA). Concerning the other choices for the force-field
parameters, a compromise between the speed and accuracy
of the simulations has to be adopted. The CG-PVA model
was derived with the idea of providing a very efficient model
for polymer melt simulations, i.e., with short-range potentials,
tabulated values with linear interpolation. The torsional
potential was discarded because of its weak influence on the
structure of the melt. In the case of CG-PE, it was found
that taking into account a torsional potential (which has a
somewhat more pronounced structure) slightly improves the
accuracy of the static properties without influencing notably
the performance of the simulation code. This is the reason
we focused on the modelswith explicit torsional potential
here (CG-PE1 and CG-PE3). The form of the nonbonded
interaction is a more complicated issue. The choice of a
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smaller cutoff distance (CG-PE1) obviously makes the
simulation faster, but since the model with a larger cutoff
(CG-PE3) achieves a higher accuracy in reproducing the
structure of the melt it cannot be deemed “less efficient”.
And even though the (optimized) CG-PE3 takes roughly twice
as much CPU time as CG-PE1, it remains much faster than
the all-atom scheme.
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Abstract: The effect of solvent quality on the behavior of a polyelectrolyte chain near a charged

surface is studied using molecular dynamics simulation with explicit solvent. The polyion adsorbs

completely on the surface for a high enough surface charge density, and the surface charge

required for complete adsorption becomes lower as the solvent quality is decreased. Several

static and dynamic properties display a nonmonotonic dependence on surface charge density

and solvent quality. For a given value of solvent quality the component of the radius of gyration

(Rg) parallel to the surface is a nonmonotonic function of the surface charge density, and for a

given surface charge density the component of Rg perpendicular to the surface is a nonmonotonic

function of the solvent quality. The center-of-mass diffusion coefficient and rotational relaxation

time are nonmonotonic functions of the surface charge density. Translational diffusion coefficient

increases, and the rotational relaxation time decreases as solvent quality is decreased for a

fixed surface charge density.

I. Introduction
The ease of processing makes polymers useful coating
materials. An intriguing case is when the polymer molecules
contain charged groups along a hyrophobic backbone1-3

because the balance between hydrophobic and electrostatic
interactions can, in principle, be exploited to tune the
adsorption and conformational properties. Charged polymers
have a number of applications, for example, in electrooptic
devices, semiconducting films, and drug delivery. Our
understanding of the behavior of adsorbed polyions is not
yet complete, however, and this is a problem of current
interest.4 In this work we study the adsorption of a charged
polymer to an oppositely charged surface using molecular
dynamics simulations.

There is a large body of theoretical and computational
work on the adsorption of charged polymers to surfaces.
These include scaling and meanfield theories for dilute5-17

and semidilute10,12,13,16-25 solution, and computer simulations

using Monte Carlo26-40 and molecular dynamics41-44 meth-
ods. There has been much less attention, in computer
simulations, on the effect of solvent quality on polyion
adsorption. Since in many cases, e.g. polystyrene sulfonate,
the polyions are composed of hydrophobic backbones for
which water is a bad solvent, the effect of solvent quality
can be important. In fact, it is often suggested that the solvent
plays a crucial role45-47 in the polyion adsorption on surfaces.

In the theoretical study of polymeric materials some level
of coarse-graining in the model is necessary, given the size
of the molecules. This is particularly true of charged
polymers because the molecules can be significantly stretched.
Several levels of coarse-graining are possible. At the united
atom level a small group of atoms, e.g., CH2 in polyethylene,
is treated as a single site. This model preserves the carbon-
carbon bond angle and bond length characteristics but coarse
grains over hydrogen atoms. A more computationally
convenient model, which has played an important role in
our understanding of polymer solutions and melts, is when
several of these united atoms are treated as a single site.
This results in a class of models that can be loosely referred
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to as bead-spring models, an example of which is the freely
jointed tangent hard sphere model. Information about local
chemical details is lost in this class of models, but they
provide a computationally convenient way of investigating
the effect of parameters, for example the degree of polym-
erization, on the physical properties.

In the study of polymer solutions, the properties of the
solvent molecules are generally not of interest, and it is
attractive to be able to coarse-grain out the solvent coordi-
nates. The result is an effective solvent-induced potential
between polymer sites. A further approximation is to assume
that this potential is pairwise additive. For polymers in poor
solvents, i.e., when the polymer-solvent interactions are not
favorable, the solvent-induced interaction is attractive in
nature and tends to collapse the chain for sufficiently strong
solvent-induced interactions. Note that in general this sol-
vation potential should be many-body in nature, as is clear
from the McMillan-Mayer theory,48 and a pairwise additive
form can never be exact.

The treatment of the solvent can play an important role in
simulations of polymers in poor solvents. When the polymer
chain is collapsed, the solvent is excluded from the globule
to a large extent. In simulations with explicit solvent, the
interactions between the interior polymer sites is just a weak
van der Waals attraction between the hydrocarbon sites. With
a pairwise additive implicit solvent, however, there is a very
strong attraction between these interior sites which artificially
increases the stability of the globule. The physical origin of
this effect is that a potential, which is appropriate for two
isolated monomers in the solvent, has been used under
conditions where there is no solvent present. The conse-
quence is that simulations of polymers in poor solvents often
get trapped in meta-stable states unlike corresponding
simulations with explicit solvent. In fact, the collapse
dynamics of a homopolymer49 and the phase behavior of
polyelectrolyte solutions50 are qualitatiVely different in
pairwise additive implicit solvent simulations, when com-
pared to explicit solvent simulations.

In this work we study the role of the solvent on the
properties of a single polyion adsorbed on a planar surface
using computer simulations. We include the solvent explicitly
and perform molecular dynamics simulations on a system
composed of a polyion, counterions, co-ions (counterions to
the surface), and solvent particles, confined between two
surfaces. The polyion is composed of freely jointed hard
spheres with a negative charge on each sphere and the surface
as atomically smooth with a uniform positive charge spread.
The counterions to the polyion and the co-ions (ions which
balance the charge on the surface) are monovalent hard
spheres with positive and negative charges, respectively.

We find that the polyion adsorbs completely (flat) onto
the surface for sufficiently high surface charge densities or
poor enough solvents. Several static and dynamic properties
have a nonmonotonic dependence of surface charge density
and solvent quality. For example, the component of the radius
of gyration parallel to the surface, the center-of-mass
diffusion coefficient, and the rotational relaxation time show
a nonmonotonic dependence on the surface charge density
(for a given quality of solvent), while the component of the

radius of gyration perpendicular to the surface shows a
nonmonotonic dependence on solvent quality. In all cases
the chain center-of-mass exhibits normal diffusive behavior,
but in good solvents the end-to-end vector autocorrelation
function does not decay over the course of the simulation.
Interestingly the chain dynamics become faster as the solvent
quality is decreased.

The rest of the paper is organized as follows. The
molecular model and simulation details are presented in
section II, results are presented and discussed in section III,
and some conclusions are presented in section IV.

II. Molecular Dynamics Simulations
A. Molecular Model. The molecular model is similar to the
model used by Chang and Yethiraj50 in their study of
polyelectrolytes in poor solvents. The polyion is modeled
as a flexible bead spring chain composed of monomers with
one negative charge each, and the counterions to the polyion
are monovalent positively charged spheres. The charged
surface is modeled as atomically smooth with a uniform
positive surface charge density. The co-ions (which balance
the surface charge) are monovalent negatively charged
spheres. Solvent molecules are incorporated explicitly and
are modeled as uncharged spheres.

The potential of interactionVij(r) between any two particles
i and j is given by the sum of an electrostatic and
nonelectrostatic part, i.e.,

wherekB is the Boltzmann’s constant,T is the temperature,
qi is the charge valence of sitei, λB ≡ e2/εkBT is the Bjerrum
length,e is the electronic charge,ε is the dielectric constant
of the solvent, and the parametersλij control the quality of
the solvent. The potentialsVLJ(r) and VWCA(r) are the full
and purely repulsive Lennard-Jones (LJ) potentials, respec-
tively, and are given by

and

whereεLJ is the attractive well depth, and the functionc(r)
is chosen such that the value of the potential is zero at the
cutoff, i.e.,c(r) ) (σ/r)12 - (σ/r)6.

The λij parameters determine the quality of the solvent.
In this work, we setλmm ) λss ) λ, where m denotes
monomer and s denotes solvent, andλij ) 0 for all other
pairs of i and j. The nonelectrostatic contribution to the
potential to all the pairs is purely repulsive except for the
monomer-monomer and solvent-solvent interactions. The
parameterλ introduces an attractive well depth between
monomer-monomer and solvent-solvent interactions as it
is increased from 0 to 1. Whenλ ) 0, all nonelectrostatic
interactions are identical, and therefore the solvent quality

Vij(r) ) kBT
qiqjλB

r
+ λijVLJ(r) + (1 - λij)VWCA(r) (1)

VLJ(r) ) {4εLJ [(σr )12
- (σr )6

- c(2.5σ)] r e 2.5σ,

0 r > 2.5σ,
(2)

VWCA(r) ){4εLJ [(σr )12
- (σr )6

- c(21/6σ)] r e 21/6σ,

0 r > 21/6σ,
(3)
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is good. On the other hand, whenλ is large and positive the
attractions between monomers and between the solvent
molecules makes the solvent quality poor.

The nonelectrostatic interaction between the particles and
the surface is purely repulsive and is given by51

wherez is the perpendicular distance from the particle to
the solid surface and the subscript w denotes the surface.
This potential is obtained from the integration of the 12-6
LJ potential of a planar solid continuum in the two directions
parallel to the surface. We setεw ) εLJ andσw ) σ for all
the particles present in the simulation box. Both the surfaces
interact with the particles in the simulation cell using the
soft core repulsive LJ potential given by eq 4, but only one
of the surfaces is electrically charged. The electric field,Ej,
acting on a charged particlej due to the uniform charge
density,σSCD, on a nonconducting surface is given52 by Ej

) (σSCD/2ε), and the direction ofEj is perpendicular to the
surface.

The bonding potential between neighboring beads in the
polyion is given by the FENE (finitely extensible nonlinear
elastic) potential53

wherekFENE is the spring constant andRo is the maximum
extension of the bond. In this work, we setkFENE ) 30.0kBT/
σ2 andRo ) 1.5σ; these parameters prevent53 the crossing
of the chains.

Some limitations of the model merit discussion. The effect
of the solvent on the electrostatic interactions is taken into
account implicitly through the dielectric constantε. The
change in local dielectric properties as well as polarization
effects are therefore neglected. The interaction of the surface
with the solvent and the polyion is purely electrostatic and
there is no short-range attraction, which implies that the
interfacial tensions between the surface and solvent and
between the surface and polyion beads are similar. The
surface in the simulations is assumed to be a nonconducting
surface with a dielectric constant identical to the solution.
In general, surfaces consist of low dielectric constant
materials, and polar solvents near such surfaces give rise to
like image charges. These effects are not taken into account
in this work.

B. Simulation Method. The simulation cell is a cubic box
of side lengthL ) 16σ with periodic boundary conditions
in thex andy directions and surfaces in thez direction. The
system consists of a single polymer chain withN ) 16 sites,
Nctr ) 16 counterions to balance the charge on the polyion,
andNcoi co-ions to balance the surface charge, withNcoi )
16 × 16σ2σSCD. The monomer densityFmσ3 ≡ Nσ3/L3 is
approximately 0.004, and the total site density in the
simulation cell,Ftotσ3 ≡ (N + Nctr + Ncoi + Ns)σ3/L3 ) 0.864.
The polyion, counterions, and co-ions are added first, and
then the required number ofNs solvent molecules are added

so thatFtotσ3 ) 0.864. Lengths are measured in units ofσ,
time in units ofτMD ) (mσ2/εLJ)1/2, and temperature in units
of εLJ/kB. In this calculation we set all three parametersm,
σ, andεLJ to unity, and a reduced temperature is defined as
T* ≡ kBT/εLJ which is set to 1.

Initial configurations are generated with the atoms on the
lattice points of a face centered cubic structure withNm

adjacent vertices chosen for the polyion. Initial velocities
are generated using a Gaussian random number generator
and scaled to the desired temperature. The system is
propagated in the canonical ensemble (NVT constant) using
an explicit reversible integrator,54 and the temperature is
maintained constant using a Nose-Hoover thermostat.55,56An
integration time step of 0.005τMD is used, and the Nose-
Hoover coupling constant is set to 5. First the system is
equilibrated without the charge on the surface, and then the
surface charge is switched on and the required number of
solvent molecules are converted to co-ions to balance the
charge on the surface. The system is then re-equilibrated
before properties are averaged. The data are obtained by
averaging over 4-6 trajectories, and each trajectory is run
for approximately 1 million time steps.

III. Results and Discussion
A. Static Properties.The adsorption behavior of the chain
demonstrates an interesting interplay between solvent quality
and surface charge density. As expected, increasing the
surface charge density promotes adsorption of the polymer
chain. Decreasing the solvent quality also promotes adsorp-
tion but, in addition, promotes chain collapse. These effects
can be quantified via the components of the mean-square
radius of gyration parallel and perpendicular to the surface,
denotedRg,para

2 and Rg,perp
2 , respectively, and the molecular

axis orientational correlation functionG2. These quantities
are defined as

where xi, yi, and zi are the Cartesian coordinates of the
monomeri, and the subscript cm stands for the center of
mass of the polyion chain, and

whereγ is the angle between the molecular axis and the
surface. The molecular axis is defined57 as the eigenvector
corresponding to the smallest eigenvalue of the moment of
inertia tensor of the molecule. If the molecular axis aligns
parallel to the surface, thenG2 ) -0.5; if it is perpendicular
to the surface, thenG2 ) 1.0; and if it is isotropic, thenG2

) 0.
For a given solvent quality, increasing the surface charge

density causes the chain to adsorb flat on the charged surface,
and this is manifested in a decrease inG2 andRg,perp

2 . Figure
1 depictsG2 as a function ofσ*SCD() σSCDσ2/e) for λ ) 0

Vwall ){2πεwσw
2[25 (σw

z )10

- (σw

z )4

+ 3
5] z e σw,

0 z > σw,
(4)

VFENE(r) ) - 1
2
kFENERo

2ln(1 - r2

Ro
2) (5)

Rg,para
2 )

1

N
〈∑

i)1

N

(xi - xcm)2 + (yi - ycm)2〉 (6)

Rg,perp
2 )

1

N
〈∑

i)1

N

(zi - zcm)2〉 (7)

G2 ) (3〈cos2γ〉 - 1)/2 (8)
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and 0.3. In good solvents (λ ) 0) and for low values of
σ*SCD, the polyion adopts an almost isotropic orientation
near the surface. although it is still slightly biased parallel
to the surface, i.e.,G2 < 0. As σSCD

/ is increased, the
polyion adsorbs to the surface and forσSCD

/ ≈ 0.1 the
orientation is completely parallel to the surface (G2 ≈ -0.5).
When the solvent quality is slightly poor (λ ) 0.3) the
polyion is adsorbed flat on the surface even for low values
of σSCD

/ because of the unfavorable monomer-solvent
interaction. This behavior is consistent with recent experi-
ments that investigated the size of an adsorbed polyelectrolyte
layer exposed to solvents of varying quality46 where the size
of the adsorbed polyelectrolyte layer decreased as the solvent
quality was decreased.

Figure 2 depictsRg,perp
2 and Rg,para

2 as a function ofσSCD
/

for λ ) 0 and 0.5. The variation ofRg,perp
2 as a function of

σSCD
/ reflects that ofG2 discussed earlier, i.e., as the surface

charge density is increased the chain adsorbs flat onto the
surface resulting in a sharp decrease inRg,perp

2 . Note that for
λ ) 0.5, the chain is strongly adsorbed on the surface even
for σSCD

/ close to zero. On the other hand, for a given value
of λ, Rg,para

2 displays a nonmonotonic dependence onσ*SCD,
i.e.,Rg,para

2 increases until the chain is completely flat on the
surface, which occurs forσSCD

/ ≈ 0.1, and then begins to
decrease. The increase inRg,para

2 with σSCD
/ can be explained

by noting that the polyion is being confined from three
dimensions to two dimensions. The decrease inRg,para

2 for
large values ofσSCD

/ can be explained in terms of the effect
of co-ions (counterions to the surface). AsσSCD

/ increases
the number of co-ions in the system also increases, and these
are found preferentially near the charged surface. This can
be seen in snapshots of configurations or density profiles
(not shown). Since the co-ions and the polyion are similarly
charged, the repulsion from the co-ions results in a decrease
in the size of the polyion.

These results are different from previous simulations for
polyelectrolytes in good solvents. Lattice simulations26 found
that Rg,para

2 was relatively insensitive toσSCD
/ although the

behavior ofRg,perp
2 was similar to what is seen in this work.

In the off-lattice Monte Carlo simulations of Kong and
Muthukumar27 and in the brownian dynamics simulations
by Panwar and Kumar43 Rg,para

2 increased monotonically and
Rg,perp

2 decreased monotonically asσSCD
/ was increased.

These differences can be attributed to the neglect of co-ions
in previous simulations. If the effect of poor solvent and co-
ions is not incorporated, then the adsorption behavior of a
polyelectrolyte chain is identical58,59to the behavior of neutral
polymer chains adsorbed on a surface (as a function of
adsorption energy).

For some values of the surface charge density,Rg,perp
2 is a

nonmonotonic function of solvent quality. Figure 3 depicts
Rg,perp

2 andRg,para
2 as a function ofλ for σSCD

/ ) 0.1 and 0.6.
Rg,para

2 is a monotonically decreasing function ofλ in all
cases which is expected because the chain becomes more
compact as the solvent quality is decreased. ForσSCD

/ ) 0.1,
Rg,perp

2 is a nonmonotonic function ofσ*SCD. The decrease in
Rg,perp

2 occurs because the polyion collapses onto the surface
to avoid the unfavorable monomer-solvent interactions. As
λ is increased further, however, the attraction between the
monomers overcomes the attraction between the surface and
the monomers, and this causes the polyion to form a globule
instead of a pancake. This does not happen when the
monomer-surface interactions are very strong, which is the
case forσSCD

/ ) 0.6. These simulations confirm the as-
sumptions of the scaling theory of Borisov15 et al. where
they assumed that the polyion in poor solvent is adsorbed
as a pancake structure whenσSCD

/ is high but adopts a
hemispherical shape whenσSCD

/ is low. The results from the
scaling theory of Borisov8 et al. for the behavior of single
chain near a charged surface cannot be confirmed from these
simulations because of the small size of the polyion chain.

B. Dynamic Properties.The rotational and translational
dynamics of the polyion becomefasteras the solvent quality
is decreased, for a given value of the surface charge density.
Figure 4(a),(b) depicts the mean-square displacement parallel

Figure 1. Orientation of the polyion plotted as a function of
surface charge density, σSCD

/ for λ ) 0.0 and 0.3.

Figure 2. Averaged mean square radius of gyration of the
polyion perpendicular to the surface, Rg,perp

2 , and parallel to
the surface, Rg,para

2 , as a function of surface charge density,
σ*SCD, for λ ) 0 and 0.5.
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to the surface (on a log-log plot) and end-to-end vector
correlation function as a function of time forσSCD

/ ) 1.5
andλ ) 0, 0.3, and 0.5. MSD is the mean-square displace-
ment of the center of mass of the adsorbed polyion chain
parallel to the surface, i.e., MSD) 〈|R||(t) - R||(0)|2〉, and
the lateral diffusion coefficient,D||, is defined via〈|R||(t) -
R||(0)|2〉 ) 4D||t, whereR||(t) ) xcm(t)ı̂ + ycm(t)ĵ. The end-
to-end vector autocorrelation function,C(t) is defined asC(t)
) 〈R(0).R(t)〉/〈R2(0)〉 whereR(t) is the end-to-end vector of
the chain at timet. In all cases the center of mass of the
polyion shows subdiffusive behavior at shorter time scales
and normal lateral diffusion at a longer time scale, i.e., MSD
is a linear function of time. The crossover time from
subdiffusive to normal diffusion decreases as the solvent
quality is decreased. And as the solvent quality is decreased,
the translational diffusion is faster, i.e.,D|| increases, taking
on values (in units ofσ2/τMD) of 4.52× 10-3, 4.93× 10-3,
and 7.57× 10-3 (statistical uncertainties are in the last
significant digit) for λ ) 0, 0.3, and 0.5. The faster
translational diffusion is accompanied by faster rotation. For
λ ) 0, C(t) does not decay over the course of the simulation,
but the decay becomes faster as the solvent quality is
decreased.

We characterize the rotational relaxation via the initial
(short time) decay ofC(t). At short times, i.e.,t e 200τMD,
the decay ofC(t) is well-fit by a single exponential, and we
define a relaxation timeτ as the time constant of this
exponential. We are unable to reliably extract the long time
relaxation behavior becauseC(t) does not decay in some
cases and in others the statistics are poor even with
trajectories of length 5000τMD. The rotational relaxation time
τ for σSCD

/ ) 1.5 shown in Figure 4(b) takes on values of (in

units ofτMD) 25 966( 224, 3031( 37, and 702( 9 for λ
) 0, 0.3, and 0.5, respectively.

An interesting feature from Figure 4 is that althoughC(t)
does not decay for some values ofλ, the chain exhibits
normal center-of-mass diffusion. This decoupling of rota-
tional and translational dynamics is often viewed as a
signature of “glassy” behavior, since it is reminiscent of what
is observed in the dynamics of supercooled liquids. It has
been suggested60-63 that the strong interactions between a
polymer and the surface can result in the polyion becoming
trapped in local minima. In the present work the behavior
exhibited by the polyion is not due to the interaction of the
polyion with the surface but rather because of the interaction
between the polymer and the solvent.

There are several possible explanations for the faster
dynamics as the solvent quality is decreased. First of all, as
the solvent is made poorer, the hydrodynamic radius
decreases, and this can result in an increase in the diffusion
coefficient. Another possibility is that this is caused by the
confinement of the chain from three dimensions to two
dimensions, and the dynamics of two-dimensional chains are
expected to be faster than three-dimensional chains. Finally,
as the solvent quality is decreased the density of the solvent
molecules near the surface decreases, and this results in a
lower friction on the adsorbed chain.

Figure 5(a),(b) depicts the total density of sites and the
solvent density as a function of distance from the charged
surface. As the solvent quality is decreased the solvent
density near the surface decreases. This is not very prominent
in Figure 5(a) but is more clearly seen in Figure 5(b) where
the value of the peak nearz ) 2 decreases by about 75%

Figure 3. Averaged mean square radius of gyration of the
polyion perpendicular to the surface, Rg,perp

2 , and parallel to
the surface, Rg,para

2 , plotted as a function of solvent quality, λ
for σSCD

/ ) 0.1 and 0.6.

Figure 4. (a) Log-log plot of the lateral mean-square
displacement of the center of mass of the polyion versus time
for σSCD

/ ) 1.5. Solid lines are fit to the data. (b) End-to-end
time autocorrelation function plotted versus time for σSCD

/ )
1.5. Solid lines are fit to the data, and it overlaps with the line
of the markers.
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for λ going from 0 to 0.5. It is possible that the decrease in
site density in the layer adjacent to the polyion results in a
weaker friction and therefore faster dynamics of the adsorbed
polyion.

The diffusion coefficient and end-to-end vector relaxation
time are nonmonotonic functions of the solvent quality in
some cases. Figure 6(a),(b) depictsD|| andτ, respectively,
as a function ofσSCD

/ for λ ) 0 and 0.5. Forλ ) 0, D|| is a

nonmonotonic function ofσSCD
/ with a peak that occurs at a

value of σSCD
/ where the chain is adsorbed flat to the

surface. One can attribute the increase inD|| with increasing
σSCD
/ for lower surface charge densities to a confinement of

the chain from three to two dimensions and the decrease in
D|| with increasingσSCD

/ for higher surface charge densities
to the strong wall-polymer interaction which increases the
friction with the surface. For a givenσSCD

/ , D|| is always
higher in poorer solvents. This is because the chain size is
smaller and the solvent density at the surface is lower as the
solvent quality is decreased, both of which tend to increase
D||. In poorer solvents, however,D|| is relatively insensitive
to the surface charge density (within statistical uncertainties)
because the polyion is always adsorbed completely on the
surface for all surface charge densities. For bothλ ) 0 and
0.5 τ is a nonmonotonic function ofσSCD

/ with a peak at
approximatelyσSCD

/ ≈ 0.1 which is when the polyion is
completely adsorbed to the surface. Again the effect of
changing the surface charge is more significant in good
solvents than in poor solvents. One can attribute the increase
in τ for low values ofσSCD

/ to a confinement of the chain
from three to two dimensions. The decrease inτ for σSCD

/

greater than 0.1 can be due to the decrease in size of polyion
which will facilitate the rotation of the polyion on the surface
leading to a smallerτ.

IV. Conclusions
The static and dynamic properties of a single charged chain
near a planar charged surface are studied using molecular
dynamics simulation with explicit solvent. The properties
of an adsorbed chain can be very different depending on the
solvent quality. The chain is adsorbed parallel to the surface
when the solvent is poor enough, independent of the surface
charge, unlike in good solvents where the surface charge
plays a dominant role. Interestingly the dynamics of the chain
become faster as the solvent quality is decreased, which could
be either due to the lower solvent density at the surface or
due to the confinement of the chain to two dimensions.
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Abstract: Coarse-grained (CG) models for mixed dimyristoylphosphatidylcholine (DMPC)/

cholesterol lipid bilayers are constructed using the recently developed multiscale coarse-graining

(MS-CG) method. The MS-CG method permits a systematic fit of the bonded and nonbonded

interactions and system pressure to trajectory and force data derived from an underlying reference

all-atom molecular dynamics (MD) simulation. The CG sites for lipid and cholesterol molecules

are associated with the centers-of-mass of atomic groups because of the simplicity in the

evaluation of the forces acting on them from the atomistic MD data. Corresponding models with

four-site and seven-site representations of the cholesterol molecule were also developed. The

latter CG models differed by the bonding scheme of CG sites to represent intramolecular

interactions. A one-site MS-CG model based on the TIP3P potential was used for water, with

the interaction site placed at the molecular geometrical center, and the analytical fit of the model

is presented. The MS-CG models were then used to conduct simulations in the constant NPT

ensemble which reproduce accurately the structural properties as seen in the full all-atom MD

simulation.

I. Introduction
Cell membranes are remarkably adaptive and durable
molecule aggregates which are directly involved in a large
variety of cecullar processes.1,2 Due to the complexity of such
membranes, most information on realistic biological mem-
brane properties comes from experiment when available.
However, with the continual increases in computer power,
atomic-scale computer simulations of increasingly realistic
membranes based on empirical force fields can provide
valuable insight in the membrane structure and dynamics.3-13

At the present time, however, the all-atom molecular
dynamics (MD) simulations of the membranes are limited
to systems having several hundred lipid molecules on a time
scale of about 100 ns. The extension of computer simulation
of biological membrane systems to more biologically relevant
time scales and system sizes requires a simpler treatment of
the biological molecules of interest and the surrounding
solvent molecules. The coarse-graining method is seen as
one possible way to accomplish this task.14-22 Numerous
methods for coarse-graining and coarse-grained (CG) models

have been reported in the past (for a recent review see, e.g.,
ref 23). In the framework of united atom-like CG models,
which are next to all-atom models in length scale, small
groups of atoms are represented as single interaction sites,
thus preserving the molecular frame but with less resolution.

The most difficult stage in the implementation of such
approaches is the construction of an effective force field to
describe the interactions between the CG structural units.
Most existing approaches for parametrization of effective CG
potentials are not directly based on the underlying atomistic-
scale forces which are available from, for example, all-atom
empirical potential MD simulations. These approaches in-
stead typically target the reproduction of the average struc-
tural properties seen in atomistic simulations, for example
using an iterative adjustment of potential parameters starting
from an approximation based on potentials of mean force14,24

or the Inverse Monte Carlo technique.25 They may also be
parametrized to match thermodynamic properties.14-16,21,22

These latter approaches can be computationally expensive
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and may become rapidly less useful with an increase in the
number of different types of interaction centers in the system.

The coarse-graining of potentials is further complicated
due to the fact that the effective interaction between structural
units is expected to be more dependent on the thermodynamic
state compared to atomistic force fields. This is because the
effective interaction between the CG structural units is
defined by the average structure (e.g., average orientations,
distances) within the complexes formed by those units in a
particular phase. Rigorously speaking, the best CG potential
should be a potential of mean force (PMF), which is a
configurational free energy in a reduced phase space.
Therefore, the structural properties, and thus the CG poten-
tials, can in principle be sensitive to variations in temperature
and other thermodynamic conditions due to both entropic
and (anharmonic) energetic effects. A poor transferability
of “coarser-grained” potentials may undermine the reliability
of simulations in which the same CG potential is used to
simulate different system conditions. Intuitively, the con-
struction of a more transferable CG model may be improved
by using a finer scale coarse-graining as has been observed
in the modeling of proteins.26,27 Of course, this comes at an
increased computational cost. Another solution is to fit (or
refit) CG potentials of a system under the same thermody-
namic conditions for which the CG simulation is intended.
This approach requires the availability of computationally
efficient methods for the development of CG force fields as
discussed below.

Recently, a significantly different approach for developing
CG potentials from an underlying explicit atomistic molec-
ular dynamics (MD) simulation has been presented.28,29This
approach is called “multiscale coarse-graining” (MS-CG)
because it provides a systematic way for coarse-graining the
interactions from a reference all-atom MD simulation. This
methodology is an extension of the force-matching (FM)
approach developed in ref 30. The FM methodology enables
one to obtain effective pairwise interactions, and a simpler
variant of it was also successfully applied to construct all-
atom models for several liquids from ab initio MD simulation
data.30,31

The MS-CG method implements a FM procedure for the
CG images from the reference atomistic trajectory/force data.
It is natural to map atomic groups into a CG site through
association of the CG site with the centers-of-mass (CM)
because the force acting on the CM of the atomic groups
can be straightforwardly evaluated from the atomistic MD
data. The FM procedure, when applied to these data, should
yield an approximation to the effective interactions between
the CG sites. These interactions are a variational least-squares
approximation to the average atomistic forces.28,29

The MS-CG method was first successfully applied to
construct a CG model of the pure dimyristoylphosphatidyl-
choline (DMPC) lipid bilayer.28 This model was able to
accurately reproduce the structural properties of the system
in constant NVT all-atom MD simulations. The FM method
can also be extended to include a fit of the pressure in the
all-atom simulation, with the resulting force field then being
appropriate for MS-CG simulations under constant NPT
conditions.29

In the present article, we report the application of the MS-
CG method to a mixed DMPC/cholesterol lipid bilayer.
Several MS-CG models are developed here that are different
in the level of coarse-graining of the cholesterol sterol
molecule and the underlying bonding scheme. The models
are shown to capture many properties of the solvated bilayer
and represent an important milestone in the coarse-graining
of complex biological membrane systems. The applicability
of the present MS-CG models is limited to preassembled
bilayers. However, the MS-CG methodology permits an
efficient parametrization of the interactions for simulation
of other phases of phospholipid/cholesterol mixtures by
fitting to an all-atom MD simulation of the phase of interest,
which is generally expected to be better than a construction
of a “universal” coarse-grained model. In general, the quality
of an MS-CG model is determined by the length of the
reference all-atom simulation as well as the accuracy of the
underlying force field used in the reference MD simulation.
Consequently, the present MS-CG force fields can be
improved upon with the availability of more accurate
atomistic mixed bilayer simulations.

This article is organized as follows: section 2 describes
the MS-CG method used, and then section 3 reports
applications of the method to the mixed lipid bilayer. This
latter section starts with a presentation of general details of
the FM fitting procedure from the underlying all-atom MD
simulations and then presents the MS-CG models. The
accuracy of the MS-CG models is also analyzed. In section
4, conclusions from this study are presented.

II. Coarse-Graining Methodology
The algorithmic development of the MS-CG method is
presented elsewhere.28,29 In the framework of the MS-CG
approach, the atom-atom forcef i

p(rij) (acting from particle
j on particlei) can be partitioned into a short-ranged part
and a long-ranged Coulomb part as

whererij is the modulus of the vectorr ij ) r j - r i connecting
two atoms,qi is the partial atomic charge (subject to fit),
andnij ) r ij/rij. The effective short-ranged force is fitted by
cubic splines connecting a set of points{rk} (rkmax defines a
cutoff radius), thus preserving continuity of the functions
and their first two derivatives across the junction, such that

whereA, B, C, andD are known functions ofr, {rk}, and
{fk}, and {f ′′k } are tabulations off (r) and its second
derivative on a radial mesh{rk}. A spline representation
depends linearly on its parameters{fk, f ′′k }, which permits
the use of force averaging over trajectories as a part of the
least-squares fit.

In the first step of the MS-CG procedure, all sets of system
configurations recorded along the trajectories of the reference
MD simulation are partitioned into blocks, each containing
L configurations. For each block, the reference total force

f i
p(rij) ) -(f (rij) +

qiqj

rij
2 )nij (1)

f (r, {rk}, {fk}, {f ′′k }) ) A(r, {rk}) fi + B(r, {rk}) fi+1 +
C(r, {rk}) f ′′i + D(r, {rk}) f ′′i+1; r ∈ [ri, ri+1] (2)
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FRil
ref, which acts on theith interaction center of kindR in the

lth configuration set of the block, and the same force
predicted using the representation in eq 2 are required to be
equal, which leads to the following equation

with respect to{fRâ,γ,k, f ′′Râ,γ,k, qRâ}, which are the force
parameters subject to fit. In eqs 3,{Ril} labels theith site
of kind R in the lth configuration of the block;rRil ,âjl is the
distance between sites{Ri} and{âj} in thelth configuration;
qRâ is a product of partial chargesqR, qâ of sites of kindR
andâ; andNâ andK are, respectively, the number of sites
of kind â and the total number of site kinds in the system.

The MS-CG method also allows for a systematic separa-
tion of bonded and nonbonded forces.29 This is important
for the CG sites which have an overlap in regions of intra-
and intermolecular motions, causing the FM force field in
those regions to be a mixture of nonbonded and bonded
components, which are otherwise impossible to separate. To
aid in fitting explicitly the bonded forces, the additional index
γ ) {nb, b}, which indicates whether the site pairRil ,âjl is
bonded (i.e.,γ ) b), is introduced. This index distinguishes
the f, f′′ parameters for bonded and nonbonded interactions
in eq 3. For bonded pairs, the Coulomb term is absent, which
is enforced in eq 3 by theδγ,nb term which is unity ifγ )
nb and zero otherwise. It is permissible to choose the spline
mesh{rRâ,γ,k} to be different for different pairs{Râ} of site
kinds.

If L is large enough, eq 3 forms an overdetermined system
of linear equations with respect to the fitting parameters.
Standard equations which are linear with respect to{fRâ,γ,k,
f ′′Râ,γ,k} must also be included into eq 3 to ensure that thef
(r)’s first derivative,f ′(r), is continuous across the boundary
between two intervals.29,32 The number of equations in eq 3
can also be increased with an increment equal to the number
of interaction sites in each configuration set.

The method described above is general and can be
straightforwardly applied to derive an effective force field
for coarse-grained models. To do this, the reference atomistic
trajectories and forces have to be reduced to the trajectories
and forces for the structural units subject to coarse-graining.
The most natural way to coarse-grain a set of atomic groups
is to place the CG site at each group’s center-of-mass (CM)
since the force acting on it can be straightforwardly evaluated
from the atomistic data. Consequently, the FM algorithm can
be applied to determine coarse-grained interactions from fully
atomistic MD trajectory data. The CG force field so obtained
is then an approximation to the effective interaction, or
pairwise PMF, between the CG interaction sites.

Generally, a CG site can be mapped into an atomic group
in other ways with the reference force evaluated in the
atomistic MD simulation. For example, a CG site may instead
be associated with the geometrical center (GC) of the

structure (i.e., the CM of the system assuming that all atoms
have the same mass). The latter choice may be more
preferable for atomic groups with highly uneven mass
distribution (e.g., the water molecule). Of course, the MS-
CG force field will be dependent on where the CG sites are
placed, and the same choices of that placement may be better
than others. The optimal choice of MS-CG sites for a given
problem is the topic of ongoing research in our group.

As is shown elsewhere,29 CG force fields can perform well
in the reproduction of the bulk phase structural properties;
however, they may fail to maintain the proper internal
pressure in the system, and as a result the density may also
be incorrect (typically too low) in constant pressure CG MD
simulations. This behavior can be corrected in the MS-CG
approach through the virial equations used to evaluate the
pressure in the MD simulation.29 Because the virial depends
linearly on the atomic forces and the kinetic energy does
not rely on the forces at all, the MS-CG force field can also
be constrained to produce the correct pressure.29 This task
can be accomplished by adding to eq 3 the proper constraints
which include the system virial.29

The FM force field derived by including the virial
constraint depends explicitly on the instantaneous kinetic
energy and therefore on the temperature in the reference
atomistic simulation. This may define the transferability (or
lack thereof) of the present MS-CG models to other tem-
peratures. Thermodynamic properties which rely on the
derivatives of the temperature (e.g., thermal expansion
coefficient) may also be less accurate.

Other CG approaches have developed a CG force param-
etrization by fitting a few preselected macroscopic and
average structural properties. Our method is fundamentally
different as it systematically maps the underlying atomistic-
level interactions into effective interactions between CG
structural units. Hence, it is a “multiscale” coarse-graining
approach. Importantly, for systems such as mixed phospho-
lipid/cholesterol bilayers (described below) for which fitting
CG potentials to preselected average properties is difficult
at best, the MS-CG approach appears to offer some real
advantages.

III. Results and Discussion
A. Molecular Dynamics Simulation Details.In the present
work, the MS-CG method was employed to obtain a CG
model of a mixed DMPC/Chol bilayer at 50 mol %
concentration of the Chol. The effective force field describing
interactions between sites in the CG representation of the
bilayer was derived using trajectory and force data from a
single all-atom MD simulation. The DMPC molecules were
modeled using a united atom force field,12 and Chol
molecules were modeled with a modified AMBER force
field.8 For water, the rigid TIP3P model33 was used. The
temperature of the system was kept constant atT ) 308 K
using the Nose´-Hoover thermostat with a relaxation time of
0.2 ps. The electrostatic interactions were calculated via the
particle mesh Ewald (PME) summation, and the van der
Waals interactions were cut off at 0.7 nm. The system of
6336 total atoms (32 lipids, 32 cholesterol molecules, and
1312 water molecules) was integrated with a time step of 2

- ∑
γ ) nb,b

∑
â ) 1,K

∑
j ) 1,Nâ

(f(rRil ,âjl, {rRâ,γ,k}, {fRâ,γ,k}, {f ′′Râ,γ,k}) +

qRâ

rRil ,âjl
2

δγ,nb) nRil ,âjl ) FRil
ref, i ) 1, ...,NR, R ) 1, ...,K, l )
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fs, and the initial structure of the DMPC/Chol bilayer taken
from ref 34 was equilibrated for 4 ns. The reference
properties of the atomistic system were obtained from the
MD simulations under both constant NPT and NVT condi-
tions. The equilibrium volume of the supercell was 92.029
nm3 with an area per DMPC molecule of 0.440 nm2 under
the assumption of an effective area per Chol molecule of
∼0.336 nm2.35

B. Coarse-Graining and Details of the Force-Matching.
The MS-CG water molecules were mapped into a single CG
interaction site associated with their GC instead of CM. As
shown elsewhere,28 with such a choice the FM force field
produces a water structure which compares better to the
atomistic reference MD system. The CG representation of a
DMPC molecule is shown in Figure 1 (a) (also used in ref
28) and is similar to the models of Shelley et al.14 and
Marrink et al.16 A coarse-graining of the acyl tail into a
smaller set of spherical sites has the potential problem that
could not fully describe trans-gauche isomerizations of the
acyl chains. The trans-gauche conformations may result in
a sharp change in the geometries of SM and ST CG groups
in the all-atom MD simulation and thus may have an adverse
impact on the quality of the MS-CG force field. On the other
hand, the presence of cholesterol reduces the probability of
gauche defects.36

For the Chol molecule, two CG representations were
developed. In the first representation, the molecule was
coarse-grained into four interaction sites. In the second
representation, seven sites were used. The sites associated
with each CG model of Chol are shown in Figure 1b,c. In
the four-site representation, the tetracyclic ring structure is
split between CA and CB sites. The CA site includes the
polar hydroxyl group, while the CC-CD site pair represents
the aliphatic side chain attached to the ring structure. For
the model with four-site CG sterols, Table 1 summarizes
the average atomistic radii of the groups forming the CG
sites as evaluated from the same MD trajectory data used in
the FM fit as well as the sum of the charges on the atomistic
sites from which the CG site is formed. (It should be noted
that in the final MS-CG models none of the CG groups have
charges, i.e., they interact only through effective short-ranged
forces.) In the four-site Chol representation, the arrangement

of the CG sites is close to linear. In the seven-site representa-
tion, three more sites were added to better reflect the planar
geometry of the ring structure. The total number of DMPC
plus Chol site pairs is 78 for the model with the four-site
representation of the Chol molecule and 120 for the seven-
site representation. Such a large variety of interaction sites
makes it very difficult to utilize existing methods14,16,25for
parametrization of the coarse-grained interactions. However,
the MS-CG method is capable of treating such a complex
system.

The intramolecular CG sites were linked by effective
bonds, and two bonding schemes were used. In the first
bonding scheme, which is referred to as “minimal”, only
consecutive sites were linked by bonds. In such a model,
the force term describing bond bending was implicitly present
in the FM nonbonded forces. In the second scheme, the next-
nearest-neighbors were connected by bonds (e.g., CH-GL,
PH-E1,2, etc., for DMPC and CA-CC, CB-CD, etc., for
Chol). Such interactions are similar to a bond angle potential.
The use of the bonds instead of angle potentials was
necessary because the FM method can handle explicitly only
site-site (either bonded or not) interactions. Therefore, the
second bond scheme is referred to as the “bond angle”
scheme. The use of the explicit separation of bonds in the
FM procedure increased the number of interactions for the
force-match. For example, in the model with the four-site
Chol molecules and the “bond angle” scheme, the total
number of interactions to match was 101.

For the purpose of force-matching, the atomistic MD
simulation was carried out for 5 ns in a constant NVT
ensemble using the equilibrium volume obtained from a
constant NPT MD simulation. The trajectory, velocity, and

Figure 1. Coarse-grained representation of lipid and cholesterol molecules: panel (a) DMPC; panel (b) four-site cholesterol;
and panel (c) seven-site cholesterol.

Table 1. Radii, RCG ) 〈(r - rCM)max〉, and Total Charges,
qCG, of the underlying CG Sites in the All-Atom Model

site RCG, nm qCG, au site RCG, nm qCG, au

CH 0.237 +1.4 ST 0.144 0
PH 0.165 -1.4 CA 0.392 -0.012
GL 0.138 +1.2 CB 0.266 0.009
E2 0.156 -0.7 CC 0.201 0.004
E1 0.153 -0.5 CD 0.160 -0.001
SM 0.140 0 WC 0.078 0
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force data were sampled with an interval of 1 ps so that the
number of stored configurations was 5000. The instantaneous
virial for each sampled configuration was also recorded. The
velocity and virial data were necessary to implement the
virial constraint.29 Next, trajectories, velocity, and forces were
transformed into corresponding data for the CG sites and
then were used as an input into the FM algorithm with an
explicit separation of bonds and virial constraint.29 The FM
force field was represented by a spline over a mesh with a
grid spacing of approximately 0.01 nm for nonbonded and
0.0025 nm for bonded interactions. For nonbonded forces,
the mesh was extended to 0.13 nm. The number of
configurations used to build each of the overestimated
systems of equations in eq 3 wasL ) 3.

As mentioned earlier, despite the fact that some composite
CG sites in the underlying atomistic model are charged (see
Table 1), it is possible to omit the Coulomb term in eq 3 if
a large enough cutoff is used for the short-ranged interactions.
For example, if a sufficiently large cutoff is used, the FM
procedure with the Coulomb term explicitly present yielded
effective charges on the CG sites to be much smaller
compared to those inferred from the reference atomistic
charges. This is a result of the inherent screening of Coulomb
forces and the short-ranged forces then incorporating ef-
fectively the Coulomb interactions within their cutoff radius.
The screening effects come from the water as well as the
polar DMPC headgroups which are captured by the MS-CG
force field. Therefore, the FM procedure was used with the
Coulomb term removed in eq 3.

C. MS-CG Interactions. 1. Water Model.The one-site
CG representation of the TIP3P model as obtained from the
FM to the all-atom MD simulation of the bilayer was tested
on a bulk water system. The structural properties from the
all-atom and MS-CG MD simulations of the 256 TIP3P
molecules in the constant NVT ensemble and at ambient
conditions were identical. However, the density of the CG
water in the NPT MD simulation was slightly lower. By
contrast, the FM (using the virial constraint) of the one-site
water force field to the MD simulation of 256 TIP3P
molecules at ambient conditions produced a force field which
showed the same structural properties as one from FM to
the bilayer system; however, the ambient density was correct.
A polynomial representation of the MS-CG potential for this
model is given in Table 2. A comparison of the water

geometrical center-geometrical center (GC-GC) RDFs from
the bulk water and bilayer MD simulations is given in Figure
2.

Some other thermodynamic properties of the MS-CG water
model are compiled in Table 3. The larger isothermal
compressibility,κT, from the CG model is likely a conse-
quence of the use of the virial constraint in the FM procedure
which explicitly depends on the temperature in the reference
MD simulation. A similar behavior has been reported for a
one-site water model matched to ab initio MD simulation.29

The water-water (W-W) force field from the FM to the
bulk water system with the virial constraint was used in all
models of the bilayer reported here. However, in contrast to
the bulk geometry, the all-atom water in the vicinity of the
bilayer surface is “orientationally polarized”, orienting its
molecular dipoles toward the bilayer surface.7,37On the other
hand, the correct pressure of the water seems to be a more
influential factor in the formation of the bilayer properties
even in MD simulations in the constant NVT ensemble. For
example, the bilayer structural properties from the constant
NVT MD simulation using the bulk MS-CG water force field

Table 2. Coefficients An of the Least-Squares Fit of
TIP3P MS-CG One-Site Force Field Using the Expansion
f(r) ) ∑n ) 2

16 An/rn a

n An n An

2 1121.994059416 10 1461833177752.
3 -100003.0777743 11 -2619871642943.
4 3956632.300647 12 1698105340916.
5 -91592923.27445 13 1534516677398.
6 1375454692.338 14 -940850812653.1
7 -14021182651.00 15 -2041415905133.
8 98418431541.42 16 -1742793289718.
9 -470296232562.7

a Atomic units were used. A cut-off of 0.8 nm must be applied to
this expansion.

Figure 2. Comparison of the water GC-GC RDFs from the
all-atom (black line) and MS-CG (red line) MD simulations of
bulk water [panel (a)] and the bilayer system [panel (b)] using
the MS-CG TIP3P model fitted to the bulk water data.

Table 3. Properties of TIP3P One-Site MS-CG CG Water
Modela

property TIP3P 1-site TIP3Pb exptc

F (kg/m3) 1004 1002 997.05
Upot (kJ/mol) -8.3 -41.1 -41.5
RP (10-4 1/K) 14.7 6.4 2.53
κT (10-5 1/bar) 37.1 9.2 4.52
Ddiff (10-9 m2/s) 18.1 5.19 2.3
a Shown are F, density; Upot, average configuration energy; R

P,
thermal expansion coefficient; κ

T, isothermal compressibility; Ddiff, self-
diffusion coefficient. b References 33 and 44. c Reference 45 (25 °C).
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appeared to be slightly better compared to those properties
if the MS-CG water force field from explicit FM to the
bilayer system was used. It seems this behavior was due to
a more correct pressure of the water on the bilayer surface
from the bulk MS-CG water model.

2. DMPC and Chol MS-CG Models.Selected force profiles
for bonded interactions for the models with the four-site
representation of a Chol molecule are shown in Figure 3.
The bonded forces of the model with the minimal bonding
scheme were identical to the corresponding forces in the
model with the bond angle scheme. As seen in a majority of
the cases, the force deviates substantially from being
harmonic (i.e., linear). In the MS-CG MD simulation, a least-
squares approximation of the bonded forces either by
harmonic or harmonic+quartic forces was used. A harmonic
approximation was used, for example, to a lipid PH-GL
bonded interaction, as it was found to be accurate enough.
In those FM bonded forces for which the harmonic ap-
proximation obviously was not accurate, the quartic potential
was instead used. A comparison of FM forces with their
analytical fits is shown in Figure 3. An accurate description
of the bonded forces is important for those parts of the
molecules that have greater flexibility, such as the hydro-
carbon chains in the DMPC molecule. To give an indication
of the rigidity of the various bonds in the CG representations
of the DMPC and Chol molecules, Table 4 shows parameters
for the harmonic approximations to the bonded forces and
associated frequencies (estimated as if the bonded pair were
an isolated diatomic molecule). The low-lying spectra of
bond frequencies also allows one to increase the time step
in the MS-CG MD simulation compared to an all-atom
simulation. The model with the minimal bonding scheme
was deemed to be more accurate as the interactions between
nearest-neighbor sites are included into nonbonded forces
and, therefore, may be less influenced by errors introduced
from analytical fits of the bonded forces.

Selected profiles of the MS-CG nonbonded forces for the
model with the four-site representation of Chol are shown

in Figure 4. The effective force field often shows substantial
variations with distance in the vicinity of separations of the
order of the sum of average radii of the CG sites (see Table
1). This is because at these distances the interaction in the
all-atom MD simulation is most sensitive toward mutual
orientations of the atomic groups representing the CG sites.
For some of the site pairs, which were at large separations
in the all-atom MD simulation, the unsampled core region
was also significant. For example, for the CH-CD pair in
the model with the four-site Chol, thercore was ∼1.7 nm.
Those DMPC-W and Chol-W interactions which have a large
rcore value or are underconvergent/noisy might be improved
by matching to the simulation of single DMPC or Chol
molecules in the solvent. However, in the present study this
approach was not used. The interaction within thercoreregion

Figure 3. Effective pairwise bonded forces between selected coarse-grained interaction sites as a function of intersite separation
(solid curve) and their analytical fit (dashed curve) used in the MS-CG MD simulations.

Table 4. Parameters of Harmonic Approximation to
Bonded Forces and Corresponding Frequencies for the
Model with the CG Chol Molecule of CG Four Sitesa

bond kb, [kJ/(mol‚Å2)] r0, nm ω, cm-1

CH-PH (b) 0.184 0.385 132.5
CH-GL (a) 0.007 0.610 31.9
PH-GL (b) 0.187 0.337 168.5
PH-E2 (a) 0.022 0.435 51.1
PH-E1 (a) 0.038 0.661 67.4
GL-E2 (b) 0.554 0.282 315.9
GL-E1 (b) 0.237 0.326 206.4
GL-SM (a) 0.002 0.595 19.4
E2-SM (b) 0.365 0.374 254.7
E2-SM (a) 0.005 0.692 28.1
SM-SM (b) 0.203 0.345 204.3
SM-SM (a) 0.020 0.654 64.0
CA-CB (b) 0.871 0.506 235.0
CA-CC (a) 0.096 0.924 102.2
CB-CC (b) 0.648 0.426 266.1
CB-CD (a) 0.130 0.831 118.7
CC-CD (b) 0.278 0.424 206.5
a Labels (b) and (a) label “consecutive” and “angle” bonds,

respectively.
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was therefore assumed to be weakly repulsive. Obviously,
largercorefor certain pairs of CG sites limits the transferability
of the model to other than bilayer geometries. Consequently,
the models reported here can be only safely used to simulate
preassembled bilayers.

The force profiles for some of the bilayer site-site pairs
sometimes converged slowly in the FM procedure with some
statistical noise. Such noise is not generally a source of
difficulty in the MS-CG MD simulation because the force
profiles can be further smoothed out using a least-squares
polynomial fit of the FM spline data. However, such a fit in
the present case gave somewhat worse properties. Therefore,
the original spline fit was used to conduct the reported MS-
CG MD simulations.

An inspection of the MS-CG effective forces also provides
important insight into the nature of the interactions inside
the bilayer. As seen from Figure 4(c), the most attractive
interaction between lipid and Chol species occurs between
E1 and CA sites. This is an interesting fact because there is
experimental evidence of strong hydrogen bonding of the
Chol hydroxyl group (belonging to the CA site), which acts
as a proton donor with the carbonyl group of the sn-2 chain38

(of which the E2 site is a part). MD simulations of DMPC/
Chol bilayer at low sterol content have also shown that
bilayer Chol can bind to lipid molecules via either hydrogen
bonding or water bridges.11,35 At a low Chol concentration
(XChol ) 12.5 mol %), the largest number of hydrogen bonds

(both direct and through water bridges) occurs for carbonyl
oxygen in the sn-2 chain;35 however, as the Chol concentra-
tion increases (toXChol ) 22 mol %), the sn-1 oxygen (which
is in the E1 site) becomes a preferable place for the OH
group of Chol to bind.11 A similar behavior was suggested
by NMR studies.39 With an increase of the Chol concentra-
tion due to the “condensing effect”, flexible acyl chains pack
closely around the Chol molecules, limiting the ability of
the latter to form H bonds with the sn-2 oxygen. The
tendency of Chol molecules to orient their hydroxyl groups
close to the carbonyl groups of the phospholipid and then to
remain there was also observed in an MD simulation of
DPPC/Chol bilayer.40

There is also a pronounced attractive part in the CH-CA
force profile, while the PH-CA interaction is mostly
repulsive. The CH is the second lipid CG site with which
the CA site interacts most significantly. The attractive part
of the CH-CA force is centered around 0.77 nm and is
relatively broad. This correlates with MD simulation studies
which pointed toward complexation of the choline moiety
with the Chol hydroxyl group (the CA site) via formation
of charged pairs.11 The OH of Chol can bind to the oxygens
of the phosphate group (PH site); however, the probability
of formation of the hydrogen bonds at this location is much
smaller compared to that of carbonyl groups (E1,2 sites).11,35

The small negative dip in the PH-CA force profile might
be a manifestation of the hydrogen bonding of the phosphate

Figure 4. Effective pairwise nonbonded forces between selected coarse-grained interaction sites smoothed by a polynomial fit
as a function of intersite separation. The approximate error bars in these curves are about 5-10% of the force value.
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oxygens and OH of Chol. The interactions of the Chol sites
with acyl chain sites (SM, ST sites), which arise mostly from
van der Waals forces, are only weakly attractive.

D. MS-CG Simulations of the Bilayer.To help validate
the models, the system in the MS-CG MD simulation of the
mixed bilayer was initially taken to be the same size as that
of the all-atom MD simulation. At first, a 5 ns MDsimulation
for each MS-CG model was carried out using a constant NVT
ensemble with time step of 0.005 ps. The MS-CG MD
simulation for this system size was about 15 times faster.
However, the gain in computational efficiency increases
rapidly with an increase in system size, the latter (larger
system sizes) being one purpose of CG simulations.

A comparison of the MS-CG RDFs from the model with
the four-site CG Chol molecules with the bond angle scheme
with their atomistic MD counterparts is given in Figures 5
and 6. The agreement is generally quite good. Some
discrepancies in the bilayer site-site RDFs are attributed
primarily to two factors. One of them is the analytical
representation of the bonded forces, which as demonstrated
in Figure 3 may deviate from the exact FM forces, thus
influencing the subtle balance of the interactions in the MS-
CG MD simulation. The second factor is the presence of
sometimes large, unsampled regions of intersite separations.
The most affected RDFs are those which involve solvated
sites, and ways to improve this sampling are presently being

Figure 5. Selected DMPC-water and DMPC-DMPC site-site RDFs from the all-atom MD simulation (black lines) compared
to those from the MS-CG MD simulation (red lines) using the four-site representation of the Chol molecule and the “bond angle”
bonding scheme.

Figure 6. Selected Chol-water, Chol-DMPC, and Chol-Chol site-site RDFs from the all-atom MD simulation (black lines)
compared to those from the MS-CG MD simulation (red lines) using the four-site representation of the Chol molecule and the
“bond angle” bonding scheme.
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explored. The use of the minimal bond scheme did not result
in significant improvements or changes in the structure. For
the pairs which were bonded by “angle” bonds in the bond
angle scheme, the structure was slightly improved (e.g., the
CH-GL pair, in Figure 5, panel CH-GL, dashed line).

An analysis of the CG structure of the bilayer is a
convenient way to scrutinize the ordering in the bilayer
because of the smaller number of degrees of freedom. The
presence of a well pronounced first peak in DMPC-W and
Chol-W RDFs (Figures 5 and 6) reflects the effective polarity
of the respective CG sites. DMPC headgroup sites CH, PH,
GL and ester groups E1,2 are solvated, and, as can be judged
from a height of the first peak in the RDFs, the most strongly
solvated site is PH followed by the CH, E2, GL, and E1
(RDF not shown) sites, respectively. The strong first peak
in the PH-W RDF is a reflection of the fact that two
phosphate oxygens are the most probable sites for the water
to form hydrogen bonds with the DMPC.35

The good agreement of the CG and all-atom DMPC-W
and Chol-W RDFs suggests that despite being nonpolar, the
one-site CG water model adequately incorporates its interac-
tions with the charged bilayer groups which arise from a
polarity of the water molecules, e.g., hydrogen bonding with
the PH and E1 sites. Nonpolarity of the SM and ST sites
was manifested in an absence of the first peak in the SM-W
(see Figure 5) and ST-W RDFs (the ST-W RDF is similar
in shape to the SM-W RDF). As seen from Figure 6, the
CA site is hydrophilic; however, it was solvated less
compared to any of the lipid headgroup sites. The rest of
the Chol CG sites are nonpolar.

As can be seen from Figure 7, the use of the seven-site
representation of the Chol molecule improved the structure,
presumably due to a better CG representation of the planar
geometry of the Chol molecule. However, these improve-
ments generally were not sufficient to consider the seven-
site model to be universally superior compared to the four-

site model, as the latter is computationally less expensive.
The MS-CG models having a rodlike CG Chol molecular
geometry of four interaction sites were already able to
reproduce the bilayer structure at a sufficiently accurate level.
Below is an analysis of the bilayer properties using the MS-
CG model with the four-site Chol molecules with the bond
angle bonding.

MS-CG MD simulations were next conducted using the
constant NPT ensemble on the same size system. The
simulation was 20 ns long. In Figure 8, the densities of the
selected bilayer CG sites and water are shown, and the MS-
CG model is again seen to capture the key structural
properties of the bilayer accurately. The membrane thickness
as estimated from the average distance between PH sites was
0.435 nm from the all-atom MD simulation compared to
0.422 nm from the MS-CG MD simulation. The area per
DMPC molecule was 0.444 nm2 (it was 0.440 nm2 in the
all-atom MD simulation). The z-density of Chol sites
stretches to almost the same distance from the bilayer center
as that of the acyl (SM, ST) sites. The front slope of the CA
density follows closely the density profile of the SM sites.

Mutual arrangements of the CH and PH z-densities in
Figure 8 and RDFs in Figure 6 indicate a tilt of the PH-CH
bond toward the bilayer surface. The CH-CA and PH-CA
RDFs suggest that the PH-CH bond points toward a
neighboring CA group, forming the CH-CA charged pair.
The first coordination number is 0.85 from the all-atom and
0.80 from the CG CH-CA RDFs. The CH-CA pair was
most likely a solvent-separated pair as the position of the
first peak in the CH-CA RDF at 0.69 nm exceeds the sum
of 0.62 nm of the smallest CH-WC and CA-WC distances
in the MS-CG MD simulation, as estimated from the
corresponding RDFs. However, the formation of contact pairs
is possible because the CH-CA separation reached a
minimum at 0.51 nm. The Chol molecules tend to minimize
exposure of their nonpolar sites to water molecules.41 The
CH sites shield the nonpolar parts of Chol (CA site represents
a part of the first Chol ring) from the water that produced
an additional driving force for the formation of the CH-
CA pairs.

Figure 7. Selected site-site RDFs from the all-atom MD
simulation (black lines) compared to those from the MS-CG
MD simulation (red lines) using the seven-site representation
of the Chol molecule and the “bond angle” bonding scheme.

Figure 8. Comparison of the all-atom (black lines) and MS-
CG (red lines) density profiles for several CG sites perpen-
dicular to the bilayer. The insert compares z-density of Chol
from smaller (red lines) and larger (blue lines) systems.
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The MS-CG model was tested also on a system which
was larger than the reference atomistic system by 4 times in
the x and y directions (i.e., it contained 512 lipids, 512
cholesterol molecules, and 20 992 water molecules or 29 696
total sites). The simulation was initiated from the configu-
ration obtained by a replication of the smaller system in the
x andy directions four times and was integrated for a duration
of 20 ns. Figure 9 presents snapshot images of the supercell
with the selected sites shown from the all-atom MD
simulation [panel (a)] and a segment of the simulation cell
from the MS-CG MD simulation of the larger system. The
z-density profiles from that simulation are similar to those
of the smaller system; however, they exhibit a slight
broadening which is most noticeable for Chol sites. Such a
broadening might be partially attributed to undulations which
are less pronounced in the smaller system due to finite size
effects. The insert in Figure 8 compares the Chol z-density
profiles systems of different sizes. The larger MS-CG mixed
bilayer system was 50-100 times faster to integrate than
the equivalent all-atom MD system of the same size
depending on the choice of short-ranged cutoff and time step
in the MD program for the MS-CG simulation.

The ordering in the bilayer was demonstrated by presenting
the distributions of cosines of the angle between the PH-
CH vector and the bilayer normal. In the all-atom MD
simulation, the distribution of the PH-CH orientations has
two well-defined maxima corresponding to orientations
parallel and normal to the membrane. In pure lipid bilayer,
the orientational distribution of the P-N vector is more flat.8

A first maximum in the〈PPH-CH(cosθ)〉 is attributed to the
lipid molecules in close contact with Chol and corresponds
to a charged CH-CA pair. The maximum at cos(θ) ) 1 is
due to the lipid molecules which are not associated (or
associated less) with Chol molecules. These molecules prefer
to orient their PH-CH bond outward. Several mechanisms
have been suggested for such behavior,8 depending on the
concentration and packing of Chol molecules in the bilayer.
For a Chol concentration of 50 mol %, probable mechanisms
include a decrease in the area per lipid headgroup and the
change in the solvation structure around the lipid headgroups

as the average distance between lipid molecules in the Chol-
contained bilayer increases. The distribution of PH-CH
orientations from the MS-CG model is more flat with less
structure from the parallel and perpendicular orientations to
the bilayer. The distributions of the angles of acyl chain
bonds with the bilayer normal are shown in Figure 10 (a).The
MS-CG model shows broader distributions, suggesting more
disorder.

In Figure 10(b), bilayer order parameters for bond orienta-
tions from the all-atom and MS-CG MD simulations are
compared. The second-order parameterP2 ) 1/2 (3〈cos2(θ)〉
- 1) whereθ is an angle between the bond and the bilayer
normal, is shown. The value ofP2 ) 1 indicates a perfect
aligning of the bond pointing outward with the bilayer
normal;P2 ) -0.5 means the bond pointing inward, andP2

) 0 means a complete disorder in bond orientations. The
PH-GL points predominantly into the bilayer interior. The
linkage SM-E2 is in a more disordered state compared to
the SM-E1 bond, likely as a result of a intensive sterol
association with the E1 site. The SM-SM (II) bond, which
is central in acyl chains, is in the most ordered state. TheP2

distribution is similar to those obtained by Marrink et al.16

using their CG model of pure DPPC bilayer. The CB-CA
vectors are well aligned along the bilayer normal, with an
average angleθ ) 9.8° from all-atom andθ ) 13.0° from
the MS-CG MD simulations.

The lateral diffusion coefficient,D, of the DMPC mol-
ecules was calculated from the slope of the diffusive part of
the mean square displacement (MSD) of the molecular
center-of-mass. The MSD from the MS-CG simulation is
shown in Figure 11. The valueD ) 1.1 × 10-9 m2/s was
obtained for the DMPC diffusion, which is about four times
larger than the experimental value,42,43D ) 3.0× 10-10 m2/s
for the ordered phase of DMPC/Chol atXChol ) 33 mol %.
The diffusion of the CG water wasD ) 11.2× 10-9 m2/s,
compared to the diffusion of the water in the all-atom MD
simulation ofD ) 2.74× 10-9 m2/s. The dynamics of the
MS-CG system is seen to be significantly (by about four
times) faster than all-atom MD simulation, as is expected
from the reduced number of degrees of freedom.29 An
advantage of this is a faster sampling of the configurational

Figure 9. Side views of the bilayer with selected CG sites shown from the all-atom MD simulation [panel (a)] and the larger
MS-CG MD simulation as described in the text (a segment of the supercell is shown) [panel (b)]. Referring to the CG sites in
Figure 1, W: pink dots; CH: dotted spheres; GL: small green spheres; CA: large cyan spheres; and ST: small yellow spheres.
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space. However, the interpretation of the time scale in the
MS-CG simulation is rather arbitrary.29

IV. Conclusions
Following our recent work on the application of the new
MS-CG method to develop CG models of pure lipid
bilayers,28 we have applied the MS-CG method to construct
a family of effective coarse-grained models for the mixed
DMPC/Chol bilayer. The force-matching included a fit of

the virial data, giving models that can be used for MS-CG
MD simulations under constant NPT conditions. The models
also explored different levels of coarse-graining of the
cholesterol molecules and the intramolecular CG bonding
scheme. The resulting MS-CG models were seen to predict
the correct mixed bilayer structure, further demonstrating the
effectiveness of the MS-CG method. Applications to more
complex biomolecular systems are currently underway.
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Abstract: Knowledge of the mechanism of action of antimicrobial agents is crucial for the

development of new compounds to combat microbial pathogens. To this end, computational

studies on the interaction of known membrane-active antimicrobial polymers with phospholipid

bilayers reveal spontaneous membrane insertion and cooperative action at low and high

concentrations, respectively. In late-stage attack, antimicrobials cross the membrane core and

occasionally align to provide a stepping-stone pathway for water permeation; this suggests a

possible new mode of action that does not depend on pore formation for transport to and across

the inner leaflet. The computations rationalize the observed activity of a new class of antimicrobial

compounds.

Introduction
The emergence of new bacteria and viruses,1,2 increasing
pathogen resistance to treatment,3 and the threat of bioter-
rorism4 underscore the vital need to understand the mecha-
nisms of action of antimicrobial molecules. For these reasons,
renewed interest in generic classes of antigenic therapeutic
agents5-11 has led to synthetic designs which show great
potential for combating infectious pathogens. Indeed, non-
peptidic synthetic antimicrobials show promise as effective
alternatives to their natural peptide counterparts.12 Some
advantages include lower cost of manufacturing and the fact
that synthetic molecules are more resistant to degradation
by the host organism. Various mechanisms of action have
been proposed for membrane-targeting antimicrobials. Al-
though no general mechanism of action has been established
even for cationic peptides, the commonly accepted Shai-
Matsuzaki-Huang model provides a reasonable explanation
for the observed antimicrobial activity of such com-
pounds.6,13,14A number of molecules exist, however, that do

not seem to completely follow this model in their mechanism
of action.15,16

Motivating the work presented here is a desire to under-
stand the nature of poration caused by synthetic antimicrobial
(AM) molecules interacting with a phospholipid membrane.
The specific AM molecule considered is the amphipathic
aryl amide dimer (Figure 1), which has been shown to have
potent antimicrobial activity and was inspired by natural and
synthetic peptides.6,10,12,17It was shown experimentally that
arylamide polymers, at different concentrations, act as
bactericidal agents.12 Their interaction with the membrane
was established by the measurement of AM induced calcein
leakage from large unilamellar vesicles. Here, we report the
results of coarse grained (CG) molecular dynamics (MD)
simulations of a fully hydrated 256 dimyristoyl-phosphatidyl-
choline (DMPC) lipid bilayer in the presence of 0, 1, 2, 8,
or 18 AM molecules, to assess concentration dependent
effects on the membrane. Although the bulk concentration
is known experimentally, the two-dimensional concentration
of antimicrobials at the surface is not known. For this reason
we probe the antimicrobial-membrane relation at different
concentrations. These concentrations were chosen to be
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similar to those observed by Huang in experiments with
membrane-active peptides.7

Molecular dynamics (MD) computer simulations provide
a powerful complement to experiments on biological sys-
tems,18,19 but to date attempts to explore the interactions of
antimicrobials with membranes have probed only relatively
short-time behavior20 (10 ns or so) and few have included
more than one membrane-active molecule.21 There is a lack
of quantitative information due to the difficulty in simulating
events that span the relevant range of time scales for the
host membrane, which is a sluggish partially ordered liquid-
crystalline system. Modern coarse grain (CG) work, inspired
by the pioneering efforts of Smit and co-workers,22 has
resulted in the development of several models for membrane
simulations in the past years.23,24Such advances in methodol-
ogy have allowed access to unprecedented time scales in MD
simulations, extending them toward biologically relevant time
scales.25 The longest simulation in this work, effectively 2
µs, would be difficult to run using all-atom interaction
potentials, with current algorithms and computational re-
sources.26 Using CG methods it is now possible to systemati-
cally explore events in this temporal regime.

Methods
CG Model. Reduced representations for water, alkane,
phospholipids, and the arylamide based antimicrobial are
used in the present work. The model is shown in detail in
Figure 1, with labels which will be referenced throughout
the manuscript. The model consists of units that represent

collections of atoms which are tuned to mimic some key
physical or structural features known from experiment or
atomistic simulation as shown in Figure 1a,b. The basic
model and current developments are described in detail in
our earlier papers.23,25,27 Briefly, single spherical sites
represent triplets of alkane carbon atoms and their ac-
companying hydrogen atoms (S2 and S3 units). The hydro-
carbon sites are linked together to form chains using
stretching and bending potentials. Single spherical sites also
represent triplets of water molecules (WS, not shown). The
headgroup units are chosen so that the choline (CH) unit is
represented by one site, the phosphate (PH) unit by one site,
and the glycerol (GL), along with the accompanying car-
boxylic acids (EST, not labeled in Figure 1 for clarity), by
three sites. Several existing units were used to build the
arylamide antimicrobial.12 The positively charged section was
approximated using an existing choline site (AM+), which
is similar to the group we are trying to emulate. The
remainder of the antimicrobial was modeled using generic
hydrophobic sites (S2, S3 where appropriate), and carboxylic
sites (EST) from the original model in an effort to preserve
both the hydrophobic and slightly hydrophilic character of
the antimicrobial bonds and the benzene ring. Special care
was taken to preserve the overall size and shape of the
arylamide molecules in the coarse grain construct.

One of the most important advantages of this approach is
the effective increase in simulation times when compared
to an equivalent all-atom molecular dynamics simulation.
With the present model we observe an increase in time

Figure 1. Inspiration for the design of synthetic antimicrobial targets and the coarse grain model used in the present simulations.
Left: Ribbon representation of magainin, a potent natural antimicrobial. The R-helix ribbon is colored by hydrophobicity
(red)hydrophobic, blue)hydrophilic), and selected individual amino acids are shown as sticks. Middle: The aryl amide dimeric
polymer, a purely synthetic molecule inspired by natural antimicrobials. Color code: carbon, green; sulfur, yellow; oxygen, red;
nitrogen, blue; hydrogen, white. Bottom: A coarse grain representation of the aryl amide dimeric polymer. Color code: cationic,
red; peptidic, blue; hydrophobic, yellow. Right: The corresponding units between an all atom DMPC molecule (left) and its CG
representation (right). Color code: nitrogen, blue; carbon, gray; oxygen, red; phosphate, orange; hydrogen, white. CG color
code: choline (CH), purple; phosphate (PH), red; glycerol (GL), blue-gray; alkane (S2), yellow; terminal alkane (S3), orange.
Circles in the atomistic representations correspond to the numbered units in the coarse grain representations.
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efficiency of about 4 orders of magnitude,25 currently
allowing access to microsecond phenomena employing
modest computational resources. In the present paper we
report effective simulation times for each simulation. We
have used the lateral lipid diffusion of the CG membrane
and compared this to the CG lateral diffusion of an all-atom
membrane. The two-dimensional lateral diffusion constant
for the LR phase of DMPC in the plane of the bilayer is 6.5
× 10-8 cm2 s-1 for an all-atom simulation and 6.3× 10-6

cm2 s-1 for the CG model. The CG lipid motions are
therefore 2 orders of magnitude faster than their all-atom
counterparts. We use a factor of 1× 102 to recalibrate the
simulation time evolution and account for the molecular
diffusion speedup. The effective simulation times reported
in the paper therefore reflect this correction.

Simulation. All the simulations presented in this paper
were run using our in-house CM3D molecular dynamics
program. The program can perform calculations with full
electrostatics, multiple time-step integrators following the
RESPA28 technique, and a wide variety of ensembles ranging
from microcanonical (NVE) to isobaric-isothermic (NPT).
The simulations contained in the present report were all run
using the NPT ensemble at 303 K temperature and 1 atm
pressure in an orthorhombic simulation cell with flexible
sides. The temperature and pressure were controlled with
the Nose´-Hoover chain methodology.29 The outer simulation
time step was chosen at 10 fs using a multiple time step
algorithm.

Five simulations are reported in this work containing 0,
1, 2, 8, and 18 antimicrobial molecules, placed in close
proximity (but outside) of a 256 DMPC hydrated lipid
bilayer, which was constructed as described previously.25 The
simulations were run for 204 ns, 86 ns, 160 ns, 160 ns, and
1.9 µs effective simulation time (referred to throughout the
text as AM0, AM1, AM2, AM8, and AM18, respectively).
With the present model these simulations, for the longest
run system, can be run on a high end Intel based single-
processor workstation within a few weeks.

Analysis. The atom weighted density profiles were
calculated by constructing a histogram along the axis
perpendicular to the bilayer plane of each CG unit. Each
unit was then weighted by the number of electrons of its
corresponding all-atom counterpart (e.g. 42 electrons for the
S2 site representing (-CH2-)3). The electron weight was
then distributed along the histogram using a Gaussian
function with a width corresponding to the Lennard-Jones
radius of the CG unit. Given the nonequilibrium nature of
the present simulations, the first quarter of the simulations
was not included in the calculation of the atom weighted
density profiles for simulations with 1, 2, and 8 AM, as
shown in Figure 4. The first 50 ns of the 18 AM simulation
were skipped. The next 150 ns were processed to obtain the
data presented in Figure 4. The last 200 ns of the 18 AM
simulation were used to generate the data presented in Figure
5.

Water transport across the bilayer was assessed by an
algorithm written to monitor water molecules that cross the
plane defined by the glycerol units on either bilayer leaflet.
A water unit was counted once it crossed both glycerol planes

passing across the bilayer core. Despite the length of the
simulation water crossing is still a rare event. We simply
divide the number of crossing waters by the simulation time
after half of the AM molecules flip-flop across the core of
the membrane to obtain a rough estimate of the qualitative
passage rate.

The molecule insertion coordinate was calculated by
obtaining the averagez-axis coordinate between the end
peptidic units (labeled “3” in Figure 1). Thez-axis was
defined as the axis perpendicular to the membrane plane,
with the zero of the axis set to the center of the bilayer. As
a visual aid, lines representing the average position of the
choline groups and the glycerol groups were placed on the
graphs for reference. Similarly the insertion angles were
determined by obtaining the angle between the end peptidic
units and the bilayer normal, which was approximated, in
this case, as thez-axis.

Results and Discussion
Insertion Mechanism. We observe spontaneous insertion
of antimicrobial polymers in all of the antimicrobial contain-
ing simulations reported here (Figure 2). It appears that
cooperative activity occurs at high AM concentrations, as
one molecule possesses the capacity to interact with and
assist penetration of other AMs into the lipid bilayer. In the
early stages of the simulation the AM molecules accumulate
at the headgroup region of the outer leaflet lipid-water
interface (Figure 2a) with their hydrophilic amide groups in
the water. As the simulation evolves the AM molecules dive
into the membrane to reside under the lipid headgroups
(Figure 2b). At still longer times, as observed in the 18 AM
simulation, some AM molecules cross the lipid bilayer core
to reside under the headgroups of the inner leaflet (Figure
2c).

We have rationalized our observations by postulating the
existence of two AM insertion mechanisms. The first consists
of the spontaneous penetration of single, isolated AM
molecules (1 AM simulation), which is relevant at lower
concentrations. Data for the distance from the AM molecule
to the center of the bilayer as well as the orientation of the
AM relative to the bilayer plane is shown in Figure 3. The
dashed lines show the average position of the lipid CH (∼18
Å) and GL (∼13 Å) groups throughout the simulation. The
insertion distance decreases as the simulation evolves, with
the molecule center crossing the CH-GL slab in about 15 ns
of simulation time (Figure 3a). At this point, once the
molecule has crossed the GL region there is further accom-
modation and reorientation. The AM+ groups, as will be
shown below, remain near the headgroup region, while the
body of the AM intercalates between the lipid tails. As shown
in Figure 3b, the orientation of the molecule throughout the
insertion is almost parallel to the membrane plane. This
mechanism of insertion seems to indicate a simple spontane-
ous insertion at low concentrations for the antimicrobial. We
are currently working on ways to characterize the insertion
time scale for this event.

In addition to the previously described mechanism of
insertion, a second mechanism is seen when AM molecules
interact. To probe the latter, several simulations (2 AM, 8
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AM, and 18 AM) were initiated with AM molecules in close
proximity relative to each other and wholly within the water
subphase. The AM long axes were positioned parallel to the
lipid membrane, and all the AM molecules were initially
placed completely in the water subphase. We present the
insertion distance and orientation angle for both AM
molecules during insertion observed in the 2 AM simulation,
shown in Figure 3c,d. Both antimicrobials initially approach

the membrane and accommodate near the headgroup region
as shown in Figure 2a. Figure 3c shows how the centers of
the AM molecules approach the bilayer at about the same
distance and time. It is important to note here that there is
“contact” between the AMs throughout the insertion process.
Within a short time of accommodation within the lipid
headgroup region, one of the antimicrobials (labeled 2AM1
in Figure 3c) very rapidly changes orientation (Figure 3d).
This antimicrobial will conserve this steep angle and its
interaction with the second antimicrobial, which remains
relatively parallel to the membrane throughout the insertion
process. After this change in orientation, 2AM1 penetrates
the membrane rather quickly. During this process it continues
to interact with the second antimicrobial (2AM2) and “drags”
it through the CH-GL region. After the groups have crossed
the headgroup region dissociation between the two AMs
occur and a shallower angle relative to the bilayer plane is
recovered.

Eventually all of the arylamide monomers penetrate the
membrane at sufficient time scales. Interfacial insertion times,
throughout the simulations, were about 12 ns, and penetration
times ranged from 10 to 20 ns throughout the different
concentration simulations. About 50% of the AMs insert into
the membrane via an accommodation/penetration mechanism
as described here. The remaining 50% of the molecules are
dragged into the bilayer core by those that experience a two
stage mechanism. Further simulation might be required to
extract proper time scales related to the accommodation and
insertion events. The insertion and penetration mechanism
observed in this study expands and adds pictorial detail to
the traditional view of aggregation and oligomerization
attributed to natural AM peptides such as magainins and
melittins.6,7,13,14We are currently working on understanding
how the cooperative interaction between AM molecules
could be related to experimentally observed activity.

Membrane Structure. Figure 4 shows the results depict-
ing the positions of the different protein components along
the z-axis immediately after penetration of the membrane
leaflet, nearest the side of attack, has taken place. The data
analyzed here corresponds to the total simulation time for 0
AM, 1 AM, 2 AM, and 8 AM simulations and to about 200
ns of simulation time for the 18 AM simulation. As can be
seen (Figure 4a), the membrane density on the side of attack
decreases and broadens as the concentration increases. This
is indicative of a displacement of the lipid headgroups due
to the insertion of the AM polymers into the protein. There
seems to be a decrease in the water density on the side of
attack as the concentration increases as well. This is due, at
least in part, to the antimicrobial molecules displacing water
molecules at the lipid headgroup region. As shown by the
dashed lines (Figure 4b), corresponding to the AM polymers,
the AM+ units reside near the GL group of the lipid and
between the GL and CH groups of the lipid. The body of
the AM polymers however sits well past the GL groups. In
the low concentration case a peak appears near the center of
the bilayer. At higher concentrations, the distribution is
broader, and the AM groups span several Ångstroms between
the GL groups and parts of the opposite side of the lipid
membrane. After insertion/penetration, the AM+ groups

Figure 2. Depiction of the observed two-step - accommoda-
tion (a) and penetration (b) mechanism for membrane inser-
tion of the antimicrobial (AM) aryl amide dimer molecules into
the outer leaflet of a DMPC lipid bilayer (DMPC: choline, red;
phosphate, purple; glycerol group, blue sticks; hydrophobic
tails, green sticks). The initial interfacial insertion stage
involves adsorption and “snorkeling” of the AM at the bilayer
surface (a). In this example of the penetration stage, one AM
rotates to become perpendicular to the bilayer plane and drags
the accompanying AM into the membrane core (b). Subse-
quent population of both leaflets occurs at much longer times
(c).
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reside close to the glycerol moieties, while the remainder of
the molecule resides in the hydrophobic core.

At sufficiently long times all the AM molecules eventually
insert into the membrane core and become oriented with their

long axes parallel to the membrane surface. AM associations
during the initial insertion process are lost via diffusion after
further penetration into the membrane. After about 1µs of
simulation time, half of the AM polymers spontaneously
cross the bilayer core and sit opposite the attack leaflet (18
AM simulation). The atom weighted densities showing the
membrane structure are shown in Figure 5. At long times,
there seems to be a preference for the AM body (labeled
AMB in Figure 5a,b) to sit wholly near the center of the
lipid membrane. The AM+ groups seem to prefer a position
slightly below the GL groups (Figure 5b). This is in contrast
to that observed initially after insertion where the AM+
group sits between the GL and CH groups. We believe this
is due to transbilayer interactions with both lipids and other
antimicrobial molecules. Indeed, as we will discuss below,
AMs in one leaflet can interact and align with AMs from
the opposite leaflet.

Typically, thinning of the system occurs when AM
molecules are added to a hydrated lipid bilayer.30 In the
present simulations the membrane surface area (simulation
cell cross section) increases slightly (6% at the highest
concentration) and the overall system thickness (simulation
cell height) decreases slightly (1% at the highest concentra-
tion) with increasing number of AMs.

Water Penetration and Transport. A decrease in water
penetration at the attacked bilayer leaflet and an increase in
water penetration at the leaflet opposite the AM attack are
observed in the simulations. As AMs snorkel and dive
through the membrane headgroup region they exclude water
that normally resides at the interface. The leaflet opposite
the AM attack expands in response to the swelling of the
attacked leaflet, thereby enabling water penetration. This

Figure 3. Insertion distance to bilayer center (top graphs) and orientation angle (bottom graphs) for the 1AM simulation (left)
and the 2AM simulation (right). Dashed lines represent the average positions of the CH group (top line) and the GL group
(bottom line) within the attacked leaflet.

Figure 4. Atom weighted densities for the lipid bilayer (solid
lines) and the AM molecules (dashed lines) for simulations
with 0 (black), 2 (red), 8 (green), and 18 (blue) antimicrobial
molecules. The scale on the left corresponds to the lipid
molecules, while the scale on the right corresponds to the
AM polymers.
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effect is exacerbated with increasing AM concentration and
has been noted previously for melittin penetration into a lipid
bilayer.31 However, the asymmetry between the pure inner
leaflet and the AM containing outer leaflet may be exag-
gerated due to finite size effects, which in turn can enhance
water penetration into the leaflet opposite to the AM attack.

In the absence of AM molecules in the bilayer, water can
spontaneously diffuse past the lipid headgroups but is
normally expelled back into the bulk region. The presence
of AM molecules within both bilayer leaflets allows for
occasional AM alignment perpendicular to the bilayer plane,
thereby providing a stepping-stone pathway for water
molecules to cross the membrane, as shown schematically
in Figure 6. In this figure, snapshots of a single water
molecule are taken during a passage across the membrane.
The lipid bilayer and the surrounding water molecules have
been abstracted into color panels for clarity. The water
approaches from the water subphase and crosses the lipid
headgroup region, where it finds an antimicrobial molecule.
At this stage, the water unit interacts with the hydrophilic
site until the bottom AM molecule aligns properly. At this
time a quick jump occurs between both molecules, and the
water now resides in the lower leaflet. The water finally
crosses the lower leaflet headgroup region and returns to the
water subphase.

In effect, water or ions could become transiently bound
within the core of the bilayer by the hydrophilic groups of
the AM. Thermal fluctuations can drive this bound water
deeper into the membrane whereupon it can jump to an
appropriately positioned AM in the opposite leaflet and
eventually exit the membrane after crossing the bilayer core.

The observed water transport is a rare event for a system of
this size and even for a simulation of this length. In the
highest concentration simulation, the water molecule passage
rate is roughly 1/ns, which is about three times that of the
pure CG membrane. This type of ion or water transport has
been suggested as a viable mechanism for the function of
hydraphile channels.32 It is important to note that our water
unit represents three loosely packed water molecules. As
such, it is also comparable to a hydrated ion. This suggests
that hydrated ions could gain passage through the bilayer
by means of this mechanism. It is important to note that these
water-passage results across the membrane are to be taken
in a slightly qualitative manner as the coarse grain repre-
sentation of the units interacting here does not allow for a
more quantitative description of the passage event. It is clear,
however, that the presence of the antimicrobials, mediating
the water passage, results in an increase in the overall water-
passage rate.

Conclusion
We see no evidence for the formation of pores when these
synthetic AMs oligomerize during attack on the membrane
and subsequently undergo trans-bilayer flips. This lack of
pore formation could be due, at least in part, to the fact that
the AMs are too short to span the bilayer.12 However,
interactions between AMs are fundamental for the disruption
of the lipid bilayer. As such, these results emphasize AM
cooperativity which is integral to the traditional Shai-
Matsuzaki-Huang model and provides an alternative mech-
anism for transport across the membrane. This molecular
level simulation of the interfacial insertion and penetration
process suggests a possible new approach to generate targets
drugs for pathogen eradication. The present results are not
aimed to dispute the compelling evidence that exists regard-
ing nanopore formation by natural AMs, rather they provide
a basis for the design of low-cost synthetic AM molecules
which could disrupt a cellular membrane through an alterna-
tive pathway.

Figure 5. Atom weighted densities for the lipid bilayer (solid
lines) and the AM molecules (dashed lines) for simulations
with 0 (black), 2 (red), 8 (green), and 18 (blue) antimicrobial
molecules. The scale on the left corresponds to the lipid
molecules, while the scale on the right corresponds to the
AM polymers.

Figure 6. Representative water trajectories (blue spheres are
CG waters) showing passage from the bulk water phase, W1
(purple), through the headgroup region HG1 (orange), and
hydrophobic membrane core, C (yellow) to the HG2 and W2
regions via a pathway employing the aryl amide molecules
as stepping stones.
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The traditionally accepted mechanism for water transport
involves the formation of pores by amphiphilic peptides.
Here, however, the AMs, rather than forming a pore, provide
a local hydrophilic environment to trap water within the
globally hydrophobic membrane core. At high AM concen-
trations the probability for the alignment of AMs in opposite
leaflets to form a bridge across the bilayer is increased. This
suggests a previously unexplored pathway for membrane
leakage and poration. Furthermore, in a fully atomistic
environment, the formation of water wires across the bilayer
seems plausible.33,34 From our results we see that pore
formation may not be necessary and that if AM bilayer flips
can occur, water leakage is possible.

The efficiency of the aryl amide class of AMs, their ease
of synthesis, and, as shown in this paper, their specific
interaction with the membrane provides thought-provoking
insight into possible AM design. The presented observations
also provide an explanation of the fundamental interactions
between generic amphiphilic molecules and lipid membranes.
The present study presents researchers with a qualitative
picture of the mode of action of a purely synthetic AM
polymer which can be generalized to generic models and
thus should be able to impact in the design of new and more
potent antimicrobial agents.
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Abstract: We previously developed an algorithm, called “resolution exchange”, which improves

canonical sampling of atomic resolution models by swapping conformations between high- and

low-resolution simulations. Here, we demonstrate a generally applicable incremental coarsening

procedure and apply the algorithm to a larger peptide, met-enkephalin. In addition, we

demonstrate a combination of resolution and temperature exchange, in which the coarser

simulations are also at elevated temperatures. Both simulations are implemented in a “top-

down” mode, to allow efficient allocation of CPU time among the different replicas.

Atomic resolution simulations of proteins are currently
limited to short durations (less than 1µs)2 or small systems
(less than 100 residues).3,4 Furthermore, accurate calculations
involving large conformational changes are not possible for
any system, as the cost of calculating entropic contributions
is too great. Indeed, the cost of such calculations is only
going to increase, as empirical force fields are improved by
including polarization effects, either in a classical way5,6 or
in a semiclassical way.7

Thoroughly sampling the space of conformations is
essential for a number of problems. From a purely biological
perspective, there is a growing awareness of the importance
of protein fluctuationssover and above the static pictures
in the function of most proteins.8 Allostery and conforma-
tional changes dramatic enough to be captured experimentally
are just two examples of the existence of such fluctuations.9,10

In a computational context, careful validation of empirical
force fields requires confidence in the quality of conforma-
tional sampling, so that error may be attributed to the force
field rather than undersampling. The calculation of free
energy differencessas required for evaluation of binding
affinities of small molecules11 or the strength of protein-
protein interactions12salso requires reliable sampling.13,14

The undersampling (or “quasi-ergodicity”) problem is

widely recognized, and consequently there have been many
attempts to improve upon standard simulation protocols.
Methods which aim to generate a canonical distribution of
conformations include multiple time-step methods,15,16non-
linear variable transformations,17 J-walking,18 inverse renor-
malization group approaches,19 and adaptive resolution
methods.20 The most widely used class of methods, however,
comprises the generalized ensemble approaches.21-23 Of the
generalized ensemble approaches, perhaps the simplest and
most popular is parallel tempering, in which a number of
copies of the system are evolved in parallel at different
temperatures.24-27 Occasionally, configurations are swapped
between neighboring replicas, presumably allowing the low-
temperature replica to access more configuration space via
high-temperature conformations.

Numerous28-33 as well as extensive34,35parallel tempering
simulations have been published, including some which claim
to demonstrate the superior efficiency of the method over
standard molecular dynamics (MD) simulation.36-38 Regard-
less of the validity of those claims, there appears to be a
limit to the utility of parallel tempering for the study of large
proteins, nucleic acids, and macromolecular complexes: the
number of replicas required to bridge a specified temperature
gap increases as the square root of the number of degrees of
freedom of the solution.39,40 In other words, if atomic
resolution information is desired, then very many atomic
resolution simulations are required. Recent work by Berne
and co-workers partly addresses this problem for explicitly

* Corresponding author e-mail: elyman@ccbb.pitt.edu.
† Present address: 3088 BST3, 3501 Fifth Avenue, University of

Pittsburgh, Pittsburgh, PA 15213.

656 J. Chem. Theory Comput.2006,2, 656-666

10.1021/ct050337x CCC: $33.50 © 2006 American Chemical Society
Published on Web 04/22/2006



solvated systems, so that the number of replicas scales with
the number of degrees of freedom of the solute only.41

Solutes such as proteins, of course, can be quite large.
In this paper, we address the problem of insufficient

sampling of implicitly solvated biomolecules using a different
approach. We recently developed an algorithm, called
resolution exchange, which uses a distribution generated by
a coarse-grained model to improve the sampling of a higher-
resolution simulation.1 The resolution exchange (ResEx)
algorithm guarantees canonical sampling for each level of
resolution, so that the coarse-grained simulation introduces
no bias into the high-resolution simulation. The algorithm
is similiar in spirit to other exchange simulations, in that
conformations are swapped between otherwise independent
simulations. However, by employing replicas of reduced
resolution, ResEx has the potential for significant efficiency
gains. Other authors have recognized the value of improving
sampling with reduced resolution representations. For ex-
ample, Iftimie et al. used a classical potential as an
importance function to improve sampling of an ab initio
potential.42 Here, our goal is to sample aclassicalatomic
resolution potential, which leads us to a different algorithm.
Also, Liu and Sabatti formally introduced a Markov chain
Monte Carlo method which allows jumps between spaces
of different dimensions.43 Their algorithm has apparently not
been applied to the simulation of macromolecules. Lwin and
Luo recently introduced an algorithm similiar to ours, but it
does not generate canonical sampling.44

We have also employed a modification of the usual parallel
protocol used to carry out exchange simulations,1 general-
izing the “J-walking” approach previously introduced by
Frantz et al.18 The J-walking (or as we call it “top-down”
exchange) method allows an unequal distribution of CPU
time among the various replicas. We emphasize that any
exchange simulation may be run in top-down mode. In
contrast with other exchange methods, top-down exchange
allows very little simulation time to be spent on the
computationally expensive, high-resolution (or low temper-
ature) replicas. Substantial improvement in sampling ef-
ficiency is therefore possible, in principle.

We previously applied the resolution exchange algorithm
to butane and dileucine peptide.1 Here, we confront issues
which arise in the study of larger molecules. We show that
a molecule may be coarsened incrementally, so that the
overlap between models of neighboring resolution may be
adjusted for improved sampling efficiency. We also dem-
onstrate that resolution and temperature exchange are easily
combined in a single simulation, so that sampling may be
improved by both increasing temperature and decreasing
resolution simultaneously. The incremental coarsening pro-
cedure is first demonstrated on dileucine, where we check
that the correct conformational distribution is attained. We
then demonstrate successful exchange between an all-atom
model and an united-atom model of met-enkephalin, using
two different exchange ladders: a ladder of varying resolu-
tion only and a ladder which combines resolution and
temperature changes.

We will finish with a discussion of the next logical steps
toward larger peptides and proteins.

1. Theory and Methods
The results presented in this paper concern two distinct,
recently introduced simulation methods.1 The first is resolu-
tion exchange, which allows exchange between simulations
at different resolutions, and preserves canonical sampling.
The second is top-down exchange, which allows unequal
distribution of CPU time, maximizing the efficiency of an
exchange simulation. In addition, we describe a general
incremental coarsening strategy for building a ladder of
models which improves exchange efficiency.

1.1. Resolution Exchange.Resolution exchange (ResEx)
is motivated by the effectiveness of coarse-grained models
for sampling of protein conformations45,46 and by the need
for atomic-level resolution for many calculations. ResEx uses
coarse-grained simulation to accelerate basin-hopping in
more detailed models. In contrast withad hoc methods,
ResEx guarantees canonical sampling of the atomic-resolu-
tion model.

The basic idea, as in any exchange simulation, is to
exchange conformations between two simulations. How are
trial configurations constructed for an exchange between
models with different numbers of degrees of freedom?
Consider a pair of models: a coarse-grained model, a
configuration of which is described by a set of coordinates,
Φ, and an atomic-resolution model described by a larger set,
{Φ,x}. Note that the coarse model is built from asubsetof
the coordinates of the detailed model. Before the exchange,
let the coarse-grained configuration beΦa, and let the atomic-
resolution coordinates be{Φb,xb}. By swapping only coarse
variables, the trial configuration for the coarse-grained model
is simplyΦb and for the atomic-resolution model is{Φa,xb}.

The exchange criterion is derived by considering the two
simulations to consitute a single system characterized by the
combined coordinates{Φa,(Φb,xb)}. Because the simulationss
aside from the exchangessrun independently, the probability
distribution of the combined system is the simple product
of the individual distributions. Let the potential functions of
the high- and low-resolution simulations beUH(Φ,x) and
UL(Φ), respectively, and denote the Boltzmann factors as
πH(Φ,x;âH) ) e-âHUH(Φ,x)/ZH and πL(Φ;âL) ) e-âLUL(Φ)/ZL,
where ZH and ZL are the partition functions. Then the
exchange attempt is accepted with the Metropolis rate:

The dependence on inverse temperature (â) is made explicit,
as a reminder that the method is naturally combined with
temperature exchange, though this of course extends to any
type of exchange, such as Hamiltonian exchange.47 Note that
in the case of ordinary (temeprature-based) replica exchange,
in which all the coordinates are swapped, eq 1 reduces to
the familiar expression min[1,exp(-∆â∆U)].

In a parallel implementation, eq 1, together with the
protocol for trial move construction, ensures that the
algorithm satisifies the detailed balance condition. To see
this, consider “old” (o) and trial/“new” (n) configurations
of the combined system. In the construction of any Boltz-
mann-preserving Monte Carlo move, two transition proba-

min[1,
πH(Φa,xb;âH)

πH(Φb,xb;âH)

πL(Φb;âL)

πL(Φa;âL)] (1)
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bilites must be considered: the conditional probabilityR(o
f n) of generatingthe move from configurationo to n and
the conditional probabilityw(o f n) of acceptingthe move.48

Detailed balance insists thatp(o)R(o f n)w(o f n) )
p(n)R(n f o)w(n f o), where p(j) is the equilibrium
probability of configurationj. Yet the acceptance criterion
(1) has the form

implying that the generating probabilitiesR are identical.
This is indeed the case: given a predefined division into
coarse and detailed coordinates, the conditional probability
for the moveo ) {Φa,(Φb,xb)} f n ) {Φb,(Φa,xb)} and its
inverse are both one. That is, given the old configuration of
the combined system, there is a unique trial configuration.

Lwin and Luo have constructed a similiar algorithm,
except thatbeforechecking acceptance via eq 1, the high-
resolution trial configuration isminimized.44 Such minimiza-
tion (even subject to constraints on the coarse coordinates
Φ, as in ref 44) violates the detailed balance condition by
biasing the generating probability,R(o f n), without any
compensating correction in the acceptance criterion. Put more
simply, reverse moves into unminimized configurations are
impossible. The consequences of the violation are readily
seen, as shown in section 2.1.

1.2. Incremental Coarsening.An important practical
issue is raised, however, by the construction of trial moves
without minimization. The problem is that the degrees of
freedom in the high-resolution simulation{Φ,x} are strongly
coupledsfor a protein, think ofΦ as backbone degrees of
freedom (DoF) andx as side-chain DoF. Then it is clear
that construction of trial moves by our method may lead to
high rejection rates. We have solved this problem by noting
that the rejection rate depends on the both thenumber and
typeof DoF in the set{x}. Employing a ladder of incremental
models at intermediate resolutions allows the acceptance rates
to be tuned to reasonable values, as shown in Figure 1.

A ladder of incrementally coarsened models is straight-
forward to construct. Consider coarsening from an all-atom
representation of a protein to a united-atom representation.
In the first model above the all-atom level, only one residue
is described by the united-atom representationsthe protein

is described by a “mixed model”, with one united-atom
residue and the rest all-atom. Then, in the next level up, there
are two united-atom residues, and so on, until the entire
protein is described by the united-atom force field. A similiar
procedure may then be used to go beyond the united-atom
level to a united-residuelevel. Notice that it may be desirable
to coarsen more than one residue at a time, since some
residues have fewer degrees of freedom than others.

Of course, implementation of the incremental ladder just
described requires the construction of a potential function
which has both united- and all-atom groups. In this work,
we have built this mixed potential by combining the
parameters for united and all-atom force fields into a single
file. In other words, we created a larger parameter file, which
contains both all-atom and united-atom types. This file also
includes all of the interactions for both united- and all-atom
types, with the united-atom interactions modified as described
in section 1.1. Adding some parameters (taken from the all-
atom potential) for the interfaces, where united and all-atom
residues link, the mixed potential describes the whole
molecule. The parameters (formatted for use in TINKER)
are included as Supporting Information.

The incremental coarsening approach just described is
rather general and not restricted to implementing exchange
ladders spanning united- to all-atom resolutions. Lower
resolution models could also be considered, for which it may
be desirable to coarsen several residues at once. A first
quantitative analysis of the incremental coarsening procedure,
suggesting how efficiency can be improved, is given in
sections 2.2 and 2.3.

1.3. Top-Down Exchange.In many exchange simulations,
whether they are temperature-based,38 Hamiltonian-based,47

or use some other extended ensemble,49,50 the goal is to
improve the sampling of a hard-to-sample model (such as
an all-atom protein model at native conditions) by sampling
a related model, which ispresumedeasier-to-sample (such
as the same all-atom model at higher temperature). [For a
discussion of these issues from a statistical perspective, see
ref 51.] Information is swapped between the simulations by
occasionally exchanging configurations, in a way which
preserves canonical sampling of each distribution. Usually
there is little overlap between the hard-to-sample (henceforth,
“bottom level”) and the easy-to-sample (henceforth, “top-
level”) models, and therefore a ladder of intermediate models
is required.

A critical observation is that the accuracy which is
ultimately attained in the hard-to-sample, bottom-level model
is effectively limited by that which is obtained in the easy-
to-sample, top-level model.18 In many cases, the top level is
still quite difficult to sample well and will require consider-
able CPU time to reach an acceptable accuracysmuch more
than it would usually be allotted in a parallel implementation.
It is this observation which motivates the top-down method.
The top-down algorithm shown schematically in Figure 2
was developed previously for temperature-based simulation,18

though was not widely recognized as such. The procedure
is as follows:

(i) Run and store a simulation at the top level (model MN)
until it is judged to be sufficiently converged. This trajectory

Figure 1. Two different ladders used to exchange all-atom
with united-atom met-enkephalin. Residues are depicted with
ovalssopen corresponds to an all-atom representation, filled
to united atom. The ratios of successful to attempted ex-
changes between each level are indicated by the percentages.

w(o f n)

w(n f o)
)

p(n)

p(o)
(2)
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is a sample of the distributionπN(r ) of the top level, where
N labels the level andr labels the configurations. In the case
of ResEx,r ) (Φ,x). Let n be a running index, withn ) N
at this top level.

(ii) Start a simulation at then - 1 levelsfor example, at
the next lower temperature. Configurationsr n-1 will be
sampled according toπn-1 for model Mn-1.

(iii) Whenever an exchange is to be attempted, pull a
random trial configurationr n from the Mn trajectory. In the
case of ResEx, one requires only the subsetΦ.

(iv) Accept the trial configuration according to

whereπi(r ) ) e-âiUi(r )/Zi, Zi is the partition function,Ui is
the potential function, andâi is the inverse temperature.
Notice the partition functions need not be known, as they
cancel between numerator and denominator.

(v) Continue with steps (iii) and (iv) until the sampling of
then - 1 level is judged sufficient. Store then - 1 trajectory.

(vi) Continue with steps (ii)-(v) for n ) N - 2, N - 3,
... until the bottom-level simulation is complete.

First, note that canonical sampling is maintained by eq
1.3,18 just as in an ordinary parallel exchange simulation.
On the other hand, detailed balance is not satisfied, as the
trial configuration for the leveln simulation (r n-1 above) is
discardedsmaking reverse moves effectively impossible. The
error is one of practice, not of principle, arising from the
fact that the samples ofπn andπn-1 are finite, just as in any
simulation.

To see intuitively that canonical sampling is maintained
by top-down exchange, imagine a pair of simulations
undergoing ordinary parallel exchange. Unbeknownst to the
investigator, however, the top-level simulation is running on
a very fast processor, while the other is running on an old,
slow processor. Between neighboring exchange points, the
trial conformations from the fast processor will be far more
decorrelated than those of the slow simulationswhich
mimics the effect of the top-down protocol. However, these
exchanges still satisfy detailed balance. In the limit of an
infinitely fast top-level simulation, trial configurations are
completely decorrelated, and one could equally well choose
randomly fromπn as in step (iii).

Second, notice that because trial configurations are pulled
at randomfrom the sample ofπn in step (iii), transitions
which are slow in the actual Mn trajectory occur rapidly
among the trial configurations. Maximum benefit is thus
obtained from successful exchangessin contrast with a
parallel exchange simulation, where trial configurations are
typically separated by only a few picoseconds and remain
highly correlated.

Third, good results may be obtained expending very little
CPU time on all levels except the top one. This may be
understood from an energy landscape perspective. The top
level has been used to thoroughly sample the spaceshigh
barriers are crossed, and major sub-basins equilibrated. At
lower levels, only local equilibration need occur. For
example, letτnonloc be the time to cross high barriers,τlocal

be the time to equilibrate locally, and say thatm successful
exchanges are needed to sample the space well. Thenτlocal

× m CPU time is needed to sample the lower level. The
required condition to save time over a parallel simulation is
that τlocal , τnonloc. The degree to which this condition is
satisfied will depend on the system studied, but the top-down
approach allows the flexibility to take advantage of a
separation in time scales. This idea is reminiscient of the
“dragging” of fast degrees of freedom, suggested by Neal,52

and the multiple time step approaches developed by Berne
and co-workers.15,16

Finally, a major advantage of top-down simulation over
parallel exchange protocols is that exchange attempts are
nearly “free”, in the sense that no communication is required
between processors.18 This means that exchanges may be
attempted very frequently, and therefore much lower ex-
change rates may be accommodated. In the case of temper-
ature exchange, this allows either for the steps in the
temperature ladder to be more widely spaced or for the
treatment of larger systems with fewer replicas.

1.4. Simulation Details. In ideal circumstances, low-
resolution models used in ResEx simulations would be
specifically optimized for resolution exchange. They would
have maximal conformational overlap for the common
degrees of freedom. Here we work with an “off the shelf”
low-resolution model (united atom) which leads to some
difficulties. Consider, for example, a CR-C′ bond which is
parametrized in the two models by two slightly different
natural bond lengths. In an exchange attempt, the configura-
tions are swapped, and in each trial configuration the CR-
C′ bond is moved a bit from its preferred length. These small
contributions add up for every harmonic term in the entire
molecule and have a noticeable effect on the acceptance of
exchange moves. We have solved this problem by simply
changing the harmonic parameters of the coarse model to
match those of the detailed model. This makes the coarse
model more “exchangeable” with the detailed model. Since
the coarse model is simply “suggesting” configurations for
the atomic model, and since eq 1 guarantees that no bias is
introduced by the coarse model, we need not worry that the
coarse model parameters are changed from their original
values. We now describe in detail the two molecular systems
which were studied in the present work.

Figure 2. Schematic representation of top-down exchange.
Thick horizontal lines are simulation trajectories (labeled “Mi”
for model “i”), and arrows represent exchanges. The Mi may
be differ in resolution, temperature, or both. Notice that the
top-level simulation may be considerably longer than the
others.

min[1,
πn-1(rn)

πn-1(rn-1)

πn(rn-1)

πn(rn) ]
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Dileucine.We first studied dileucine peptide (ACE-(Leu)2-
NME) using the same force field parameters as in ref 1. Here,
we also carried out an incrementally coarsened ResEx
simulation of dileucine in 5 levels. The coarsest level (M4)
was the same as in ref 1, namely a modified version of
OPLSUA.53 In lower levels, the molecule was rendered in
finer detail beginning at the N-terminus: inM3, the N-
terminal methyl group, CR, and Câ of the first residue were
modeled in full atomistic detail; inM2, Cγ and both Cδ’s of
the first residue were additionally modeled explicitly; inM1,
the CR, Câ, Cγ, and one Cδ of the second residue were
modeled explictly; and finally inM0, the entire molecule was
rendered in full atomic detail. The ladder of mixed models
was chosen to keep approximately fixed the number of
hydrogens by which neighboring levels differ, without
splitting a methyl group.

The top level (M4) was simulated first, for 25, 50, 100, or
200 ns. The different lengths of top-level simulation were
used to generate the different data points in Figure 4. Then
the higher resolution models were run, as per the top-down
protocol (see section 1.3), attempting exchanges once per
picosecond. A total of 2.5× 103 exchanges were attempted
between each level, for a total trajectory length per level of
2.5 ns. Frames were stored every 0.1 ps, for a total of 2.5×
104 frames in the sample at each level below the top.

Met-Enkephalin.We next studied met-enkephalin (NH3
+-

Phe-Gly-Gly-Tyr-Met-COO-). The united-atom force field
was a modified version of OPLSUA.53 The force field was
modified so that the bond length and angle bending
parameters matched those of the all-atom force field, which
improves exchangeability (or conformational overlap) of the
two models. The sample of the top-level model was
constructed from two independent 100 ns trajectories, both
started from the pdb structure 1plw (first NMR model),
generated by Langevin dynamics as implemented in TINKER
v. 4.2.54 The friction coefficient was 5 ps-1, and solvation
was modeled with the GB/SA method.55 The first 1 ns of
each trajectory was discarded, and frames were stored every
10 ps for a total of 19 800 frames in the sample.

We then ran the next higher resolution simulation, as per
the top-down algorithm (see section 1.3). This model was
of mixed resolution, with the Tyr1 residue represented by
the OPLSAA all-atom force field,56 and the remaining
residues described by the OPLSUA force field. Every 1 ps,
a random configuration was pulled from the top-level (M5)

trajectory, and a resolution exchange was attempted, with
acceptance governed by eq 1. Since the acceptance ratio for
the M5 to M4 exchanges was approximately 10%, the average
length of M4 trajectory between exchanges was 10 ps. A
total of 104 ResEx moves were attempted, for a total M4

trajectory length of 10 ns. Frames were stored every 0.1 ps
for a sample of 105 frames.

This procedure was then repeated for each level shown in
Figure 1, with the exception that the attempt frequency of
ResEx moves was adjusted for the acceptance ratios, so that
the segments of the simulations between exchanges were kept
approximately constant at 10 ps. Also, the total number of
attempted exchanges was adjusted so that approximately 103

successful exchanges were observed between each level, for
a total trajectory length of 10 ns at each level. Given that
the top level is presumed to be well-sampled, 103 exchanges
should sample a large number of basins.

2. Results
In a previous short paper, we tested the ResEx algorithm on
two small molecules: butane and dileucine peptide.1 It was
shown that the method produced results in agreement with
those obtained by standard simulation methods. For the sake
of clarity, here we first demonstrate our approach on a two-
dimensional toy model, consisting of two basins which differ
only entropically. We also extend the method to two peptides,
dileucine and met-enkephalin, to demonstrate the viability
of incremental coarsening.

2.1. Results: Two-Dimensional Model.An important
consideration in designing any sampling method is whether
it will correctly account for entropic differences. We therefore
designed the potential surface shown in Figure 3 to compare
three different sampling methods: a “standard” Monte Carlo

Figure 3. Contours of the potential surface U(x, y), described
by eq 3. Here we have reduced w to 10 so that both wells
are visible in the figure.

Figure 4. Comparison of different ResEx protocols for
dileucine. Plotted are free energy difference estimates be-
tween the R and â states as a function of total CPU cost. The
dashed lines are individual runs generated by standard
Langevin dynamics (no exchange), and the solid horizontal
line is the average of 4 independent 150 ns Langevin
dynamics simulations. The solid circles are ResEx results from
the two-level ladder from ref 1, and the diamonds are the
ResEx results from the five-level ladder, averaged in each
case over 8 independent runs. The error bars give the range
of the 8 independent runs. The ResEx data points are
displaced from the origin to accurately reflect the time invested
in generating the top-level and all intermediate-level distribu-
tions. The exchange schedule for ResEx has not been
optimized.
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simulation, the same Monte Carlo with resolution exchange,
and the same Monte Carlo with the “dual REM” method of
Lwin and Luo.44

The surfaceU(x, y) in Figure 3 is described by the function

whereE0 ≡ kBT, Eb ) 10 kBT is the barrier height, andw
controls the width of the right well in the figure. Notice that
the profile of the surface aty ) 0 is symmetric aboutx ) 0:
Ux(x) ≡ U(x, y ) 0) ) Eb(x2 - 1)2, i.e., the two minima are
of equal depth. The parameters were chosen so that the
equilibrium populations of the two wells differ greatlyswe
used w ) 500, so that the right well holds 95% of the
population, as measured by standard techniques.

For both the ResEx and the dual REM simulations, the
“coarse-grained” potential was simply the one-dimensional
potentialUx, i.e., a symmetric double well.

To describe the exchange moves explicitly, we denote 2D
configurations by (x, y) and 1D configurations byx̃. For both
algorithms, an exchange move consists of two parts: the
construction of a 1D trial configuration (x̃new) from a 2D
configuration (xold, yold) and vice versa: the construction of
a 2D trial configuration (xnew, ynew) from a 1D configuration
(x̃old). The construction of a 1D configuration in each case
is simplesthe “extra” (y) coordinate is dropped, i.e.,x̃new )
xold.

The only difference between the two simulations is in the
construction of trial configurations for the 2D model from
the 1D model. In ResEx, the trial configuration is thex̃
coordinate from the 1D model, with the (old)y coordinate
from the 2D model, i.e.,xnew ) x̃old andynew ) yold. In dual
REM, on the other hand, the trialy coordinate is chosen
randomly and then minimized. For the potentialU(x, y), this
means thatynew ) 0 always, i.e., xnew ) x̃old andynew ) 0.

The ResEx simulation correctly samples the two wells,
giving a population in the right well of 96.4( 1.6%. The
dual REM simulation, on the other hand, yields a population
of 51.0( 1.6% for the right well. What causes the error in
the dual REM simulation? The answer is that the construction
of dual REM trial moves violates detailed balance. More
specifically, the minimization of they coordinate means that
the difference inwidth between the two wells is not
accounted for correctly, since in dual REMynew ) 0 always.
Notice that it is not the random selection of they coordinate
which intrinsically violates detailed balance, only the sub-
sequent minimization.

What is the analogous situation in molecular simulations?
In this case, both ResEx and dual REM construct trial moves
in internal coordinatessthe coarse-grained model is built
from a subset of the degrees of freedom of the atomic model.
For example, the coarse-grained model (thex coordinate
above) may be the backbone coordinates of a protein, and
the remainder (they coordinate above) may be the side-chain
degrees of freedom. In dual REM construction of trial moves,
the side chains are minimized prior to exchange, and
therefore differences in entropy between different side-chain
conformations are neglected. In ResEx, there is no minimiza-
tion prior to exchange, and canonical sampling is maintained.

2.2. Results: Incremental Coarsening of Dileucine.We
previously reported on ResEx results for dileucine, demon-
strating successful exhange and significant speedup from a
direct exchange between all-atom and united-atom models.
Here, it is shown that dileucine may be coarsened incre-
mentally and that (i) the correct distribution is observed for
the all-atom model and (ii) adding additional intermediate
levels of resolution improves efficiency.

The additional levels boost the exchange acceptance by 2
orders of magnitude: exchanges were successful between
M4 andM3 15.5% of the time, betweenM3 andM2 12.7% of
the time, betweenM2 andM1 29.0% of the time, and between
andM1 andM0 44.0% of the time. By comparison, exchang-
ing AA and UA dileucine in a single step is successful only
0.16% of the time.1 However, we need to ask whether it is
really more efficient to introduce additional levels of
simulation in order to boost the acceptance of exchange
moves.

In fact, it appears to be substantially more efficient to use
incremental coarsening rather than abrupt coarsening. The
cost for a given ladder ofN levels may be written

where the cost of the top level is fixed,m is the fixed number
of successful exchanges which are desired,τi is the simula-
tion cost for an interval between two exchange attempts at
level i, andri is the acceptance rate between levelsi andi +
1. We have assumed that the sampling of leveli demands a
fixed number of successful resolution exchanges, consistent
with the motivation of the top-down protocol discussed in
section 1.3.

Equation 4 implies that the effective exchange rate for an
incremental ladder is a reciprocal sum of the individual rates.
If we assume theτi are equal for all levels (which is exact
for temperature exchange), then

giving an effective rate for the five-level dileucine ladder of
5.1%. This result suggests an improvement in efficiency
relative to the single stepladder, where the rate was 0.156%.1

In Figure 4, we compare the sampling of dileucine by three
different simulation protocols: standard Langevin dynamics,
resolution exchange with two levels, and resolution exchange
with five levels. Sampling is assessed by examining the
relative populations of theR and â states (e-∆GRâ/kBT)
considered in ref 1. The convergence of this relative
population measure requires transitions between the two
states, which occur infrequently in a standard simulation.
The five-level ladder clearly outperforms the two-level
ladder, as we are able to generate results both more accurately
and more precisely with the five-level ladder in an equal
amount of CPU time. Note that the total simulation time
required for the entire ladder, including the top level, is
included in the ResEx data points.

The efficacy of the ResEx approach is underscored by the
fact that, at the top level (united atom), the sign of∆GRâ is

U(x, y) ) Eb(x
2 - 1)2 +

E0y
2

1 + w(tanh(x/0.1)+ 1)/2
(3)

total cost) top-level cost+ ∑
i)0

N-1mτi

ri

(4)

1/reff ) ∑
i

1/ri (5)
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wrong. That is, the exchange process corrects for a substantial
bias in the coarse model.

2.3. Results: Incremental Coarsening of Met-Enkepha-
lin. Met-enkephalin is a flexible neurotransmitter which
participates in immune responses and pain inhibition, among
other roles.57,58 By virtue of its small size and biological
interest, it often is used to test new simulation methods27,59,60

and compare existing protocols.58,61

Using met-enkephalin, we demonstrate the efficacy of the
incremental coarsening procedure for a ladder of decreasing
resolution at constant temperature and for a ladder of
simultaneously decreasing resolution and increasing tem-
perature. Because quantifying the quality of sampling for
met-enkephalin is considerably more difficult than is com-
monly appreciated, we will not present a detailed efficiency
analysis. More will be said on this second topic in the
discussion.

We employed the ResEx algorithm in a top-down frame-
work, as sketched in Figure 2. First, the top-level simulation
(coarsest resolutionshere, united atom) was run. We then
ran an exchange simulation at the next highest resolutions
here, one residue was represented at an all-atom resolution,
and the rest of the peptide was united atom. This procedure
was continued, “decoarsening” one residue at a time, until
the entire peptide was represented at the all-atom level.
Details are given in sections 1.2 and 1.4.

The incremental coarsening procedure substantially in-
creases exchange acceptance. The five rates in the six-level
ladder vary from 2.4% to 18%, as shown in Figure 1. For
comparison, exchanging between all-atom and united-atom
models of met-enkephalin, with no intermediate levels of
resolution, results in an acceptance ratio of 0.09%. The
acceptance ratios vary, in part, according to the number of
degrees of freedom by which the two levels differ.

For met-enkephalin, the principal results are the acceptance
rates shown in Figure 1, which are significant for several
reasons. First, they demonstrate the first implementation of
the incremental coarsening approach in a complex peptide.
Second, because they are well within the practical range of
the top-down protocolssee section 1.3 and the Discussions
they indicate that the ResEx algorithm could prove important
for larger peptides. Last, by comparing the effective exchange
rate suggested by eq 5,reff ) 1.1%, with the rate of 0.09%
for direct exchanges between united- and all-atom models,
one sees that a substantial speedup has been achieved. Of
course, the magnitude of the improvement is merely
suggestiveswithout a rigorous quantification of the sampling
quality, there can be no rigorous comparison of efficiency.
Such a quantification is beyond the scope of this work, as
noted in the Discussion.

It is useful to understand the intuitive reason behind the
advantage of incremental coarsening. If one writes the
acceptance criteria (1) and (1.3) in the form min[1,e-ε], then
for exchanges between models of greatly differing resolution,
one typically finds the dimensionless “energy” is large, i.e,
ε . 1. It seems to be roughly true that this energy is
proportional to the difference in the number of degrees of
freedom in the models being exchanged. However, if the
change is made incrementally using many models Mi, then

between levelsi and i + 1 there is a relatively small cost
∆εi, with ∑i∆εi ∼ ε. It is clear that with enough increments,
one can achieve∆εi , 1 and thus create a high likelihood
for exchange since the corresponding Boltzmann factors are
much larger: ri ∼ e-∆εi . e-ε. This is exactly what is
embodied in eq 4. The tradeoff is that one pays the cost for
simulating the additional intermediate levels. However, as
has been stressed in section 1.3, the intermediate-level
simulations are very short compared to the top level. In the
present context, for instance, the top-level met-enkephalin
trajectory is 198 ns, while all other levels were simulated
for only 10 ns. The net savings can be quite substantial,
especially considering that good sampling is achieved by
increasing the number of exchanges.

While we cannot yet rigorously measure sampling quality,
we can show that the results obtained with ResEx are
consistent with those obtained by standard methods, by
comparing Ramachandran histograms (Figure 5) from the
ResEx simulation, to those obtained by standard simulation
(990 ns of simulation with theM0 parameters). Overall, the
agreement between the ResEx simulation and the 990 ns
conventional simulation is quite good. However, a careful
comparison reveals a region on the Phe4 plot, labeled “A”,
which is noticeably undersampled by the ResEx simulation,
as compared to the 990 ns Langevin dynamics trajectory.
The explanation is provided by an inspection of the Phe4

histogram of the united-atom simulation: region “A” was
not sampled by the top-level simulation. The failure points
to a potential weakness of the ResEx (or any exchange)
methodsregions which are not sampled by the top level will
be difficult to sample in any of the other levels. This is a
specific instance of a general problem that occurs whenever
auxiliary distributions are used to enhance sampling of some
“distribution of interest”, namely the need to balance overlap
with wider sampling via the auxiliary distribution.51 In other
words, it is a failure of the top-level simulation rather than
the algorithm.

Interestingly, Figure 5 also presents two counterexamples
to the foregoing discussion. Regions “B” of the Gly3 and
“C” of the Met5 plots were both well-sampled by the ResEx
simulation, despite being infrequently visited by the top level.
That is, the ResEx acceptance criterion (1) correctly “re-
weights” the conformation space of the all-atom model by
allowing normal dynamics to continue when appropriate.
Nevertheless, we are in the process of experimenting with
other “schedules” (combinations of attempt frequency and
number of exchange attempts) to balance the normal and
the exchange dynamics.

Ideally, the coarse model distribution would have better
overlap with the high-resolution distribution, and the balance
could be adjusted to favor exchanges over normal dynamics.
This would allow the same quality of sampling with less
simulation at each level below the top. In the long term, we
hope to design coarse models constructed tonot eliminate
anyregions of configuration space in more detailed models.

2.4. Resolution Exchange with Tempering.We have also
explored the possibilty of combining resolution exchange
with parallel tempering, so that the sampling of the reduced
models is improved both by the reduction in resolution and
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by increased temperatures. In a standard parallel tempering
simulation, the temperatures are roughly exponentially
distributed, in order that the conformational overlap between
neighboring temperatures is constant over the ladder. How-
ever, there is no simple relationship between the change in
resolutionand the acceptance of resolution exchanges. Some
care must therefore be taken with the assignment of the
temperature ladder.

We began with the ladder of models in Figure 1. The
acceptance ratios give an idea of the temperature gap which

may be tolerated between two levelssa higher acceptance
ratio will tolerate a larger jump in temperature. However,
compared to standard parallel tempering simulations,26-35 it
may seem that the acceptance ratios are already too low to
accommodate tempering in addition to resolution exchange.
After all, we may expect that any difference in temperature
will lower the acceptance of exchange moves. In this regard,
the top-down approach has an important advantage over a
parallel implementation. Since exchange attempts are “free”
(no commmunication between processors is required), they

Figure 5. Ramachandran histograms for met-enkephalin. The left column is a 990 ns Langevin dynamics simulation at all-atom
resolution, without resolution exchange; the middle column is the all-atom level (M0) from resolution exchange as described in
the text; the right column is the top-level united-atom simulation (level M5) used for the resolution exchange simulation shown
in the middle column. Note that since the peptide is unblocked, there are only 4 pairs of φ-ψ dihedrals. Res-ex fails to “find” one
region (labeled “A”) not present in the top-level simulation but finds two others (labeled “B” and “C”).
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may be attempted much more frequently, and lower ac-
ceptance ratios may be tolerated.18 Indeed, in our original
study of dileucine peptide with top-down resolution ex-
change, the acceptance ratio was much less than 1%.1 See
also section 1.3.

The ladder combining temperature and resolution is shown
in Figure 6. The temperature gaps were chosen by trial and
error, aiming for an acceptance of attempted exchanges of a
few percent between neighboring levels. Based upon this
restriction, the top-level simulation was run at a temperature
of 700 K, which is comparable to previously published
parallel tempering studies of met-enkephalin.27,36We should
expect, however, that fixed-CPU-cost sampling should be
improved relative to ordinary replica exchange, by virtue of
the reduction in resolution.

The reduction in resolution confers an additional benefit
when combined with tempering. Since the overlap between
neighboring levels in a parallel tempering simulation scales
such as (number of DoF)1/2, reducing resolution allows the
temperature gaps toincreaseas the resolution is reduced.
The overlap between neighboring levels in a combined
resolution/tempering ladder is thus controlled both by the
change in resolution and the change in temperature, with
the two effects compensating one another in an unknown
way. Indeed, we observed one puzzling case in our search
for an appropriate resolution/temperature ladder. In one
ladder (data not shown), exchange between levels M2 and
M3 was successful about 7% of the time when both were at
298 K, while exchange occurred approximately 11% of the
time when M2 was thermostated to 305 K and M3 to 320 K.
We have not explained this resultsthough it should be
remembered that different models have different landscapes,
and therefore temperatures may not be directly compared.

3. Concluding Discussion
We have extended our resolution exchange (ResEx) method1

using an incremental coarsening procedure for implicitly
solvated peptides. After carefully testing the approach in the
two-residue dileucine peptide, we applied it successfully to
the five-residue met-enkephalin. Incremental coarsening
allows tuning of the conformational overlap between models
of differing resolution and therefore makes practical simula-

tions which would otherwise be hampered by poor ac-
ceptance of exchange moves. We have also demonstrated
that resolution exchange is naturally combined with parallel
tempering, so that the reduced resolution models may be
aided in their sampling of conformations by elevated
temperatures.

Ramachandran histograms demonstrate that, for the most
part, ResEx simulation is consistent with standard simulation
techniques. In one case, however, they reveal a weakness of
our methodsa top-level simulation which eliminates impor-
tant regions of conformation space will result in poor
sampling at the bottom level. This weakness is shared by
any simulation which relies upon auxiliary ensembles to
sample among major sub-basins. In the future we hope to
eliminate this problem by more careful construction of
reduced models.

Of course, we hope to treat still larger molecules with the
ResEx method. Since it is essential that the top-level be well-
sampled, the treatment of larger molecules will require yet
coarser top-level simulation. This will likely require incre-
mental coarsening from the united-atom level to a model
with one or two beads per residue. Suitable models are under
development. It appears that the ResEx approach cannot be
applied easily to explicitly solvated systems; however, given
the difficulty and importance of sampling implicitly solvated
systems, ResEx may prove very valuable for biomolecular
simulation.

We have also developed an alternative rigorous algorithm
which permits the use of coarse top-level simulations to
generate atomically detailed canonical samples. It is es-
sentially a “decorating” procedure, and it eliminates the
potential issue of correlations between coarse coordinates
Φ and detailed coordinatesx, which could reduce acceptance
rates in resolution exchange. Specifically, after generating a
low-resolution sample distributed according toπL(Φ), one
can independently sample detailed coordinatesx according
to an arbitrary distributionπx(x). (For example,πx could be
based on harmonic terms in the full force field.) Full
configurations are thus generated according to the simple
productπL(Φ)πx(x) and may be reweighted to generate a
fully detailed, high-resolution distributionπH(Φ,x) using
standard methods.62 In the long term, the decorating approach
may prove useful for adding explicit solvent. It may also be
implemented in an incremental fashion.

An “auxiliary” question which remains to be carefully
addressed is the quantification of sampling efficiency. There
are numerous proposals for judging whether a simulation is
convergedssome are based on principal components,63 others
on energy-based ergodic measures,64 and our own work in
progress uses structural histograms.65 Which one provides
an appropriate measure depends on what properties are of
interest. For applications which depend on the relative
populations of various conformations, such as calculation
of binding affinities for small molecules, a measure which
depends directly on the conformational distribution is needed.
Such a method is under developmentsfor now we only
mention that structural histograms provide a much more
sensitive signal of nonconvergence than energy-based meth-
ods.65

Figure 6. Ladder combining exchange between all-atom and
united-atom met-enkephalin with tempering of reduced resolu-
tion simulations. Residues are depicted with ovalssopen
corresponds to an all-atom representation, filled to united
atom. The ratios of successful to attempted exchanges
between each level are indicated by the percentages. The
temperature of each level is indicated on the right.

664 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Lyman and Zuckerman



Acknowledgment. The authors would like to thank
Marty Ytreberg, Bruce Berne, Michael Deem, and Angel
Garcı́a for interesting discussions and insightful comments.
This work was supported by the Department of Environ-
mental and Occupational Health and the Department of
Computational Biology at the University of Pittsburgh and
by the NIH (Grants ES007318 and GM070987).

Supporting Information Available: Parameter files
(formatted for use with the Tinker molecular modeling
simulation package) for the modified OPLSUA force field
and for the mixed ua-aa force field and a sample “key” file
for running the mixed force field simulations in Tinker. This
information is available free of charge via the Internet at
http:/pubs.acs.org.

References

(1) Lyman, E.; Ytreberg, F. M.; Zuckerman, D. M.Phys. ReV.
Lett. 2006, 96, 028105.

(2) Aksimentiev, A.; Balabin, I. A.; Fillingame, R. H.; Schulten,
K. Biophys. J.2004, 86, 1332-1344.

(3) Duan, Y.; Kollman, P. A.Science1998, 282, 740-744.

(4) Snow, C. D.; Nguyen, H.; Pande, V. S.; Gruebele, M.Nature
2002, 420, 102-106.

(5) Halgren, T. A.; Damm, W.Curr. Opin. Struct. Biol.2001,
11, 236-242.

(6) Anisimov, V. M.; Lamoureux, G.; Vorobyov, Igor, V.;
Huang, N.; Roux, B.; MacKerell, A. D., Jr.J. Chem. Theor.
Comput.2005, 1, 153-168.

(7) Iftimie, R.; Minary, P.; Tuckerman, M. E.Proc. Natl. Acad.
Sci. U.S.A.2005, 102, 6654-6659.

(8) Huang, Y. J.; Montelione, G. T.Nature2005, 438, 36-37.

(9) McCallum, S. A.; Hitchens, T. K.; Torborg, C.; Rule, G. S.
Biochemistry2000, 39, 7343-7356.

(10) Volkman, B. F.; Lipson, D.; Wemmer, D. E.; Kern, D.
Science2001, 291, 2429-2433.

(11) Shoichet, B. K.Nature2004, 432, 862-865.

(12) Comeau, S.; Vajda, S.; Camacho, C. J.Proteins2005, 60,
239-244.

(13) Kollman, P.Chem. ReV. 1993, 93, 2395-2417.

(14) Rodinger, T.; Pome`s, R.Curr. Opin. Struct. Biol.2005, 15,
164-170.

(15) Humphreys, D. D.; Friesner, R. A.; Berne, B. J.J. Phys.
Chem.1994, 98, 6885-6892.
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Abstract: In the one- and two-bead coarse-grained (CG) models for proteins, the two

conformational dihedrals φ and ψ that describe the backbone geometry are no longer present

as explicit internal coordinates; thus, the information contained in the Ramachandran plot cannot

be used directly. We derive an analytical mapping between these dihedrals and the internal

variable describing the backbone conformation in the one- (two-) bead CG models, namely, the

pseudo-bond angle and pseudo-dihedral between subsequent CR’s. This is used to derive a

new density plot that contains the same information as the Ramachandran plot and can be

used with the one- (two-) bead CG models. The use of this mapping is then illustrated with a

new one-bead polypeptide model that accounts for transitions between R helices and â sheets.

1. Introduction
Coarse-grained (CG) models for proteins have become more
and more popular in the past two decades, because of the
necessity of simulating systems on the size scale of hundreds
of nanometers and on the time scale of microseconds.1,2 The
seminal concept can be traced back to the 1970s:3,4 these
simplified models for proteins are based on united-atom
representations using one to six interacting centers (beads)
for each amino acid. Four- to six-bead models represent
explicitly the backbone atoms [CR, N(H), and C(O)] with
additional “beads” for the side chain and for the backbone
carbonylic oxygen and the backbone hydrogen,5-7 and they
use theφ and ψ dihedrals formed by the backbone atoms
C-N-CR-C and N-CR-C-N, respectively, as internal

variables. Conversely, in one- (two-) bead models, only the
CR (and additional beads for the side chain) is (are) explicitly
present (see Figure 1).

The two-dimensional density plot ofφ andψ referring to
a given CR is called the Ramachandran map. This map is
more dense in specific regions of theφ,ψ plane, each
pertaining to a particular secondary structure. Other regions
are “forbidden” because of the steric hindrance of the
backbone atoms. Thus, the Ramachandran plot is a simple
and immediate tool to check the reliability of a model protein.
But, while this check can be directly done in four- (to six-)
bead models, this is no longer possible in the one- (two-)
bead models. In fact, in these models, theφ andψ are no
longer explicit internal variables and the description of the
backbone geometry relies on different internal variables, that
is, the CR-CR-CR angle θ and the CR-CR-CR-CR
dihedralR (see Figure 1). So far, the problem of how to

* Corresponding author fax:+39-050-509417; e-mail: tozzini@
nest.sns.it.

667J. Chem. Theory Comput.2006,2, 667-673

10.1021/ct050294k CCC: $33.50 © 2006 American Chemical Society
Published on Web 04/18/2006



transfer the information contained in the Ramachandran plot
to these simplified models has not been given any consid-
eration. This is quite surprising, given the fact that one- and
two-bead models have recently undergone rapid develop-
ments, becoming more accurate and sophisticated.8-15

In this paper, we derive an analytical correspondence of
the all-atom internal backbone coordinates (φ,ψ) to the CG
internal backbone coordinates (R,θ) that allows one to
explicitly map the Ramachandran plot onto a newθ,R
conformational density plot. The force field (FF) of the recent
one- and two-bead CG models are reconsidered on the basis
of the θ,R map. As an illustration of these concepts, a new
one-bead model for polypeptides is presented that accounts
for helix to sheet secondary structure transitions.

2. Coarse Graining and Mapping of the
Internal Backbone Coordinates
The procedure leading from an all-atom model to a one-
(two-) bead CG model is schematically described in Fig-
ure 1. The bond length and the backbone bond angle
NH-CR-CO display only small variations from the average
values (τ ) 111°), and the peptide bond geometry is planar
(ω ) 180), implying that the dihedral anglesφ and ψ are
basically the only free internal variables. [In this paper, we
neglect the (rare) possibility of a cis conformation of the
peptide bond (ω ) 0).] In the CG description, the backbone
conformation is determined by the bond angle between three
subsequent CR’s and the dihedral between four subsequent
CR’s. The bond angle with vertex CRi, (θi) depends only on
the two adjacent dihedralsφi andψi, whereas the dihedral
between CRi-1 and CRi+2, namely,Ri,i+1, depends on the four
dihedralsφi, ψi, φi+1, and ψi+1. Both θ and R depend
parametrically onτ and on the two angles between the bonds
CR-CR and CR-CO or CR-NH, which for the trans
conformation assume the almost constant values ofγ1 )
20.7° and γ1 ) 14.7°, respectively (see Figure 1 for the
definition of angles and dihedrals). The angleθ as a function
of φ,ψ is given by the following formula (valid for the trans
conformation):

For (φ, ψ) ) (180, 180), (0, 0), (180, 0), and (0, 180), one
hasθ ) τ + (γ1 + γ2), θ ) τ - (γ1 + γ2), θ ) τ + (γ1
- γ2), and θ ) τ - (γ1 - γ2), respectively. The first

corresponds to the completely extended conformation; the
others are planar but sterically forbidden or weakly allowed
conformations (see below). The exact formula givingR
explicitly as a function of theφ,ψ dihedrals is very complex;
however, a precision of a few percent can already be obtained
at the linear order inγ1 and γ2 (see the Supporting
Information):

This formula (withγ1 ) γ2) was previously reported by
Levitt.3

To make general considerations, we restrict ourselves to
the caseγ1 ) γ2. Furthermore, we assume that the
geometrical properties are uniform along the chain (or,
equivalently, we consider cases of well-defined secondary
structure), so that we can putφi ) φi+1 andψi ) ψi+1 and
drop the dependence on the indexi + 1 in eq 2. In these
conditions, the map (φ, ψ) f (R, θ) is symmetric under the
exchangeφ T ψ. Thus, the upper triangle in the (φ, ψ) plane
is superimposed upon folding along the main diagonal (in
magenta) over the lower triangle and mapped onto the same
region in theR,θ plane. The periodicity and the additional
symmetryθ(φ, ψ) ) θ(-φ, -ψ) ) θ(φ + 180, ψ + 180)
determine the peculiar “butterfly” shape of the image of the
φ,ψ plane in theR,θ plane reported in Figure 2. In the general
case whenγ1 * γ2, theφ T ψ symmetry is slightly broken
and one has two slightly different “butterfly” images
superimposed. It is to be noted that, as the wholeR axis is
spanned, theθ angle can assume only values ranging between
τ - γ1 - γ2 andτ + γ1 + γ2, corresponding to the planar-
contracted (forbidden) configuration (φ ) ψ ) 0) and the
planar extended configuration (φ ) ψ ) 180). As the angle
R approaches the value 0, the allowed range forθ becomes
smaller. Ring structures correspond toR ) 0: the maximum
value forθ is τ ) 111+ |γ2 - γ1|, obtained forφ ) 180°
andψ ) 0°, corresponding roughly to a six-membered ring,
while the minimum value forθ is ∼105°, obtained forφ )
ψ = (75°, corresponding roughly to a five-membered ring.

3. Conversion of the Ramachandran Plot into
the r,θ Plot
We use the above relationships to convert the Ramachandran
plot into a conformational density plot in theR,θ plane. The
conversion for the generic Ramachandran plot and the
Ramachandran plots of glycine, proline, and pre-proline
residues are reported in Figure 3.

We observe that the symmetry-induced folding of theφ,ψ
plane along the diagonal produces some peculiarities of the
R,θ conformational maps. For instance, the forbidden region
aroundφ ) ψ ) 0 (simplified as a circle in Figure 3) is
folded onto itself and mapped onto a flat region aroundR )
(180°, θ ) τ - γ1 - γ2 ) =75°. Conversely, the forbidden
region aroundφ ) 0, ψ ) (180° is folded on a weakly
allowed region (φ ) (180, ψ ) 0), implying that the
corresponding region in theR,θ plane (represented as a small
circle aroundR ) 0, θ = τ) is not strictly forbidden. The
effect of the folding along theφ,ψ diagonal can also be seen
on the core regions of the right-handed (green) and left-

Figure 1. Schematic representation of the coarse-graining
procedure. The internal coordinates (φ, ψ, ω) and θ,R and
the angles defining the CG geometry (τ, γ1, γ2) are reported. Ri,i+1 ) 180+ ψi + φi+1 + γ1 sin(ψi+1) + γ2 sin(φi) (2)

cos(θi) ) cos(τ)[cos(γ1) cos(γ2) -
sin(γ1) sin(γ2) cos(φi) cos(ψi)] -
sin(γ1) sin(γ2) sin(φi) sin(ψi) +
sin(τ)[cos(ψi) sin(γ1) cos(γ2) +

cos(φi) cos(γ1) sin(γ2)] (1)
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handed (red) regions, which are cut by the folding line. These
assume peculiar folded and stretched shapes squeezed against
the limits of the “butterfly” image. The same happens to the
sheet region (blue) in the glycine plot.

However, despite the folding and deformation of the
Ramachandran plot, the core regions of the different sec-
ondary structures remain separate in theR,θ plane. This
is important, because it implies that passing from theφ,ψ
to the R,θ system of internal coordinates still allows an
unambiguous description of the backbone conformation in
each secondary structure. This was previously assumed in
one- and two-bead CG models but never directly investi-
gated.

In Table 1, the typicalφ,ψ values for the main secondary
structures are reported, as well as the correspondingR,θ
values. We observe that right- and left-handed helices have
the same value ofθ and opposite values ofR. Conversely,
theθ variable is more efficient in separating the helices from
the sheet structures, especially in the glycine where both
structures span almost the sameR interval.

4. Using the r,θ Plot to Analyze the Force
Fields
The potential of mean forceV(qi) is related to the equilibrium
probability distribution of the internal coordinateqi through
the relationshipP(qi) ∝ exp[-V(qi)/kT].

Figure 2. Mapping of the φ,ψ plane onto the θ,R plane. Left: lines φ - ψ ) cost are represented in different colors. Right: The
same lines are mapped onto the R,θ plane. The region that they define is the image of the whole φ,ψ plane onto the R,θ plane
through the (φ, ψ) f (R, θ) map. Some relevant points are reported.

Figure 3. Mapping of the Ramachandran plot onto the R,θ plane for different amino acid types. The “core regions” are in green
(right-handed helices), red (left-handed helices), and blue (sheets). The allowed regions (yellow and cyan) are omitted in the
generic and glycine R,θ plots for clarity. Forbidden regions are enclosed in the dotted lines. The contours of the “butterfly” image
are reported as black lines in the R,θ plane. The input data for the Ramachandran plot are taken from the Protein Data Bank.18
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Although it is well-known thatV(qi) is only an approxima-
tion of the potential energy termU(qi),21 comparing an ap-
proximate probability distributionp(R,θ) ) exp[U(θ,R)/kT]
to theR,θ plot can still give useful indications.

Very sophisticatedU(θ,R)’s are included in the numerical
FF derived by Bahar et al.11,12 and in the UNRES FF by
Sheraga et al.,14,16 which is analytical but involves a very
large number of parameters. Here, we analyze the FF with
simpler analytical terms. Usually, these include a quite
accurate dihedral energy termUR, with terms in sin(nR) and
cos(nR) with n up to 6,3,10 although it was shown that the
terms in cos(R) and cos(3R) are the most relevant.8,9,13 In
fact, these were included also in the most recent versions of
the Goj models.17 Conversely, the bond angle termU(θ) is
usually treated as harmonic. To include the dependence of
the equilibrium θ on the secondary structure, different
strategies have been adopted. An explicit correlationθ(R)
was assumed by Levitt,3 which reduced the dimensionality
of the R,θ plot to a line. More realisticR,θ plots can be
obtained with an approach like that of Head-Gordon et al.,8

which uses an accurate dihedral term depending on the amino
acid type, reproducing the pattern typical of the helices,
sheets, or turns depending on the amino acid type (whose
helix-sheet-turn propensity must be known a priori), while
a harmonic bond angle term is used with an equilibriumθ0

) 105° that is an average of the typical helix and sheet values
(see Figure 4, left). Alternatively, angle and dihedral energy
terms typical for theâ sheet were used, and additional terms
depending on the second and third neighbor distance along
the chain were used to tune theR-helix propensity, such as
in Mukherjee and Bagchi13 (see Figure 4, right). As can be
seen from the plots, these FFs may give a quite accurate
pattern of the density plot (at least for the dihedral angle)
for given secondary structures, but they are not very appro-
priate in describing situations when the propensity for a given
secondary structure is not very well defined. For instance,
they are inadequate to describe theR,θ plot for glycine.

5. A New Force Field with an Accurate Bond
Angle Interaction
We recently proposed a different approach15 including an
accurate bond angle termUθ. We use a quartic double-well
potential for the bond angle potential:

whereθR = 90° corresponds to the first minimum (typical
of the R helix). The other parameters are related to the
position of the second minimumθâ, to the relative stability
∆Uθ ) Uâ

θ - UR
θ, and to the (left and right) barriers∆UR

θ

and∆Uâ
θ via the following relations:

The dihedral term was taken as a harmonic (or harmonic
cosine) with an equilibrium value depending on the a priori
known secondary structure. The (amino acid dependent)
parameters were derived through a statistical analysis of
crystallographic structures, using the Boltzmann inversion.15

The R,θ plots for helix-propense (green), sheet-propense
(blue), and glycine-like amino acids are reported in Figure
5 (left). The accuracy of these maps is especially evident in
the glycine-like pattern, where our force field reproduces the
small separation between the helixlike and sheetlike regions,
and in the sheet pattern (blue) where the peculiar shape with
a small protuberance towardθ ) 90° present in the “generic”
map of Figure 3 is reproduced. This FF has proven successful
in reproducing the flap opening dynamics in HIV-1 protease,
which depends on a very peculiar motion of the glycine-
rich flap tips, and its dependence on the mutations in this
region.15,22

Here, we propose a further improvement of the potential.
We combine our double-wellUθ with a cosine-sumUR

similar to the potential of Head-Gordon et al.8

whose terms have the following meanings. The first has a
minimum atR ) 180° corresponding roughly to the sheet
or extended structures. The second has additional minima
at R ) (60°, corresponding to helical structures. The third

Table 1. Numerical Values of the Internal Angles and
Dihedral Coordinates in the All-Atom and CG
Representationa

structure φ ψ θ R

extended 180 180 146 180
â sheet antiparallel -139 135 131 179
â sheet parallel ideal -120 120 121 178
â sheet parallel -120 113 119 177
flat ribbon -78 59 92 163
R helix -57 -47 92 52
3-10 helix -49 -29 85 81
π helix -57 -70 99 27
six-membered ring ideal 180 0 115 0
five-membered ring ideal -75 -75 105 0
five-membered ring -60 -105 108 0
R helix left-handed 57 47 92 -52
collagen triple helix -51 153 117 -77
polypro-polygly left helix -79 150 121 -109

a Typical values for secondary structures are reported. Data for φ

and ψ were taken from textbooks;19,20 the corresponding structures
were built with the biopolymer module of Insight (MSI/Accelrys), and
from those structures, the θ and R angles were measured.

Uθ ) 1
2
kR(θ - θR)2 +1

3
k′(θ - θR)3 + 1

4
k′′(θ - θR)4

∆ ) θâ - θR

k′ ) -
kâ + 2kR

∆

k′′ )
kR + kâ

∆2

∆Uθ ) ∆2

12
(kâ - kR)

∆UR
θ ) ∆2

12

kR
3

(kR + kâ)
3
(kR + 2kâ)

∆Uâ
θ ) ∆2

12

kâ
3

(kR + kâ)
3
(kâ + 2kR)

UR ) A[1 + cos(R)] + B[1 + cos(3R)] +
C[1 + cos(R + π/4)] + D[1 + cos(2R)]
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has a single minimum atR ) 135° and introduces an
asymmetry that favors the right-handed helices with respect
to the left-handed. The fourth has minima atR ) (90° and
can enforce the helix propensity. By giving different weights
to the helixlike or sheetlike terms inUR andUθ and tuning
the asymmetry term, one can reproduce quite realistic density
plots. In Figure 5, in the center, density plots for helixlike
(green) and sheetlike (blue) structures are reported. In Figure
5, on the right, we report the density plot for glycine (cyan),
obtained using approximately the same weight for the helix
and sheet terms and no asymmetry. Finally, in red, we report
a hypothetical “generic” potential as simply as possible,
including only the first and second terms inUR. This does
not closely resemble any of the “experimental” density plots
but contains all the secondary structures with approximately
the same weight, also including the very uncommon polypro-
line helix (located at∼100,∼120) and its right-handed
counterpart.

6. Applications: r-Helix to â-Sheet
Transition in a Minimal Polypeptide Model
We now illustrate the above concepts with a simple polypep-
tide model. We do not aim here to describe any specific poly
amino acid type; an accurate amino acid type-dependent

parametrization will be the matter of a future paper. However,
this model could apply to a sheet former, like polyvaline. In
addition to UR and Uθ, we used a Morse nonbonded
interaction potential

whereσ ) 6.1 Å is the bead diameter,R ) 0.7 is the well
width parameter, andε is taken as an energy unit. Because
the helices, sheets, and random coils are characterized by a
different number of nonbonded contacts, the relative stability
of the different secondary structures depends on a delicate
balance betweenε and∆UR,θ ) ∆UR + ∆Uθ. We chose the
parameters in such a way that∆UR,θ ) -5ε favors the sheet
conformation. The energy barriers separating the helix from
the sheet were set at∆UR

R ) 6ε and∆Uθ
R ) 7ε, and a slight

asymmetry toward the right-handed helix was added to the
dihedral potential (see Figure 6 for the values of the
parameters). The CR-CR bonds were constrained at the
value 3.79 Å. We performed two simulated annealing runs
on a 20-mer, starting from theR-helical and extended
configurations, respectively. The DL_POLY code was used23

for the simulation. The results are reported in Figures 6-8.
Figure 7 reports the representative angles and dihedrals

along the simulation. In the simulation starting from theR

Figure 4. Typical R,θ density maps for two different kinds of FF. Left: Head-Gordon-like FF; right: Mukherjee-like FF. Green,
helix; blue, sheet; cyan, turn.

Figure 5. R,θ density maps for the FF in the present work. Left: version with harmonic cosine dihedral potential. Center and
right: version with cosine sum dihedral potential. Different maps are obtained giving different weights to the terms, to reproduce
the map for sheet (blue), helix (green), glycine (cyan), and generic (red) models.

Unb ) ε({1 - exp[-R(r - σ)]}2 - 1)
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helix (red), the transition to a globular random coil structure
occurs after about 100 ns at the temperaturekT ) 0.6ε, after
passing through a metastable “broken helix” conformation
(see Figure 6). As the temperature is raised tokT ) ∼ε, the
system explores globular structures, and finally, upon cool-
ing, it stabilizes in a 3-foldâ sheet, that is, aâ sheet with
two â turns located approximately at the 8th and 14th
residues along the chain (see Figure 6). In the simulation
starting from the extended structure (blue), the system tends
to contract to a globule after about 100 ns, then again
stabilizes to a 3-foldâ sheet. As the temperature is raised to

kT = 2ε (between 500 and 1000 ns), the system melts into
a globular state. During cooling, it explores for long time
intervals theâ-hairpin structures (â sheets with oneâ turn
approximately in the middle of the chain), before definitely
stabilizing in the 3-foldâ sheet. Remarkably, the structures
we find as (meta)stable states were also observed in
simulations performed with more sophisticated models.24,25

This dynamical behavior can be explained on the basis of
the energy landscape of the system, reported in Figure 6.
The energy terms combine in such a way that the helical
structures are less stable, while the sheet structures (bothâ
hairpin and 3-foldâ sheet) have a very similar energy and
are slightly more stable than the extended one. The definitive
choice for the 3-foldâ sheet may be due to the entropic
factor.

The R,θ density plot for the two simulations is shown in
Figure 8. The violet map is evaluated on the trajectory of
the simulation starting from the extended conformation. Only
the area corresponding to theâ-sheet and extended structures
is populated, with a small population of the globular region
located atR = 180,θ = 90. The map in red corresponds to
the simulation starting from theR helix. The transition to
the â sheet passes through the molten globule region;
however, as can be seen from the maps obtained with lower
levels of populations (magenta and pink), other regions are
also (slightly) populated. The pink map resembles the
“generic” map (in red in Figure 5), although the effect of
the asymmetry term that biases the system toward the “right-
handed” structures is evident.

7. Conclusions
In this paper, we have reported two kinds of result. First,
we have derived analytical relationships to convert the
internal backbone coordinates of the all-atom representation
of the polypeptide chain to the internal coordinates of the
one- (two-) bead CG representation, namely, the bond angles

Figure 6. Relative stability and energy terms of the confor-
mations explored during the simulations. Black, total potential
energy; red, nonbonded energy; green, bond angle energy;
blue, dihedral energy. All energies are expressed in units of
ε. The extended conformation is taken as the zero level.
Parameters of the dihedral and bond angle terms: A ) 2ε, B
) 4ε, C ) 0.5ε, D ) 0, δUR

θ ) 7ε, and δUR
θ ) 9ε. Represen-

tative structures extracted from the simulations are reported:
red, R helix; pink, “broken helix”; violet, random coil; cyan, â
hairpin and 3-fold â sheet.

Figure 7. “Representative values” of bond angles and
dihedrals evaluated during the simulations starting from the
R helix (red) and from the extended structure (blue). The
“representative value” is evaluated as follows. For θ, for each
time step, all 18 θ angles along the chain are measured, and
two average values are calculated, one for the “extended” and
one for the “helical” (conventionally separated by the value
113°). The representative value for θ is then chosen as the
(average) value of the most populated structure, for each time
step. For R, the same procedure is followed, except that in
this case three separate average values are calculated for
right-handed (between 0 and 115°) or left-handed helices
(between -115 and 0°) and for the extended conformation
(otherwise).

Figure 8. R,θ plot evaluated along the trajectories of the two
simulations. Violet: simulation starting from the extended
conformation. Pink-magenta-red: simulation starting from
the R helix at increasing density values. The representative
structures of the populated regions are reported.
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and dihedralsθ andR. This result has a general applicability
to all cases where the geometry of the backbone must be
described and only the coordinates of the CR’s are available,
for instance, with low-resolution or CG models. We have
used these relationships to convert the Ramachandran plot
into new two-dimensional density plots in terms of the
backbone variablesθ,R. TheseR,θ density plots can be used
as the Ramachandran plot, that is, to test the reliability of
protein models, in low-resolution or CG models, when the
original Ramachandran plot cannot be used.

Second, we have illustrated these ideas on a minimal one-
bead polypeptide model that accounts for the transition from
R helices toâ sheets. With respect to the models available
in the literature, our model contains a more sophisticated
bond angle term, which allows one to reproduce quite
accurately theR,θ plot. Furthermore, despite its simplicity,
this model is shown to explore the conformational space as
accurately as more sophisticated multiple-bead models. It is
arguable that an optimization and fine-tuning of the param-
eters of the model can account for the helix or sheet
propensities of the different amino acids and reproduce more
complex structures and transitions.
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Abstract: An extension of a coarse-grained, implicit-solvent peptide model wherein each amino

acid residue is represented by four interaction sites is presented and discussed. The model is

used to study the coil-to-helix transition of five peptide sequences, ranging from all hydrophobic

to all hydrophilic, for a 10-residue peptide. The thermodynamics of the folding transition are

analyzed and discussed for each sequence, and the stability of the R-helix is correlated with

the hydrophobic content of the sequence. In addition, for each sequence, the folding kinetics of

the transition from random coil to full R-helix are analyzed, and the mean folding time is

determined. Folding times vary from 59 ns for the most hydrophobic sequence to 132 ns for the

most hydrophilic sequence. These folding times compare very well with those measured in

experments. All sequences show single-exponential kinetics. A plot of the mean folding time

versus the reciprocal of the Zimm-Bragg parameter σsa measure of the free energy cost of

nucleating a helixsis shown to be nonlinear, in contrast to the predictions of many theories of

the coil-to-helix transition. It is proposed that the origin of this nonlinearity is due to multiple

helix nucleation sites, indicating that even for short peptides such as those studied here, multiple

folding pathways play an important role in the transition from random coil to native state.

1. Introduction
One of the fundamental problems in the study of protein
folding is the coil-to-helix transition of proteins and peptides
which formR-helices. ThatR-helices are common structural
motifs in many biologically relevant proteins only under-
scores the importance of understanding the coil-to-helix
transition. Many theoretical models for this transition have
been developed, beginning with the pioneering work of
Schellman,1 Zimm and Bragg,2 and Lifson and Roig3

more than 40 years ago. For a recent survey of advances in
the theory of the coil-to-helix transition, see the review by
Doig.4

It is the model of Zimm and Bragg2 which first defined
the parameters by which the coil-to-helix transition is
frequently described. In their model, which is isomorphic
with the one-dimensional Ising model, the Hamiltonian is

where the spin-spin coupling constantJ and the external
field H are expressed in units ofkT. Zimm and Bragg
introduced the parameterss andσ, defined as

which determine the free energy of helix propagation and
nucleation, respectively. At the folding transition temperature,
s ) 1. Takano and co-workers5 have shown recently how
well the Zimm-Bragg model describes the thermodynamics
of the coil-to-helix transition when compared to an all-atom
molecular dynamics simulation.

The thermodynamics of the coil-to-helix transition is well
understood, due largely to the use of the Zimm-Bragg
model. The kinetics of the transition, however, are still poorly
understood, despite much progress, both experimental and* Corresponding author e-mail: straub@bu.edu.

H ) -J∑
ij

sisj - H∑
isi

(1)

σs ) exp(H) s ) exp(J + H) (2)
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theoretical, over the past decade. Details of the folding rate
and of the folding mechanism, or mechanisms, are still
unclear. Early estimates for the folding rate were on the order
of 1 µs.6 More accurate temperature-jump experiments by
Williams et al.7 revealed a folding time of 160 ns for a 21
residue alanine-based peptide. Thompson et al.8 and Lednev
et al.9 measured a slightly longer folding time of 220 ns and
240 ns, respectively. Using a stopped-flow CD measurement,
Clarke10 and co-workers measured a considerably longer
folding time of miliseconds for a 16-residue peptide. Another
set of T-jump experiments on a 153-residue globular protein
by Woodruff and co-workers11-13 showed a relaxation rate
in the range of 10-160 ns. In the past few years, Gai and
co-workers have performed both stopped-flow experi-
ments14,15 and temperature jump experiments16-18 that have
established a time scale on the order of 200 ns.

Theoretical predictions for the folding time of anR-helix
tend to be considerably shorter than the 200 ns time scale
established by experiment, though some are in agreement.
An early MD simulation by Daggett and Levitt19 suggested
the time scale for helix propagation to be 100 ps. Coarse-
grained simulations by Thirumalai and co-workers indicated
the folding time at the folding temperature to be roughly 20
ns.20 A different coarse-grained model developed by Takada
and co-workers,21 which will be discussed in more detail
below, gives a folding time of approximately 15 ns. Margulis
et al.22 measured a folding time of 1 ns for a molecular
dynamics simulation of an alanine pentapeptide in explicit
solvent. One calculation that does agree with experiment is
the nucleation-elongation theory of Doshi and Mun˜oz.23 They
establish a folding time of 150-300 ns.

Many models of the coil-to-helix transition have sought
to relate the folding time,τ, to the Zimm-Bragg parameters
sandσ. In a seminal work, Schwartz24 estimated the folding
time at the midpoint of the coil-to-helix transition (whens)1)
to be

wherekF is the rate of adding an additional helical residue
at the helix end. Brooks25 proposed a model based on a
sequential formation of helical residues and demonstrated
that the mean time for the folding/unfolding process scaled
as τ ∼ 1/σ. In all these models, it is found that the mean
folding time,τ, is inversely proportional to the Zimm-Bragg
parameterσ. In addition, we note that all these models
include the assumption that the helix propagates from a single
nucleation site.

One recent theoretical model that relaxes this assumption
is that due to Buchete and Straub.26 This model, referred to
as the active helix Ising model, is also based on the Zimm-
Bragg model and allows one to solve the mean-first passage
time equation. Buchete and Straub numerically determined
the mean first passage time for a range of 1/σ values at fixed
s and found significant nonlinear behavior. They observed
linear behavior for small values ofσ and strongly nonlinear
behavior for large values ofσ (σg0.005). This nonlinear
behavior is increasingly important for longer polypeptide
chains and for smaller values of the propagation constants.

In contrast to almost all theoretical predictions, Gai17 found
evidence that the folding time for the coil-to-helix transition
doesnot scale linearly with 1/σ. The only model which
predicts this behavior is the active helix Ising model of
Buchete and Straub.26 As noted above, one of the key
assumptions in many models, but not that of Buchete and
Straub, is that a helix is formed from a single nucleation
site. It is suggested26 that the origin of the nonlinearity lies
in the ability of a peptide, even one as short as 10 residues
in length, to have multiple nucleation sites. In this work, we
propose to study the kinetics of the coil-to-helix transition
via computer simulation for several model peptides in order
to investigate the dependence of the folding time on the
Zimm-Bragg parameterσ and to determine the relevance
of multiple nucleation sites.

A natural choice for this investigation is the use of
molecular dynamics (MD) simulations. The most accurate
approaches employ all-atom MD simulations using an
explicit molecular representation of the solvent. At the
present time, for studies of the thermodynamics and kinetics
of large-scale conformational transitions, and for phenomena
that occur on time scales of hundreds of nanoseconds, such
approaches are computationally too demanding in applica-
tions involving all but small peptides and proteins. Conse-
quently, there is an ongoing effort to develop coarse-grained
models of proteins using a reduced number of degrees of
freedom. The most appealing approach is to include solvent
effects implicitly in the interaction potentials and to replace
the atoms in each amino acid residue by a small number of
interaction sites, thereby drastically reducing the number of
particles and interactions necessary for the calculation.

In this work, we present an extension of one such reduced
model, originally developed by Takada et al.21 In section 2,
the peptide model is presented, while in section 3, the
Langevin dynamics used to propagate the motion of the
peptide forward in time is described. In section 4, the
thermodynamcis of the coil-to-helix transition is discussed
as well as the kinetics of the folding transition. Finally,
section 5 presents some conclusions.

2. Peptide Model
The coarse-grained model used for the peptide in this work
is a refinement of that proposed by Takada et al.21 Similar
structural models have been used by Hall27 to study peptide
aggregation. The structural model consists of four particles
or “united atoms” per amino acid residue, shown schemati-
cally in Figure 1. Three of these united atoms represent the
peptide backbone: one represents the amide nitrogen and
its hydrogen, another theR-carbon and its hydrogen, and
the third the carbonyl carbon and its oxygen. This high level
of backbone representation is essential for reproducing
correct secondary structure in the folded peptide.28 The fourth
united atom represents the amino acid side chain.

The model as presented here includes two types of side-
chain interaction sites: hydrophobic and hydrophilic. While
it is possible to introduce more detailed interaction potentials
that more closely mimic the chemical identity of all the
amino acids, for the present purpose it is sufficient to limit
ourselves to this “two-letter” amino acid model. It has long

τ ) 1
4σkF

(3)
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been realized that such a coarse-grained approximation
captures many fundamental aspects of protein folding and
can adequately be used to study the effect of amino acid
sequence on equilibrium and dynamic properties.

In this work, we study five different 10-residue amino acid
chains in order to determine the effect of amino acid
sequence on the equilibrium properties of the coil-to-helix
transition and on the mean folding time for helix formation.
We use the letterP to denote a hydrophobic residue and the
letter H to denote a hydrophilic reside. The five sequences
are given in Table 1. Sequence A consists of 10 hydrophobic
residues, while sequence E consists of 10 hydrophilic
residues. Sequences B, C, and D are mixtures of hydrophobic
and hydrophilic residues, with, in order, increasing hydro-
philic content.

The interaction potentials can be divided into two types:
local and nonlocal

The local interaction potentials consist of the bond angle,
dihedral angle, 1-4 van der Waals, and an improper dihedral
potential to maintain the chirality of the side chain

The values for the various structural and energetic parameters
are given in Tables 2 and 3. The bond angle potential is
harmonic about the equilibrium bond angle and is given by

The dihedral angle energy is given by

with

The values forV2,φ, V3,φ, V2,ψ, V3,ψ, and Vω were carefully
chosen to produce, in conjunction with the van der Waals
potential, a Ramachandran plot with realistic energy barriers
for the alanine dipeptide,29 shown in Figure 2. The barrier
height between theR-helix andâ-sheet regions is 4.2 kcal/
mol. These values are also given in Table 3. The box in
Figure 2 defines theR-helical region and is centered on the

Figure 1. Schematic representation of the peptide model
showing the dihedral angles φ, ψ, and ω. All bond lengths
are fixed.

Table 1. Amino Acid Sequences

label sequencea Tf τ (ns)

A PPPPPPPPPP 411.3 59.4
B HPPPHPPPHP 366.6 78.6
C PHPHPHPHPH 349.4 118.7
D PHHHPHHHPH 344.0 120.2
E HHHHHHHHHH 323.8 131.7

a “P” denotes hydrophobic and “H” denotes hydrophilic amino acid
residues.

Table 2. Structural Parameters

van der Waals
diameters σ (Å) σlocal (Å)

CR 3.30 2.64
C′ 3.56 2.94
N 2.94 2.36
Câ 4.50 4.50

bond lengths r (Å)

CR-C′ 1.52
CR-N 1.45
C′-N 1.33
CR-Câ 1.80

bond angles degrees kθ

N-CR-C′ 111.6 200.0
CR-C′-N 117.5 200.0
C′-N-CR 120.0 200.0
C′-CR-Câ 110.0 200.0
N-CR-Câ 110.0 200.0

Table 3. Energetic Parameters

torsion potential kcal/mol

v2,φ 0.00 -π < φ < 0
v2,φ 0.20 0 < φ < π
v3,φ 0.45 -π < φ < -π/3
v3,φ 4.00 -π/3 < φ < π/3
v3,φ 0.45 π/3 < φ < π
v2,ψ 0.00 -π < ψ < 0
v2,ψ 0.00 0 < ψ < π
v3,ψ 1.50 -π < ψ < - π/3
v3,ψ 4.00 -π/3 < ψ < π/3
v3,ψ 0.45 π/3 < ψ < π
vω 40.0

chiral potential kcal/mol degrees

kø 100.0
ø0,i 52.52

van der Waals potential kcal/mol

ε 0.060
εlocal 0.033

V ) Vlocal + Vnonlocal (4)

Vlocal ) VBA + Vφ + Vψ + Vω + VvdW-local + Vø (5)

Vθ ) ∑1
2
kθ(θi - θ0,i) (6)

VTOR ) Vφ + Vψ + Vω (7)

Vφ ) ∑
i

1

2
[V2,φ(1 - cos 2φi) + V3,φ(1 + cos 3φi)] (8)

Vψ ) ∑
i

1

2
[V2,ψ(1 - cos 2ψi) + V3,ψ(1 + cos 3ψi)] (9)

Vω ) ∑
i

1

2
Vω(1 + cosωi) (10)
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average values of〈φ〉R ) -63° and 〈ψ〉R ) -54°, where
the subscriptR indicates the averages are over helical
configurations. The box in Figure 2 defines theR-helical
region and marks out the area 25 degrees on either side of
the minimum. Finally, the chirality is preserved via a
harmonic potential for the improper dihedral angle formed
by the vectors connecting theR-carbon and the nitrogen, the
carbonyl carbon and the nitrogen, and theâ-carbon and the
R-carbon. The potential has the form

Values forkø andø0,i are given in Table 3.
The nonlocal interaction has three contributions: the van

der Waals interaction, hydrogen bonding, and the hydro-
phobic effect

The novel feature of the model developed by Takada et al.21

is the dependence of the hydrogen bonding scheme and the
hydrophobic interaction on the local peptide density, here
referred to asFI for residue I. The strength of both
interactions is scaled by a function 0e S(F) e 1, which
depends on the local density. For example, in the hydrogen
bond potential,S is small for low peptide densities and equal
to 1 for high densities. In this way, the competition for
hydrogen bond formation between the (implicit) solvent and
other hydrogen bond donors on the peptide is mimicked.

In full, the hydrogen bond potential is

where i is the ith atom and is located in residueI. The
strength of the interaction is given byεHB. The scaling
function SHB,IJ is given bySHB,IJ ) [SHB(FI) + SHB(FJ)]/2.
The distance-dependent interaction betweeni and j is

and

The superscript (a) stands for attractive and (r) for repulsive.
The attractive and repulsive forces in the hydrogen bond
potential were introduced by Takada et al.21 to model the
anisotropy of the hydrogen bond. The attractive potential,
eq 14, is used for the interaction between a carbonyl carbon
and an amide nitrogen, while the repulsive potential, eq 15,
is used for the interaction between an amide nitrogen with
another amide nitrogen, between an amide nitrogen and an
R-carbon, between a carbonyl carbon and another carbonyl
carbon, and between a carbonyl carbon and anR-carbon.
For a more indepth description of the hydrogen bond
potential, readers are referred to the original work of Takada
et al.21

The scaling functionSHB(FI), whereFI ) ∑KuHP(r IK), is
defined as

The second term in eq 13 is a penalty term that accounts for
buried non-hydrogen-bonded pairs. The functionuHP(r) is
defined below.

There are two contributions to the hydrophobic interaction,
one from the side chains and one from theR-carbons. The
interaction is given by

where I representsR-carbons andµ represents side-chain
interaction sites. The parameterδI,µ is equal to 1 for
hydrophobic residues and-1 for hydrophilic residues.
Similar to that used in the hydrogen bonding scheme, the
scaling functionSHP(FI), whereFI ) ∑KuHP(rIK), is defined
as

The switching functionuHP used in both the hydrogen
bonding scheme and the hydrophobic interaction is defined
by

Finally, the van der Waals interaction is given by

where

Figure 2. Ramachandran plot for the alanine dipeptide.
Contour lines are 0.5 kcal/mol apart. The global minimum is
at φ ) -63, ψ ) -54. The “box” defines the R-helical region
(see text for details).

Vø ) ∑1
2
kø(øi - ø0,i) (11)

Vnonlocal) VvdW + VHB + VHP (12)

VHB ) εHB ∑
ij (IgJ+3)

SHB,IJuHB
(a,r)(rij) +

1

2
εHB∑

I

SHB,c(FI) (13)

uHB
(a) (rij) ) 5( σHB

rij - rHB
)12

- 6( σHB

rij - rHB
)10

(14)

uHB
(r) (rij) ) 3( σHB

rij - rHB
)10

(15)

SHB(x, xmin, xmax) )

[0 if x < xmin

1
2(1 + cos(π

xmax - x

xmax - xmin
)) if xmin e x e xmax

1 if x > xmax
] (16)

VHP ) ∑
I

δIεHP,I
(R) SHP(FI) + ∑

µ

δµεHP,µ
(â) SHP(Fµ) (17)

SHP(x, xmax) ) [cos(π
2

xmax - x

xmax
) if x e xmax

1 if x > xmax
] (18)

uHP ) [1 if r < σHP1

1
2(1 + cos(π

r - σHP1

σHP2 - σHP1
)) if σHP1 < r < σHP2

0 if r > σHP2
]

(19)

VvdW ) ∑
i,j>i

φij(r) (20)
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The cross-diameterσij is given by σij ) [σi + σj]/2. For
interactions between particles connected by three covalent
bonds (1-4 pairs), the interaction strengthε and the diameter
σij are replaced by their reduced or “local” counterpartsεlocal

andσij ,local. The reduced parameters are introduced because
these short-range interactions are better modeled by using
the atomic parameters instead of the united atom parameters.
Values for these parameters are given in Tables 2 and 3.

3. Langevin Dynamics
The motion of the model peptide is described using Langevin
dynamics. The physical interaction between the solute
molecule and solvent is mimicked by a random force,Γ,
and solvent viscosity is modeled by a damping term with a
coefficient ú. The equation of motion for a generalized
coordinatexi is

The force on particlei due to the molecular configuration is
represented byFi. The friction constantúi is related to the
viscosity of water,η, by Stoke’s Law

where ai is the effective radius of each particle and is
equivalent to the sum of the van der Waals radius and the
radius of a water molecule, 1.4 Å. As is usual in Langevin
dynamics, the random forceΓi has a mean of zero and a
variance of

Equation 22 is solved using the Velocity Verlet algorithm.
The position at timet + h is given by30

Similarly, the velocity at timet + h is given by

where we have used the shorthandR ) húi/2m. Bond lengths
are held fixed via the RATTLE algorithm.

To improve the sampling of phase space, the Replica
Exchange Method31-34 is used. In this method, several
noninteractingreplicas are simulated in parallel, each at a
different temperature. At regular intervals, a Monte Carlo
exchange step is attempted between two replicas, sayi and
j, at neighboring temperatures,Ti and Tj. The transition
probability of this replica exchange is given by

where

Here,Ei is the potential energy for replicai at temperature
âi ) 1/kTi. The temperatures are chosen to be equally spaced
on a logarithmic temperature scale. Exchanges are attempted
every 10 ps, and the replica exchange acceptance ratios vary
from 15% to 40%.

4. Results and Analysis
4.1. Thermodynamics.The thermodynamic and structural
properties of all five peptides were studied using replica
exchange MD. The fluctuations in the total energy and in
the molecular configuration were measured. The first, given
by the heat capacityCV, is commonly used to determine the
location of the collapse transitionTθ. The heat capacity is
defined by

where the first equality is from thermodynamics, and the
second is from statistical mechanics. Figure 3 shows the heat
capacity for all five peptides as a function of the temperature.
The peak inCV is the collapse transition temperature. The
data shown in Figure 3 were determined via the second
equality and were subjected to the weighted histogram
analysis method (WHAM). The heat capacity was also
determined via the first equality and found to be in agreement
with the statistical mechanical definition.

The peak in the conformational fluctuations of the peptide
is used to determine the folding temperature,Tf, below which
the polypeptide is predominantly in the native configuration.
A measure of how much a given conformation differs from
the native state is given by the parameterø, called the
“overlap function”. There is no unique way of defining such
a parameter, though all reasonable definitions lead to similar
results. We follow Vietshans et al.30 in defining ø as

Here,NR corresponds to the number ofR-carbons,rij is the
distance betweenR-carbonsi and j, and r ij

N is the same
distance in the native state.Θ is the Heaviside function and
is equal to 1 when its argument is positive and is equal to
zero otherwise. Specifically, the Heaviside function is 1 when
the difference between the pair distancerij and distance
between the same pair in the native state,r ij

N, is less than
some toleranceε. Thus, only “nativelike” pair-distances
contribute to the sum in eq 30. The parameterε is set to 0.5
Å. Note thatø is equal to 1 in the native state. We define
the native state as a helix withφ andψ angles of 63° and
54°, respectively. The fluctuations inø are measured by

The behavior of∆ø is shown in Figure 4. The temperature
of the peak in∆ø for each sequence is the same as that for
the heat capacity. Values for the folding temperature are
given in Table 1. Note that the location of the peaks for both

φij(r) ) 4ε[(σij

rij
)12

- (σij

rij
)6] (21)

mẍi ) Fi + Γi - úix̆i (22)

úi ) 6πaiη (23)

〈Γi(t)Γi(t′)〉 ) 2úikBTδ(t - t′) (24)

xi(t + h) ) xi(t) + hx̆i(t) + h2

2m
[Fi + Γi - úix̆i(t)] (25)

x̆i(t + h) ) (1 - R)(1 - R + R2)x̆i(t) +
h

2m
(1 - R + R2)[Fi(t) + Γi(t) + Fi(t + h) + Γi(t + h)] (26)

W(X f X′) ) [1 if ∆ e 0
exp{-∆} if ∆ > 0] (27)

∆ ) (âi - âj)[Ej - Ei] (28)

CV(T) )
∂Etotal

∂T
)

〈E2〉 - 〈E〉2

kBT2
(29)

ø )
1

NR
2 - 5NR + 6

∑
i)1

NR-3

∑
j)i+3

NR

Θ(ε - |rij - r ij
N|) (30)

∆ø ) 〈ø2〉 - 〈ø〉2 (31)
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CV and ∆ø shift to higher temperatures with increasing
hydrophobicity. The more hydrophilic peptides are more
easily solvated and consequently have a less stableR-helix
and a folding transition at a lower temperature. The relative
heights of the peaks are also consistent with the peaks in
the heat capacity: the more hydrophobic sequences have
smaller fluctuations at the folding transition than the more
hydrophilic sequences. This is to be expected, as the more
hydrophilic the peptide, the more readily it will be solvated.
Note that while sequences C and D have similar transition
temperatures, the width of the transition region for sequence
C is narrower than that for sequence D.

Comparison with a plot of the radius of gyration,Rg, as a
function of temperature, shown in Figure 5, clearly shows
that Rg changes dramatically within the transition region
centered onTθ. Above Tθ, the radius of gyration increases
with increasing temperature with the rate of increase greater

the more hydrophilic the peptide sequence. BelowTθ, the
peptides all have a constant radius of gyration equal to that
of a full R-helix, while aboveTθ, the radius of gyration
increases with increasingT. One interesting feature of the
radius of gyration for sequence A is that it passes through a
minimum at 305 K. This is due to the strong hydrophobic
attraction of the P side chains which cause theR-helix to
compress slightly. At very low temperatures, this compres-
sion is canceled by the bond- and dihedral angle potentials,
which become increasingly important as the temperature
decreases.

Figure 6 shows the behavior of the average helicityθ as
a function of temperature. The helicity is defined as

whereNH is the number of helical hydrogen bonds andNres

is the number of residues in the polypeptide chain. For each
peptide sequence,θ ) 1 at low temperatures, indicating a
full R-helix, andθ ≈ 0 at high temperatures, where each

Figure 3. A plot of the heat capacity Cv versus the temper-
ature. The peak in Cv is the collapse temperature, Tθ. The
circles are sequence A (black), the squares are sequence B
(red), the diamonds are sequence C (green), the up triangles
are sequence D (blue), and the left triangles are sequence E
(magenta). The colors and symbols are consistent throughout.

Figure 4. The fluctuations ∆ø plotted versus the temperature.
The peak in ∆ø is the folding temperature, Tf. In this model,
Tf ) Tθ. Note that the magnitude of the fluctuations increases,
and the width of the transition region decreases as the
hydrophilic content increases. The symbols are the same as
in Figure 3.

Figure 5. The radius of gyration Rg as a function of
temperature. Note that Rg for sequence A has a mimumim.
The symbols are the same as in Figure 3.

Figure 6. A plot of the fractional helicity θ versus temperature.
The width of the transition region decreases with increasing
hydrophilic content. The symbols and colors are the same as
in Figure 3.

θ )
NH

Nres- 4
(32)
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peptide is fully unfolded and has noR-helical hydrogen
bonds. The width of the transition region decreases with
increasing hydrophobicity. Due to the short length of the
peptides, sequence effects play a role in the behavior ofθ.
For example, sequence B has the lowest value forθ at low
temperatures when it would be expected, as a more hydro-
philic sequence, to have a value comparable to sequence A.
This is due to fraying of the helix at the N-terminus.

One of the most useful models to describe the coil-to-
helix transition is due to Zimm and Bragg.2,5 Two parameters
are central to their analysis:s, which is related to the free
energy of helix propagation, andσ, which is related to the
free energy of helix nucleation.

The fractional helicity for a peptide ofN residues is given
by

whereQ is the partition function and can be written as a
sum over eigenfunctions of the transition matrix

In the case of the Zimm-Bragg model,n ) 2, the partition
function can be written as

where

To determines and σ, eq 33 was fit to the fractional
helicity determined via simulation and shown in Figure 6.
Following the analysis of Takano et al.,5 we have used the
Levenburg-Marquardt nonlinear least-squares algorithm35 to
fit eq 33.

The behaviors ofs andσ as a function of temperature are
shown in Figures 7 and 8, respectively. In agreement with
Ohkubo and Brooks,36 we find that the large-N approximation
for s and σ used in previous work37-39 is not suitable for
chain lengths of 10 residues. The behavior ofs is qualitatively
similar to that seen by Ohkubo and Brooks.36 For a givenT,
the more hydrophobic sequence generally has a higher value
of s. The exception is for sequence B, sinceswas determined
from the fractional helicity, and the fractional helicity was
low at low temperatures due to fraying of the helix ends. At
the lowest temperatures sampled,s is between 1.5 and 2.0
for all sequences. As the temperature increases,s decreases,
passing through 1.0 at a lower temperature than the folding
temperature as determined by the peak in∆ø. At the highest
temperatures sampled,s is approximately 0.5, which is higher
than expected, though the more hydrophilic the sequence,
the smaller the value ofs.

The behavior ofσ is very interesting. At low and high
temperatures,σ is appoximately 0.005 for the most hydro-
phobic sequence and 0.001 for the most hydrophilic se-
quence. However, at the folding temperature,σ has a
maximum. The most hydrophobic sequence has a maximum

at σ ) 0.08, while the most hydrophilic sequence has a peak
of only σ ) 0.009. The behavior forσ of sequence A is
similar to that seen by Ohkubo and Brooks.36 However, the
value ofσ at high temperatures determined here is consider-
ably smaller than seen in that work.

4.2. Kinetics.To determine the sequence dependence of
the kinetics of the coil-to-helix transition, a procedure similar
to that developed by Veitshans et al.30 was used. For each
sequence,M ) 400 independent initial configurations,
generated from a high-temperature simulation run, were
quenched to the folding temperature and were allowed to
propagate forward via eqs 25 and 26 until the overlap
function ø was equal to 1.0, whereupon the simulation was
stopped. The fraction of unfolded peptides as a function of
time,Pu(t), was then used to characterize the folding kinetics.
Pu(t) is defined as

θ ) 1
N

∂ln Q
∂ln s

(33)

Q ) ∑
n

λn
N (34)

Q ) λ+
N + λ-

N (35)

λ( ) 1
2
(1 + s) ( 1

2
x(1 - s)2 + 4σs (36)

Figure 7. The Zimm-Bragg paramater s plotted as a function
of temperature. A measure of the folding temperature is where
s ) 1. In this case, T(s ) 1) is generally lower than the folding
temperature as determined by the peak in the heat capacity.
The symbols and colors are the same as in Figure 3.

Figure 8. The Zimm-Bragg parameter σ shows a strong
peak at the folding temperature. The magnitude of the peak
increases as the hydrophobic content increases. The symbols
and colors are the same as in Figure 3.

Pu(t) ) 1 - ∫0

t
Pfp(s)ds (37)
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wherePfp(t) is the distribution of first passage times

and whereτi is the first passage time of trajectoryi. Pu(t)
for each sequence was then fit to a single exponential

where we shall refer toτ0 as the mean folding time. Unlike
Veitshans et al.,30 Pu(t) was best fit by asingleexponential.
Single-exponential folding kinetics were also seen by
Bredenbeck et al.40 in the folding of a 16-residue helix-
forming peptide. BothPu(t) and the best-fit exponential for
each sequence are shown in Figure 9. That the kinetics is
best described by a single exponential is in line with what
would be predicted from the value ofσf, a measure of the
“foldability” of the peptide. The parameterσf introduced by
Thirumalai is defined by

whereTθ andTf are the collapse and folding temperatures
determined in the previous section. For these model peptides,
Tθ ) Tf, and σf ) 0. Peptides withσf ≈ 1 encounter
misfolded structures, some of which can be very stable and
which serve as kinetic traps.30 Peptides withσf ≈ 0 have
folding kinetics that show two-state behavior,30 which is best
fit by a single exponential.

As expected, the most hydrophobic sequence has the
fastest folding time, while the most hydrophilic sequence
has the slowest. The folding times are given in Table 1 and
vary from 59 ns for the fastest to 132 ns for the slowest.
Sequences B, C, and D behave as expected, with the folding
time increasing with increasing hydrophilic content. The data
for sequences C and D lie on top of each other, though
sequence C does fold slightly faster.

Two main folding pathways were observed for the coil-
to-helix transition. The first, by which approximately 80%

of the trajectories folded, began with a single helix nucleation
site, followed by the growth of the helix to encompass the
entire peptide. This mechanism is illustrated in Figure 10.
In this figure, the unfolded peptide is shown in part A, a
structure with a single helical hydrogen bond near the center
of the peptide is shown in part B. In part C, the helix has
grown in both directions and includes one of the end termini,
and finally in part D, the full helix. The second pathway is
the more interesting of the two, as helix formation begins
with two helix nucleation sites. This pathway is shown in
Figure 11. In part A of that figure, the unfolded peptide is
shown. In part B, the first helix nucleation site is formed at
the C-terminus. Before this helix can grow to include the
entire peptide, a second helix is nucleated at the N-terminus,
shown in part C. Given the small size of the peptide, multiple
helix nucleation can only occur with a nucleation site at each
terminus. Finally, in part D, the two helices meet to form a
full helix. Multiple folding pathways have been seen in larger
proteins,41 and peptides with multiple helical structures were
seen by Nymeyer and Garcia at low temperatures in
simulations of the folding of a 21-residue helical peptide.42

Figure 9. A plot of the fraction of unfolded peptides Pu(t) as
a function of simulation time (in nanoseconds). Each se-
quence displays single-exponential kinetics. Black is sequence
A, red is sequence B, green is sequence C, blue is sequence
D, and magenta is sequence E.

Pfp(s) )
1

M
∑
i)1

M

δ(s - τi) (38)

P(t) ) A0exp(-t/τ0) (39)

σf )
Tθ - Tf

Tθ
(40)

Figure 10. An illustration of a folding pathway that proceeds
from a single nucleation site. Part (a) is the unfolded peptide,
part (b) shows a single helical turn, in part (c) the peptide
has grown in each direction, and part (d) shows the fully folded
peptide.

Figure 11. An illustration of a folding pathway that proceeds
via multiple helix nucleation sites. Part (a) is the unfolded
peptide, part (b) shows a single nucleated helix at the
C-terminus, in part (c) the peptide has two helical segments,
one at each terminus, and part (d) shows the fully folded
peptide.
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Finally, a plot of the mean folding time versus the Zimm-
Bragg parameter 1/σ for all five sequences at their folding
temperature is shown in Figure 12. In agreement with the
results of Buchete and Straub,26 we find thatτ is not linear
in 1/σ. Sequences C and D lie very close to each other in
Figure 12. They have very similar folding temperatures, very
similar values ofσ at the folding temperature, and very
similar mean folding times. The origin of this similarity lies
in the details of their sequences and in the relatively short
chain length of the peptides studied. Sequences C and D
differ only by 2 residues, residues 3 and 7, which are
hydrophobic in sequence C and hydrophilic in sequence D.
Changing the identity of two internal residues (which is 20%
of the sequence) does not have much of an effect. In contrast,
the sequence B differs from sequence C by 8 residues, and
sequence A from sequence B by 3 residues, one of which is
the N-terminus. There are marked differences between the
behavior of these sequence pairs. Using longer chain lengths
would give a clearer indication of the importance of amino
acid sequence versus hydrophobic/hydrophilic content. It is
certain, however, that increasing hydrophobic content in-
creases the helix stability and decreases the mean folding
time.

In their work, Buchete and Straub26 identify the inclusion
of multiple nucleation sites as the origin of the nonlinear
behavior. To test whether this is a possible mechanism in
these simulations, we can look at the average number of
helical segments,〈nH〉 (defined as three or more consecutive
residues in a helical state), at the folding temperature for
each sequence. This is plotted versus the reduced temperature
T/Tf in Figure 13. The more hydrophobic sequences, which
have higher values ofσ, do indeed have a higher average
number of helical segments at the folding temperature than
the more hydrophilic sequences. For example, sequence A
has〈nH〉 ) 1.39, while sequence E has〈nH〉 ) 1.21. That all
sequences have〈nH〉 > 1.0 at the folding temperature
indicates that multiple helix nucleation sites are important
even for short chains such as those studied here.

5. Conclusion
A coarse-grained model peptide was introduced and used in
a series of molecular dynamics simulations. For five different
peptide sequences, each 10 residues in length and of varying
hydrophobic/hydrophilic content, the thermodynamics of the
coil-to-helix transition was characterized and the folding
temperature was determined. The folding temperature, and
hence the helix stability, increased with increasing hydro-
phobic content of the peptide. For each sequence, 400
independent configurations were simulated at their folding
temperature, and the time was measured for each conforma-
tion to go from a random coil to anR-helix. From this
distribution of folding times, the kinetics of the coil-to-helix
transition was characterized. Folding times varied from 59
to 132 ns, which is slightly faster than the 200 ns established
by experiment. However, given the small size (10 residues)
of the peptides in this work, and the longer (16-21 residues)
peptides used in the experimental work, this faster folding
time is not unreasonable. While the coarse-grained interaction
potentials used in this work are clearly approximate, espe-
cially the directionality of the hydrogen bond, the thermo-
dynamic and kinetic results presented here indicate that it
offers a realistic description of the coil-to-helix transition.
For all five peptide sequences studied, single-exponential
kinetics were observed, indicating a “two-state” folding
process. Finally, the mean folding time was plotted versus
the inverse of the Zimm-Bragg parameterσ, and a nonlinear
dependence was found. The origin of the nonlinearity was
ascribed to multiple helix nucleation sites, and pathways
proceeding from single and from multiple helix nucleation
sites were discussed. It was further shown that increasing
values ofσ correlated with an increasing average number
of helical segments, indicating that even for small peptides
such as those studied here, multiple helix nucleation sites
play an important role in the folding kinetics.
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Abstract: A new, computationally efficient Monte Carlo approach has been developed to

estimate the ring-closure properties of short, realistically modeled DNA chains. The double helix

is treated at the level of base-pair steps using an elastic potential that accounts for the sequence-

dependent variability in the intrinsic structure and elastic moduli of the base-pair steps, including

the known coupling of conformational variables. Rather than using traditional Metropolis-Monte

Carlo techniques to generate representative configurations, a Gaussian sampling method is

introduced to construct three-dimensional structures from linear combinations of the rigid-body

parameters defining the relative orientation and displacement of successive base pairs. The

computation of the J factor, the well-known ratio of the equilibrium constants for cyclization vs

bimolecular association of a linear molecule, takes into account restrictions on the displacement

and directions of the base pairs joined in ring closure, including the probability that the end-to-

end vector is null and the terminal base pairs coincide. The increased sample sizes needed to

assess the likelihood that very short chains satisfy these criteria are attained using the

Alexandrowicz half-chain sampling enhancement technique in combination with selective linkage

of the two-half-chain segments. The method is used to investigate the cyclization properties of

arbitrary-length DNA with greatly enhanced sampling sizes, i.e., O(1014) configurations, and to

estimate J factors lower than 0.1 pM with high accuracy. The methodology has been checked

against classic theoretical predictions of the cyclization properties of an ideal, inextensible,

naturally straight, DNA elastic rod and then applied to investigate the extent to which one can

account for the unexpectedly large J factors of short DNA chains without the need to invoke

significant distortions of double helical structure. Several well-known structural features of DNAs

including the presence of intrinsic curvature, roll-twist coupling, or enhanced pyrimidine-purine

deformabilitysbring the computed J factors in line with the observed data. Moreover, periodically

distributed roll-twist coupling reduces the magnitude of oscillations in J, seen in plots of J vs

chain length, to the extent found experimentally.

Introduction
The representation of chain molecules with ends confined
to a fixed separation and orientation is a long standing

problem in polymer physical chemistry that can be attacked
from several points of view. In one approach the configura-
tions of unconstrained linear molecules which meet preas-
signed geometric criteria, e.g., the distance and relative
orientation of chain ends, are collected through exhaustive
simulation studies.1 This method has been used extensively
in analyses of the kinetics of chain cyclization, i.e., ring
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closure,2-6 and the formation of closed loops.7-9 An alterna-
tive approach to the ring-closure problem is to derive an
analytical expression for the configurational partition function
of a simplified polymer, such as a freely jointed (Gaussian)
chain or a freely rotating (wormlike) chain, that satisfies the
requisite end conditions.10-13 Such theories have provided
important insights into experimental findings and serve as
valuable benchmarks for simulations of the cyclization
propensities of polymer chains with similar molecular
properties.

The probability of polymer ring closure is typically
described in terms of the Jacobson-StockmayerJ factor, or
cyclization constant, defined as the ratio of the equilibrium
constants for cyclization and bimolecular association of a
linear molecule.10 If the chain is sufficiently long and exhibits
ideal Gaussian (random-coil) behavior, theJ factor decreases
with chain lengthN asN-3/2.10 At short chain lengths near
the rigid-rod limit, where there is very little variation in the
overall molecular structure, the likelihood of ring closure
drops off sharply with a decrease inN. Thus theJ factor
exhibits a maximum at intermediate chain lengths comparable
to 2-3 times the persistence length.12,14,15

The unexpected, spontaneous cyclization of DNA mol-
ecules much shorter than the persistence length16,17 has
renewed interest in ring-closure measurements and the
intrinsic structure and deformability of double helical DNA.
DNA chain segments less than 100 bp in length are cyclized
up to 5 orders of magnitude more efficiently than expected
from theoretical predictions based on the conventional
representation of DNA as an ideal, inextensible, naturally
straight elastic rod, i.e., helical wormlike chain model with
a persistence length of∼500 Å.15 New theories account for
these discrepancies in terms of the spontanous melting of
isolated base pairs,18 the presence of occasional sharp kinks
in the chain backbone,19,20 and/or the reduction of the
torsional modulus.17 The published models, however, do not
consider the unique sequence-dependent structural features
of the short minicircles and the possibility that the wide range
of J factors which have been reported6,16,17,20may be a natural
consequence of the differences in intrinsic structure and
deformability of the selected sequences. For example, the
DNA molecules found to close most easily into tight
minicircles contain a well-known nucleosome-positioning
sequence21 with periodically repeating chemical features. This
sequence includes two notable patterns: (i) TA base-pair
steps, which recur at increments of∼10 bp, i.e., roughly a
complete double helical turn, and (ii) AT-containing dimers
(AA, TA, or TT), which alternate at half helical turns with
GC base-pair steps. The TA steps are among the most easily
deformed of all base-pair steps,22 and the separation of tracts
of AA and TT dimers by GC-rich steps is implicated in DNA
intrinsic curvature.23 Furthermore, complementary base pairs
remain intact even in the most severely deformed protein-
mediated DNA bends, such as the∼80 bp wrapped a
complete superhelical turn around the histone proteins in the
nucleosome core particle,24 and even the very sharpest (40-
50°) known protein-induced DNA bends25,26 are typically
smaller than the (∼90°) values posited to account for the
cyclization tendencies of short chains.

The occurrence of small rings thus presents new technical
challenges to the simulation of DNA ring closure. It is
difficult to accumulate a meaningful sample of closed
configurations from the random sampling of a relatively stiff,
naturally straight molecule. The approximation of DNA as
an ideal elastic rod has only limited success in predicting
the behavior of the molecule in the short-length regime,
where configurational fluctuations do not result in the ends
having sufficiently random alignment for the persistence
length to account entirely for the cyclization efficiency. This
is despite the fact that most mixed-sequence DNA is expected
to have only negligible intrinsic curvature, and hence a
naturally straight model would be considered appropriate.
Some sequences, such as those containing certain motifs
beginning with four to six adenines (A-tracts), however,
possess significant intrinsic curvature that is known to
facilitate ring closure.12,27

Here we present the details of a new computationally
efficient technique to estimate theJ factors of short,
realistically modeled DNA chains. We treat the double helix
at the level of base-pair steps, i.e., dimers, making use of an
elastic potential which governs the fluctuations in the relative
orientation and displacement of successive base pairs from
their intrinsic values. We account for sequence-dependent
variability in both the intrinsic structure and the elastic
moduli of the base-pair steps, including the known coupling
of conformational variables and anisotropy of bending. In
place of conventional Metropolis-Monte Carlo methods28 for
sampling configurations of constrained molecules, we utilize
the quadratic form of the DNA elastic energy and sample
unconstrained configurations using a standard Gaussian
random number generator. We increase sample size consid-
erably by combining the Alexandrowicz half-chain sampling
enhancement technique,29 with a novel method of selectively
linking the pairs of half-chain segments that are likely to
satisfy the end-to-end ring-closure criteria. The method can
be used to estimateJ factors lower than 0.1 pM with high
accuracy and hence is suited for the investigation of short
DNA molecules. DNA polymers with different degrees of
intrinsic curvature and different patterns of dimeric flexibility
are investigated with the new technique. After checking the
methodology against classic theoretical predictions of the
cyclization properties of an ideal, elastic DNA rod, we use
the approach to investigate the extent to which one can
account for the observed ring-closure properties of short
chains without the need to invoke significant distortions of
double helical structure. We consider the effects of intrinsic
curvature, anisotropic bending, roll-twist coupling, and
enhanced pyrimidine-purine deformability and compare the
computedJ factors against values found experimentally for
DNA chains of the same length and chemical content.

Methods
DNA Model. We make use of a dimeric representation of
DNA which incorporates the known effects of base sequence
on the intrinsic structure and deformability of the constituent
dinucleotide steps.22 The rest state of each dimer is described
by six independent step parameters which specify the
preferred orientation and displacement of neighboring base-
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pair planessthree angular variables termed tilt, roll, and twist
and three variables called shift, slide, and rise with dimen-
sions of distance.30 The configuration of a base-pair step is
denoted by the vectorΘ, with componentsθi (i ) 1...6)
corresponding respectively to the instantaneous values of tilt,
roll, twist, shift, slide, and rise at the given step.

We use an elastic potential to describe the fluctuations in
structure at each base-pair step. The potential is parametrized
in terms of the differences between the values of the base-
pair step parameters for the assumed geometry of the step
and the intrinsic base-pair step parameter values assigned to
the minimum-energy state of the step. Coupling is incorpo-
rated in the model through off-diagonal terms in the energy
expression (see below).

Defining Θ0 as the vector containing the intrinsic base-
pair step parameters, the potential of a single XZ base-pair
step of the DNA is expressed by the double summation:

Here thefij are elements of the symmetric 6× 6 elastic force
constant matrixF, which contains the noncoupled elastic
constants along its diagonal and the coupled terms in its off-
diagonal elements. Theθi

0 are the step parameters of the
minimum-energy reference state stored inΘ0 and theθi are
the corresponding values of the instantaneous configurational
state stored in the vectorΘ. Hence, a set of intrinsic base-
pair step parametersΘ0 and an elastic constant matrixF are
sufficient to monitor the fluctuations of a single base-pair
step. The configuration of a DNA chain segment depends
on the choice of parameters at each of theN base-pair steps,
and the total energyU is a sum of the energies over all
steps:

Configurational Sampling. The sampled configurations
are chosen to satisfy a Boltzmann distribution. Here, rather
than using traditional Metropolis-Monte Carlo sampling
techniques28 to generate representative configurations, we
take advantage of the quadratic form for the energy of DNA
in eq 1 and the consequent simplification of the configura-
tional partition function as a product of Boltzmann terms
for individual base-pair steps. Hence, the probability that a
base-pair step will adopt configurationΘ is proportional to
the Boltzmann factor of the dimer deformation energy

whereâ ) 1/kBT, kB is the Boltzmann constant, andT is the
absolute temperature. Here, for simplicity, we omit indices
that denote the sequential locationn and chemical identity
XZ of the base-pair step.

To express the probability density function as a product
of independent terms, we write the dimeric energyΨ in

matrix form, i.e.,Ψ ) 1/2∆ΘTF∆Θ, diagonalize the force-
constant matrixF, and rewrite the energy in terms of a
diagonal matrixD and a basis variableΩ, with elementsωi

(i ) 1...6) given by linear combinations of the base-pair step
parameters:

HereQ is the eigenvector matrix specifying the directions
of the principal axes of deformation. The superscriptT is
used to denote the transpose of a matrix or vector.

Elimination of the cross terms in the energy expression
allows us to write the probability density function for a single
base-pair step, including normalization, as a product of
Gaussians:

To sample this function, we modify a standard Gaussian
random number generator31 and collect a Boltzmann distri-
bution of dimeric states without the necessity of using the
Metropolis method. This approach, which we term Gaussian
sampling, is superior to the Metropolis method in that it is
computationally more efficient and does not suffer from
correlations between sample points or incomplete coverage
of phase space.

Calculation of the J Factor. To monitor the closure of a
DNA chain ofN base pairs, we add a virtual (N+1)th base
pair (of the same type as the first base pair) and consider
the DNA to be closed when the (N+1)th base pair coincides
with the first base pair (see Figure 1). Following Flory et
al.,32 we express theJ factor as a product of probabilities
which describe the contribution of the spatial configuration

Figure 1. Linear DNA segment of N base pairs (blue blocks)
in a configuration approaching the requirements for cyclization.
The end-to-end vector r (thick dashed arrow) joins the first
base pair to a hypothetical (green) base pair N+1, which
coincides with the first base pair in a perfectly closed chain.
The net bending angle γ (lower left image) is defined by the
normals n1 and nN+1 of base pairs 1 and N+1 (thick solid
arrows) and the end-to-end twist φ (lower right image) by the
long axes and normals of the same base pairs.
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to the cyclization equilibrium constant:

Here W(r ) 0) is the probability that the configuration is
closed, i.e., the end-to-end vectorr , which connects the first
and (N+1)th base pairs of the DNA, is zero. The factor
Γr(cosγ ) 1) is the conditional probability that the normals
of terminal base pairs are aligned when the chain ends
coincide, i.e., the cosine of the net bending angle is unity
(cosγ )1) when the end-to-end separationr ) |r | is zero
(r ) 0). The termΦr,cosγ(φ ) 0) is the conditional probability
that the first and last, i.e., (N+1)th, base pairs coincide, i.e.,
the end-to-end twistφ is zero when bothr ) 0 and terminal
base pairs are coplanar (cosγ ) 1). The quotientNA/4π,
where NA is Avogadro’s number, is the normalization
constant associated with the uniformly distributed probability
density of bimolecular association

For a DNA configuration specified by the angular param-
etersΘn, n ) 1...N, we calculate the end-to-end vector and
orientation angles from the serial product of 4× 4 generator
matricesAn that incorporate the 3× 1 displacement vector
r n and the 3× 3 transformation matrixTn,n+1, which relates
coordinate frames on successive base pairs (n, n+1):

The dependence ofTn,n+1 and r n on Θn follows the
formulation introduced by Zhurkin et al.33 and subsequently
developed by El Hassan and Calladine,34 in which the angular
step parameters are defined in terms of a sequence of
symmetric Euler rotations and the translational components
are expressed in the “middle” base-pair frame corresponding
to the axis positions generated by half the rotational operation
that brings adjacent base-pair frames into coincidence. See
the literature33-35 for further details.

The end-to-end vectorr ) r 1:N is accumulated in the far
right column ofA1:N:

HereI 3 is the identity matrix of order three, and the0’s are
null matrices of orders necessary to fill the 3× 4 premul-
tiplication and 4× 1 postmultiplication vectors.

The cosine of the angle between the normals of terminal
base pairs is the (3,3) element ofA1:N:

The end condition imposed on the twisting of terminal
base pairs is extracted from the trace of the end-to-end
transformation matrixT1:N+1 accumulated inA1:N.

Sampling Criteria. Because there is negligible likelihood
that all three constraints on base-pair juxtaposition and
orientation will be met exactly in numerical calculations, we
relax the end conditions and consider as closed those
configurations which meet the following criteria: (i) the
length of the end-to-end vectorr is less thanrε; (ii) the cosine
of the angleγ between the normals of terminal base pairs is
larger than 1- νε; and (iii) the magnitude of the end-to-end
twist φ is less thanτε. Each generated configurational state
is checked against these criteria, and each satisfaction is
recorded. The probability densities are obtained as Bernoulli
trials maximum-likelihood estimates, with each probability
normalized by the volume of the enclosed phase space (see
below).

The radial probability densityW(r ) 0) is calculated as
the number of configurationsMr obeying criterion (i),
normalized by the sample sizeM and the phase space volume
given as 4/3πrε

3. The contributionΓr(cosγ ) 1) from the
alignment of normals is calculated as the number of
configurationsMr,cosγ for which both criteria (i) and (ii) hold,
normalized byMr and the phase space volumeνε. Finally,
the twist alignment densityΦr,cosγ(φ ) 0) is calculated as
the number of configurationsMr,cosγ,τ satisfying all three
criteria, normalized byMr,cosγ and its phase space 2τε. The
estimatedJ factor, obtained by substitution of these values
in eq 6, is thus given by

whereQ ) 4πNArε
3νετε/3.

The standard deviation of this estimate, assuming sampled
configurations are uncorrelated, is given by

When Mr,cosγ,τ is much smaller thanM, as is the case for
closure probability calculations, the relative error is given
by the approximate formulaσ/J = (Mr,cosγ,τ)-1/2. Because the
half-chain sampling method (see below) introduces slight
correlation between sampled configurations, the true relative
error (estimated as the standard deviation of multiple runs)
is about 2.4 times larger thanσ/J. Thus, the relative error is
significant if Mr,cosγ,τ is less than 100. For reported values
of J greater than 0.1 pM, i.e., logJ > -13, the relative error
is consistently below 10% (around 3% whenever feasible).
The largest relative error occurs for smallerJ factors (below
0.1 pM); data shown in this molar range are generally
obtained with less accuracy, with as much as 32% relative
error when the ends of short, naturally straight chains are
out of phase, e.g., 10 accepted configurations for a 90 bp
ideal, elastic B-DNA chain.

Sampling Enhancement.It is computationally expensive
to generate ensembles of more than O(107) configurations.
Since DNA segments shorter than the persistence length are
stiff and the probability that a randomly generated config-
uration satisfies all three ring-closure criteria is very small,
the computedJ factors are subject to large error if straight-
forward sampling approaches are used. Therefore, for such
segments we use a sampling enhancement technique intro-

J ) 4π
NA

W(r ) 0) Γr(cosγ ) 1) Φr,cosγ(φ ) 0) (6)

A1:N ) A1A2...AN-1AN

An ) [Tn:n+1 rn

0 1 ] (7)

r ) [I3 0 ] A1:N [01] (8)

cosγ ) [0 0 1 0 ]A1:N [001
0

] (9)

Tr(T1:N+1) ) cosφ(1 + cosγ) + cosγ (10)

J )
Mr,cosγ,τ

QM
(11)

σ ) 1
QxMr,cosγ,τ(M - Mr,cosγ,τ)

M3
(12)
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duced by Alexandrowicz29 and subsequently applied by
Levene and Crothers4 in Monte Carlo simulations of DNA
ring closure. Rather than generate the configurations of the
entire DNA withN base pairs, we divide the chain into two
equal (or nearly equal) pieces and sampleL configurations
of each half-chain segment separately. By taking all pairwise
combinations of both halves we can theoretically achieve
L2 configurations of the full-length chain. It should be noted
that, even though the configurations of half-chain segments
are uncorrelated, the multiplicative combination of a finite
number of states introduces some bias in the full-chain
ensemble.

If we let m be a base pair close to the midpoint of the
chain, the end-to-end matrixA1:N can be factored into two
submatrices containing the structural details of the two-half-
segments of the molecule:

Elements of these two submatrices are stored during the
simulation and multiplied when half-segments combine
successfully to form a closed, full-length chain. It follows
from eq 13 and the definition ofAn in eq 7 that the end-to-
end vector can similarly be divided into two vectors that
connect the chain ends via a central base pair.

The requirement of ring closure, i.e.,r 1:N ) 0, imposes a
constraint on the vectors in the two halves of the DNA,
namely

To reduce the number of unnecessary half-chain combina-
tions, we join only those pairs of segments that are likely to
satisfy the end-to-end ring-closure criterion. The current
algorithm keeps track of the values of-T1:m

-1 r 1:m for the first
half-segments andrm:N for the second half-segments and
combines only those for which eq 15 is approximately
satisfied. This is implemented as follows: the three-
dimensional Cartesian space ofr is divided into cubes of
volumeV. As first and second half-configurations are being
sampled we record cubes in which those configurations
terminate in the sense that the values of-T1:m

-1 r 1:m andrm:N

fall within the cube boundaries. Then, for each cube we
combine all first half-configurations terminating in that cube
with all second half-segments terminating in this same
(primary) cube. We also combine those first half-configura-
tions with the second half-segments terminating in all cubes
that are less thanrε away from any point in the primary cube,
whererε is the radius of the sphere used to approximate the
radial probability densityW(r ) 0). First and second half-
segments terminating in cubes that are farther thanrε apart
need not be combined because they cannot satisfy the initial
closure criterion, i.e.,r ) 0.

This method discards the majority of possible configura-
tional combinations, especially when sampling chain seg-
ments with a very lowJ factor. Thus, the total sample size
can be, effectively, as large as 1014, when necessary, to
achieve a good estimate of the contribution of the conditional
twist probability densityΦr,cosγ(φ ) 0). The latter quantity

is the most difficult to sample reliably and, except for the
recent biased Monte Carlo calculations of the Vologodskii
group,6 which unfortunately are not applicable to the present
study of sequence-dependent effects, has not been considered
in previous Monte Carlo simulations of DNA ring closure.
Published estimates of theJ factors obtained from Brownian
dynamics simulations have also omitted the contribution of
terminal base-pair overlap to the likelihood of chain closure.36

The calculations were performed on a single 2.1 Ghz AMD
Athlon(tm) processor with 2 gigabytes of available RAM.
Numerical estimation of theJ factor of a single molecule
takes 1-10 CPU h depending upon DNA chain length and
intrinsic structure. Simulations are longest for short, naturally
straight chains where there is the least variation in overall
molecular structure.

Results and Discussion
Intrinsically Straight DNA. We used the Gaussian sampling
method in combination with the improved half-chain genera-
tion technique to investigate the cyclization probabilities of
various models of double helical DNA. We tested the
computational approach by first determining the ring-closure
properties of an ideal, inextensible, naturally straight DNA
molecule over the entire range of chain lengths between 90
and 450 bp. We chose a minimum-energy rest state with an
intrinsic helical repeat of 10.5 bp/turn (∼34.3° twist at every
base-pair step) and a pitch of 35.7 Å (3.4 Å rise at every
base-pair step). All other step parameters were equated to
zero.

In this simple ideal model, analogous to the Shimada-
Yamakawa twisted wormlike chain representation of DNA15

(where the molecule is naturally straight, inextensible, subject
to isotropic bending, and able to undergo independent
fluctuations in twist), we allow deformations in tilt, roll, and
twist (θ1, θ2, θ3) but fix the translational parameters shift,
slide, and rise (θ4, θ5, θ6) near their intrinsic values (by use
of very large force constants). The root-mean-square (RMS)
fluctuation of tilt is equated to that of roll (isotropic bending),
i.e., 〈∆θ1

2〉 ) 〈∆θ2
2〉, and is assigned a value of 4.84°, cor-

responding to a persistence lengtha ) 2∆s/(〈∆θ1
2〉 + 〈∆θ2

2〉)
of nearly 500 Å (if∆s, the per residue base-pair displace-
ment, is taken as 3.4 Å). The assumed RMS fluctuation in
twist 〈∆θ3

2〉 ) 4.09° corresponds to a global twisting constant
C ) kBT/〈∆θ3

2〉 somewhat larger in magnitude than the global
bending constantA, i.e., C/A ) 1.4, whereA ) akBT. The
choice of C is compatible with measurements of the
equilibrium topoisomer distributions of DNA minicircles37

and the fluorescence depolarization anisotropy of ethidium
bromide molecules intercalated in DNA minicircles.38

To estimateJ, we set a radial boundrε of 30 Å on the
sphere used to monitor the end-to-end vector of the full-
length chain, a limit of 30° or less on the angle between the
normals of the first and last base pairs (cosγ > x3/2), and
a restriction on the magnitude of the end-to-end twistτε to
values less than 30°. The same values are adopted in all
subsequent simulations unless otherwise noted. As is clear
from Table 1, the computedJ factors are generally insensitive
to the magnitude of the selected bounds. More restrictive
bounds, however, lead to smaller numbers of acceptable
configurations and hence to larger errors.

A1:N ) A1:mAm:N (13)

r1:N ) r1:m + T1:mrm:N (14)

rm:N ) - T1:m
-1 r1:m (15)
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As is clear from Figure 2, the computed dependence ofJ
on DNA chain length mimics the predictions of the Shimada-
Yamakawa theory,15 showing a close fit with the observed
cyclization efficiencies of chains of 240 bp or more39-42 and
accounts satisfactorily for the reported ring-closure tendencies
of other short (105-130 bp) DNA sequences.20 The model,
like the Shimada-Yamakawa theory, underestimatesJ by up
to 3 orders of magnitude for some very short (89-105 bp)
chains.16,17These discrepancies have prompted our extension
of the calculations to more realistic models of DNA with
concomitant analysis of the effects of chemical features on
cyclization properties as described below.

Influence of Natural Curvature. Individual base-pair
steps adopt characteristic spatial forms and show different
deformational tendencies in high-resolution DNA structures.22

These local turns and twists, if appropriately concatenated
and then repeated in phase with the double helical repeat,
can introduce a natural “static” curvature or superhelicity in
the DNA.27,43,44 Indeed, it is rare to find segments of
intrinsically straight DNA,45 particularly in fragments as short
as those employed in recent DNA ring-closure measure-
ments.16,17,20

Here we study an idealized, naturally curved DNA made
up of two types of base-pair steps arranged in such a way
that a molecule of 150 bp forms a stress-free, nearly circular
configuration, or O-ring.35 Half of the steps in the 10 bp
repeating sequences are intrinsically straight (θ1

0 ) θ2
0 ) 0)

with twist (θ3
0 ) 36°) corresponding to a 10 bp/turn

helical repeat. The remaining steps have a different rest state
with a positive roll angle (θ2

0 ) 7.41°) and an intrinsic twist
(θ3

0 ) 35.57°) slightly lower than that of the preceding steps.
The elastic properties at all steps, however, mimic those of
an ideal DNA rod, i.e., the force constants are the same as
those applied above in the simulation of naturally straight
DNA. The sequence is constructed such that the first five
steps assume the ideal B-DNA rest state and the last five
steps adopt the perturbed rest state, i.e., an X5Z5 repeating
pattern with XX and XZ dimer steps assigned the ideal
B-DNA step parameters and ZZ and ZX steps assigned the
set of modified parameters. As above, the intrinsic shift and
slide are fixed at 0 Å, the rise at 3.4 Å, and the tilt at 0° at
all base-pair steps.

Not surprisingly, the computedJ factors of chain segments
of the 150 bp O-ring are many orders of magnitude greater
than those of a naturally straight molecule with the same
elastic properties, chain length, and double helical repeat
(compare the results reported in Figure 3 for naturally curved
molecules of 90-210 bp and ideal, straight DNA chains of
the same chain length and with the same 10 bp helical

repeat). The enhancement inJ is greatest for curved segments
containing an integral number of helical turns. The ends of
such chains readily meet in perfect register for successful
ring closure. Interestingly, the chain segment which closes
most easily into a circle is somewhat shorter than the perfect
O-ring (130 vs 150 bp), reflecting the effects of thermal
fluctuations on the configuration of DNA. Moreover, the
cyclization probabilty maximum at 130 bp and the ac-
companying enhancement of theJ factor compared to that
of ideal, naturally straight DNA, i.e., log [J/J0] ) 7.48, where
J0 is the Jacobson-Stockmayer factor of the latter model,
agree remarkably well with values predicted for a naturally
curved DNA with the same ratio of intrinsic curvature and
persistence length.12 Finally, although the curvature enhances
the likelihood of DNA ring closure, the greater amplitude
of the sawtooth oscillations in logJ with N in the naturally
curved DNA compared to those of a naturally straight model
is counter to the observed changes inJ at short chain lengths,
where the amplitude is lower than that expected for a
naturally straight DNA.17 The computed variation of logJ
vsN in Figure 3, however, is exaggerated by the lower radial
bound imposed on the curved DNA sequences (rε ) 10 Å)
compared to that imposed on the straight chain (rε ) 30 Å).

Table 1. Effect of Boundary Conditions on the Computed
J Factor of a 210 bp, Ideal DNA Moleculea

rε (Å) γε (deg) τε (deg) M J (M)
relative

errorb (%)

30 30 30 3.6 × 1013 1.26 × 10-8 0.41
20 30 30 3.6 × 1013 1.25 × 10-8 0.74
10 30 30 3.6 × 1013 1.27 × 10-8 2.11
10 10 10 3.6 × 1013 1.03 × 10-8 12.5
10 10 10 1.44 × 1014 0.92 × 10-8 6.38

a See legend to Figure 2 for details of model. b The relative error
is estimated from multiple runs and equal to roughly 2.4σ/J.

Figure 2. Monte Carlo estimates of the dependence on chain
length of the J factors of ideal DNA, which has properties
analogous to those of the Shimada-Yamakawa twisted worm-
like chain:15 the double helix is assumed to be naturally
straight in its equilibrium rest state, inextensible, and capable
of isotropic bending and independent twisting at the base-
pair level. The intrinsic twist and bending fluctuations are
consistent with experimental measurements, i.e., 10.5 bp per
helical turn and a persistence length of approximately 500 Å.
Observed data points are denoted by color-coded symbols:
filled and open red symbols (short nucleosome-binding and
control sequences, respectively);16,17 filled green circles (other
short sequences);20 open blue triangles (EcoRI restriction
fragments);40,41 and filled blue diamonds (EcoRI (E)-ended
constructs).42 The curve is made up of a series of line
segments connecting the computed J factors of molecules
that differ in chain length by one base pair.
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Table 2 reports theJ factors for a series of short (95, 100,
105 bp) DNA molecules of different intrinsic curvature,
all with a 10.5 bp helical repeat and all determined with
the same radial bound (rε ) 30 Å). The chains are
constructed, as described above, from two types of base-
pair steps: one withθ2

0 ) 0° andθ3
0 ) 34.3° and the other

with nonzero values of intrinsic roll and slightly
reduced dimeric twist (see the legend to the table). Only a
small intrinsic roll in the latter steps (θ2

0 ≈ 2°) is required
to bring the computedJ factors in line with those reported
for very short nucleosome-positioning sequences, e.g.,
Jobs ) 6.39× 10-10 M at N ) 95 bp and 1.66× 10-9 M at
N ) 105 bp.16,17 The computed oscillation in theJ factor
between 95 and 105 bp, however, is still greater than that
observed experimentally (Jobs ) 4.57 × 10-11 M at
N ) 100 bp).

Phased Bending Anisotropy. Compared to the ideal
isotropic rod model, in which the double helix is assumed
to be equally likely to bend in all directions, the bending of
real DNA is anisotropic, with deformability in the direction
of the major and minor grooves typically exceeding that
across the grooves. In other words, the variation in roll is
generally greater than that in tilt.22,33

To assess the effects of anisotropic bending on ring
closure, we consider a naturally straight, inextensible DNA

model in which roughly half of the base-pair steps are
assigned the bending properties of an ideal, isotropic rod,
and the remainder are subject to preferential bending via roll.
The force constants of the former steps are the same as those
employed above (f11 ) f22 ) 4.84-2), while those of the latter
steps (f11 ≈ 0-2 and f22 ) 6.84-2) are assigned so that the
flexibility in roll exceeds that in tilt to such an extent, that
fluctuations via tilt are prevented. This deformational pattern,
which preserves the∼500 Å persistence length of DNA,46

corresponds to Schellman’s classic “hinge” model of DNA
bending.47 The fluctuations in twist are governed at all steps
by the same elastic constant used above, i.e.,f33 ) 4.09-2.
A 21-bp repeating sequence is employed to preserve the
assumed 10.5 bp helical repeat, i.e., (X5Z5X5Z6)n, where the
XX and XZ steps bend isotropically and the ZZ and ZX steps
exhibit hinge bending. Other step parameters are assigned
the intrinsic values listed above.

Surprisingly, the DNA modeled with phased anisotropic
bending is stiffer than an ideal DNA elastic rod in terms of

Figure 3. Predicted effects of intrinsic curvature on the J
factors of DNA chains of 60-180 bp (thick solid curve). The
intrinsically curved DNA is made up of two types of base-pair
steps, each subject to isotropic bending and arranged such
that a molecule of 150 bp forms a stress-free, nearly circular
configuration (O-ring).35 The corresponding variation of log J
vs N for an ideal DNA with the same assumed helical repeat
(10 bp per turn) is shown as the thin solid line.

Table 2. Effect of Intrinsic Curvature on the J Factors of Short DNA Duplexes of Chain Length N

intrinsic curvaturea

rε 210 bp 420 bp 630 bp 840 bp straight

95 8.42 × 10-6 M 3.83 × 10-9 M 1.52 × 10-10 M 4.48 × 10-11 M 4.75 × 10-12 M
100 3.21 × 10-10 M 1.62 × 10-12 M 3.94 × 10-14 M 2.74 × 10-14 M 3.25 × 10-14 M
105 3.77 × 10-5 M 2.37 × 10-8 M 1.18 × 10-9 M 2.18 × 10-10 M 2.31 × 10-11 M

a Intrinsic curvature is measured in terms of the number of base pairs of an idealized X5Z5X5Z6 repeating sequence designed to form an
O-ring of the specified chain length. Intrinsic roll (θ2

0) is fixed at zero and intrinsic twist (θ3
0) at ∼34.3° (10.5 bp per helical turn) at XX and XZ

steps and at the following values at ZZ and ZX steps: 210 bp (5.4°, 34.03°); 420 bp (2.7°, 34.21°); 630 bp (1.8°, 34.25°); 840 bp (1.35°, 34.26°);
straight (0°, ∼34.3°).

Figure 4. Influence of phased bending anisotropy on the
computed likelihood of DNA ring closure in naturally straight
chains of 94-119 bp (thick solid curve). Here the DNA is
constituted from two types of base-pair steps: five successive
steps are subject to ideal isotropic bending and the next five
or six steps in the (X5Z5X5Z6)n conformational repeating pattern
bend preferentially via roll in a hingelike manner. The data
point at N ) 100 bp is subject to large sampling error and
thus omitted. The corresponding variation of log J vs N for
an ideal DNA with the same assumed helical repeat (10.5 bp
per turn) is shown as the thin solid line.
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its ring-closure propensities, even though its closed config-
uration has lower elastic energy. The computedJ factors are
as much as an order of magnitude lower than those of an
ideal rod with the same helical repeat for particular chain
lengths in the range 94-119 bp (Figure 4). While the bending
anisotropy may enhance deformations into the grooves, the
local restrictions on bending across the grooves seemingly
contribute to more effective cyclization. A possible reason
for these observations may be that, whereas cyclized, ideal
DNA is free to rotate about its helical axis, the corresponding
global torsional motion of a covalently closed DNA subject
to anisotropic bending is hindered by an energy barrier. That
is to say, the ideal DNA molecule can “turn inside-out” and
thereby cyclize with a bend in any direction with respect to
the first base pair, whereas the hinged DNA chain is restricted
to global bending in a single plane.

Roll-Twist Coupling . The localized twisting of DNA is
strongly correlated with its bending.48 The unwinding of the
double helix (via decrease in twist) is generally accompanied
by increased roll, i.e., local bending into the major groove,
and the overwinding of the duplex (via increase in twist) is
usually accompanied by decreased roll, i.e., local bending
into the minor groove. Furthermore, the degree of twist-roll
coupling is sequence-dependent, being generally most pro-
nounced for pyrimidine-purine dimers and weakest for
purine-pyrimidine steps.22,48

Here we explore the effects of roll-twist coupling in an
otherwise ideal model of B DNA, i.e., the chain is inexten-
sible and naturally straight with a 10.5 bp helical repeat and
the bending of successive base pairs is isotropic in the sense
that f11 ) f22. The base-pair steps are subdivided into two
categories and grouped, as above, into repeating (X5Z5X5Z6)n

conformational blocks. The bending is independent of
twisting in five successive (XX and XZ) base-pair steps, but
roll is coupled to twist in the next five or six (ZZ and ZX)
steps. The sign and magnitude of the twist-roll coupling
modulus, f23 ) f32 ) 5.41-2, are compatible with the
interdependence of base-pair step parameters seen in high-
resolution structures,22 i.e., the increase in roll will tend to
lower twist and vice versa. Other elastic constants are held
at canonical B-DNA values (f11 ) f22 ) 4.84-2, f33 ) 4.09-2).
The translational parameters and tilt are assigned the standard
intrinsic values listed above.

Remarkably the introduction of roll-twist coupling into an
otherwise ideal DNA chain increases theJ factor and
concomitantly reduces the amplitude of oscillations in logJ
with N (Figure 5). The computed variation inJ with chain
length closely matches the measuredJ factors of the
“random” E8 sequences used as a control in the ring-closure
studies of Cloutier and Widom16,17 (open symbols in
Figure 5). The overall base-pair composition of the latter
sequences is similar to that of the more easily cyclized “601”
nucleosome-binding sequences (filled symbols in Figure 5),
i.e., both sequence families are slightly GC-rich with 2-3
more pyrimidine-purine (YR) steps than random expectation,
but there are distinct differences in the chemical content and
distribution of the YR steps. Specifically, there is a greater
proportion of TA dimers than CA‚TG steps in the nucleo-
some-positioning sequences compared to the control se-

quences and the TA steps in the positioning sequence are
spaced∼10 bp apart, in nearly perfect phase with the helical
repeat. Notably, the energy required for melting the TA step,
i.e., the TA‚TA duplex fragment, is less than that of the CA‚
TG step,49,50suggesting that conformational deformations of
the TA are more facile and could dominate the motions of
the double helix.

The natural changes in local twist, which accompany
fluctuations in roll, clearly make it unnecessary to postulate17

that the DNA which forms small rings is more easily twisted
than the classic ideal elastic rod. The build-up of roll, which
is required to bring the ends of the DNA in contact, auto-
matically enhances the degree of twisting in the model. See
ref 51 for a related discussion showing that the observable,
effective twisting resistance of a closed DNA ring with the
same pattern of roll-twist coupling is close to zero.51

Phased Deformability. Large protein-induced bends of
DNA occur predominantly at pyrimidine-purine steps,25,26

the dimers expected to be most easily bent on the basis of
steric clash arguments52 and potential energy calculations.53,54

The enhanced deformabilty of such dimers contributes to
the global plasticity of DNA without significant disruption
of the double helical structure.

To test whether the regular spacing of flexible TA steps
may enhance the ring closure of short nucleosome-position-
ing sequences, we constructed a hypothetical, naturally
straight DNA model (with the same 10.5 bp helical repeat
and elastic properties as ideal B-DNA) interspersed every
10 bp by a dimer with twice the RMS fluctuation of tilt and

Figure 5. Predicted effects of phased roll-twist coupling on
the J factors of naturally straight DNA chains of 94-115 bp
(thick solid curve). Here the DNA is made up of two types of
base-pair steps: five successive steps exhibit ideal elastic
behavior, and the next five or six steps in the (X5Z5X5Z6)n

conformational repeating pattern are subject to roll-twist
coupling. The corresponding variation of log J vs N for an ideal
DNA with the same assumed helical repeat (10.5 bp per turn)
is shown as the thin solid line. The observed J factors of “601”
nucleosome-positioning sequences16,17 are denoted by filled
symbols and those of E8 control sequences16,17 by open
symbols.
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roll, i.e., f11 ) f22 ) (2 × 4.84)-2 ) 9.68-2. The latter range
of bending is comparable to the composite variation of tilt
and roll in the TA steps found in well resolved X-ray
structures. For example, the sum of the fluctuations of tilt
and roll (〈∆θ1

2〉 + 〈∆θ2
2〉) for TA steps in a dataset of 239

nonredundant protein-bound DNA structures of 2.5 Å or
better resolution (Y. Li and W. K. Olson, unpublished data)
is 15.262 if all extant data are considered and 7.022 if the
most extremely deformed TA steps are omitted, i.e., values
that bound the (2× 9.682) ) 13.692 range of deformations
assumed here. Values of intrinsic tilt, shift, slide, and rise
are identical to those used in the analysis of naturally straight
DNA.

As seen in Figure 6, the softening of DNA with force
constants that are consistent with the deformability of TA
steps and their placement in nucleosome-positioning se-
quences increases theJ factor by over 2 orders of magnitude
to the range of values found16,17 for short chains (filled
symbols in the figure). The added fluctuations, however, do
not dampen the oscillations of logJ with N to the extent
found experimentally. The amplitude of the variation in
log J with N for the DNA chains with phased deformability
is roughly 90% of that for the ideal DNA elastic rod.
Although the imposed pattern of localized flexibility in-
creases theJ factor at all chain lengths, the effects are less
pronounced at longer chain lengths. The enhancement inJ
levels off with increase in chain length to a factor∼2.5 times
the value predicted for the ideal B-DNA duplex, the dif-

ference reflecting the lower persistence length of the locally
softened DNA. The regularly spaced deformations also lower
the chain length of maximum ring-closure probability, from
a calculated value of 483 bp for the naturally straight DNA
to 336 bp for the modified duplex. The cyclization propensi-
ties of long DNA multimers with regularly spaced, structural
features such as those considered here are thus expected to
differ from those of the mixed sequences traditionally used
in the physical characterization of DNA.

Concluding Remarks. The present calculations clearly
show that, in contrast to earlier suggestions,17-20 it is not
necessary to invoke significant distortions in the DNA double
helix, e.g., melting, kinking, “free” twisting, to bring the
computedJ factors in line with the enhanced cyclization
propensities of molecules much shorter than the persistence
length.16,17A number of well-known features of DNA double
helical structuresincluding the presence of intrinsic curva-
ture, roll-twist coupling, or enhanced pyrimidine-purine
deformabilityscan account for the unexpectedly largeJ
factors of short chains. Moreover, chains with roll-twist
coupling dampen the sawtooth oscillations inJ with increase
in chain length to the extent found experimentally. The
internal coupling of dimeric variables also avoids the known
detrimental effects of enhanced DNA deformability on
nucleosome formation, i.e., the entropic penalty associated
with the binding of a flexible sequence.50

These conclusions could not have been drawn without the
improvements in chain sampling introduced herein. Many
of the rare “closed” arrangements of DNA captured in the
course of these calculations would be missed with conven-
tional Metropolis-Monte Carlo configurational sampling. We
enhance the efficiency of finding closed states of DNA
through the selective addition of half-chain segments, com-
bining only pairs of half-segments that are known in advance
to match the end-to-end spacing of the full-length molecule.
The Gaussian sampling technique ensures complete coverage
of phase space and does not suffer from the correlations
between sample points associated with Metropolis-Monte
Carlo approaches. The generation of spatial configurations
from random moves along the eigenvectors of the base-pair
step parameters allows us to consider the coupling of
conformational variables that accounts so well for the
mesoscale looping of DNA.

The improved sampling of DNA configurations also
provides a valuable guide for the development of theories
that use expansion methods to estimate the configurational
partition function of a closed ring. The reliable fitting of the
highly irregular spatial density distributions of short poly-
mers, including DNA, has long been known to require spatial
moments higher than second order.1,2,32,55The extent to which
approximate partition functions based on series expansions
of the Boltzmann factor about the minimum energy config-
uration match the computed partition function will be
reported elsewhere.

Finally, the present calculations omit consideration of the
polyanionic character of DNA. Calculations of ring-closure
probabilities that include long-range electrostatic interactions
between anionic phosphate groups are expected to increase
the chain length of maximum ring-closure probability.

Figure 6. Influence of phased deformability on the computed
likelihood of DNA ring closure in chains of 90-430 bp (thick
solid curve). The ideal B-DNA model is interspersed every
10 bp by a deformable step subject to isotropic bending
fluctuations twice those of the other steps. The corresponding
behavior of an ideal DNA with the same assumed helical
repeat (10.5 bp per turn) is shown as the thin solid line.
The observed J factors of “601” nucleosome-positioning
sequences16,17 are denoted by filled symbols.
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Abstract: Coarse-grained elastic network models have been successful in determining

functionally relevant collective motions. The level of coarse-graining, however, has usually

focused on the level of one point per residue. In this work, we compare the applicability of

elastic network models over a broader range of representational scales. We apply normal mode

analysis for multiple scales on a high-resolution protein data set using various cutoff radii to

define the residues considered to be interacting or the extent of cooperativity of their motions.

These scales include the residue, atomic, proton, and explicit solvent levels. Interestingly, atomic,

proton, and explicit solvent level calculations all provide similar results at the same cutoff value,

with the computed mean-square fluctuations showing only a slightly higher correlation (0.61)

with the experimental temperature factors from crystallography than the results of the residue-

level coarse-graining. The qualitative behavior of each level of coarse graining is similar at

different cutoff values. The correlations between these fluctuations and the number of internal

contacts improve with increased cutoff values. Our results demonstrate that atomic level elastic

network models provide an improved representation for the collective motions of proteins

compared to the coarse-grained models.

Introduction
Elastic Network Models1-3 have been quite successful in
predicting the large-scale motions of proteins and other
biological structures, even for such large complexes as the
ribosome.4-6 These models originated from the theory of
polymer networks7,8 using the pioneering idea of Tirion,3 who
proposed a single uniform spring constant parameter for all
atom-atom contacts used in a normal mode analysis. Elastic
Network applications have usually focused on coarse-grained

representations of proteins, using mostly CR-atoms and
relying upon CR-CR proximity for placement of springs. The
predicted position fluctuations of amino acids in proteins
obtained from Elastic Network Models usually give quite
good agreement with experimental B-factors measured by
crystallographers, but as we will see here more detailed
atomic models yield similar, if slightly better, results. This
is an important finding that may be particularly important
for developing mixed coarse-grained models wherein the
functionally important part of the protein is represented by
atoms, and the remainder of the structure is rendered in lesser
detail. The only information utilized in Elastic Network
Models is the structure of the protein, from the Protein Data
Bank (PDB),9 but this approach can also be applied to
hypothetical protein models based on sequence similarities
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or other techniques. The essential aspect of these models is
a representation of proteins as highly interconnected struc-
tures, which represents well their cohesive and cooperative
nature. It has been shown that fluctuations of residues in
proteins depend mostly on the packing density and that the
slowest modes corresponding to the motions of large domains
depend essentially on the protein shape.10,11Elastic Network
Models have been useful in studies of protein binding12 and
the analysis of the binding pocket flexibility.13

One of the strengths of the Gaussian Network Model is
its success in the determination of functionally significant
collective motions in proteins with an extremely simple
model based only on packing density and geometry. How-
ever, does such a simple model, which does not differentiate
between various bonded and nonbonded interactions (such
as covalent and hydrogen bonds), produce physically mean-
ingful results? There is strong evidence that it actually does.
First, the accumulated normal mode analysis results dem-
onstrate clearly that GNM produces experimentally verifiable
results, e.g. for X-ray analysis,2,14 NMR,15 hydrogen-
exchange,16 and cryo-EM4,17,18 experiments. Second, the
normal mode results correlate well with results of molecular
dynamics (MD) simulations19 based on detailed atomistic
force fields. These studies have proven that the normal mode
analysis using coarse-grained models is extremely useful and
that collective motions derived from the equilibrium structure
depend largely on the shape of the protein, rather than on
particular types of interactions.10,11A lack of any dependence
on discriminating between bonded and nonbonded interac-
tions is most likely due to the large number of interactions
inside compact structures of biomolecules that leads to their
cohesiveness and cooperativity. Essentially for large compact
structures the number of covalent bonds is small compared
to the number of nonbonded interactions. Note that this
conclusion does not negate the differential importance of
certain types of interactions for protein stability or for the
folding process.

Although elastic network models have proven to provide
a good description of protein collective motions, the effect
of coarse-graining over the full range of scales has not been
thoroughly explored. Jernigan and co-workers have mostly
analyzed one end of the spectrumscoarser-grained models
of proteinssand have observed that even when 40 residues
of hemagglutinin A are represented by a single node, the
global motions are only slightly affected20,21 in comparison
to more detailed models. Here we will explore the other end
of the spectrum, and study the effect of more detailed
representations of proteins for the elastic network models.
We will analyze the effect of scaling in elastic network
models by comparing results obtained at varying levels of
coarse-graining. These levels will include one point per
residue, one point per atom for heavy atoms alone, and the
case when protons are also included. Additionally we will
investigate the effect of explicit inclusion of solvent mol-
ecules insofar as they are reported for high-resolution protein
structures. For the residue-level coarse-graining, a single node
(located at CR) is assigned to each residue. For the atomic-
level representation, each heavy atom in the protein is
assigned a node, and hydrogen atoms are neglected. For the

proton-level additional nodes for each hydrogen atom in the
protein are included. Finally, in the explicit solvent-level
representation oxygen and hydrogen atoms of the water
molecules reported in the crystallographic data are also taken
into account, and each of these atoms is represented by a
node. Our study will allow us to analyze the effects of scaling
at various levels of accuracy and present a multiscale picture
of the normal mode of protein dynamics.

Previously22 we had observed a strong correlation between
the entropies computed from the elastic network models with
the number of internal contacts in the given protein. This
corresponds to a simple view of protein stabilities, in which
the number of contacts (stabilizing energy) compensates
directly for the extent of motions within the structure
(motional entropy). Conceivably such a simple relationship
could also depend on the level of cooperativity in the model,
i.e., the cutoff distance defining both the number of contacts
and their restraining effects on the motions of the protein.
We have investigated this correlation for the same set of
proteins and at different levels of coarse-graining with the
same elastic network models.

Although normal mode analyses provide a remarkable tool
for probing protein dynamics, they have some limitations:
every interaction is treated identically for all contacts
regardless of the contact distance or type of interaction. We
have observed however that the results obtained by using
residue-type specific potentials23,24at the residue-level coarse-
graining (unpublished results) or adjusted springs based on
number of contacts25 are not substantially different from those
obtained by using a harmonic potential with a single uniform
spring constant. Furthermore, elastic network model results
are comparable to those of molecular dynamics based on
AMBER potential.19 Here, we take a different route and
explore the effect of assigning a harmonic potential with a
single uniform spring constant for each pair of nodes being
in contact regardless of the type of the interaction, at all of
the different scales of coarse-graining.

There are other important reasons to introduce more
detailed atomic level elastic network models. For other types
of studies such as enzyme mechanisms,26 unraveling the
details of molecular hinges or detailed investigations of
residue conservation around hinges, further detail is likely
to be important. One potential outcome from the atomic
elastic networks could be the identification of specific
conserved atomic groups, in more detail than residue
conservation, relating to critical functional motions and
flexibility, within molecular hinges, enzyme active sites, or
other functional loci. This could be information of importance
for protein design. One of the appealing aspects of the atomic
models is that they can be conveniently combined with other
more coarsely grained parts of the structure (mixed coarse-
graining), as has been demonstrated previously.20,21,27

Methods
Data Set.We used search tools available on the PDB Web
site to find proteins with resolution better than 0.8 Å and
with less than 50% sequence similarity to one another. We
narrowed our list for this initial study to only eight mostly
single chain proteins whose lengths range from 64 to 158
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amino acids. These proteins, listed in order by their increas-
ing size are as follows: type III antifreeze protein rd1 (pdb
id: 1ucs) (64 residues), syntenin Pdz2 domain (1r6j) (82
residues), high-potential iron-sulfur protein (1iua) (83
residues), Lys-49 phospholipase A2 homologue (lysine 49
PLA2) (1mc2) (122 residues), cobratoxin (1v6p) (2 chains
62 residues each), bacterial photoreceptor pyp (1nwz) (125
residues), carbohydrate binding domain Cbm36 (1w0n) (131
residues), andE. coli pyrophosphokinase HPPK (1f9y) (158
residues).

Multiscale Representations.Our defined models are as
follows: “residue-level models” include only CR atoms;
“atomic-level models” include every atom in a protein except
hydrogen atoms; “proton-level models” include every atom
in a protein including hydrogen atoms; and finally, “explicit
solvent-level models” include every protein atom and also
every oxygen and hydrogen atom of water molecules in the
crystallographic data provided in the protein PDB. If the
positions of hydrogen atoms are not found in the pdb file,
Accelrys DS ViewerPro is used to generate locations of
missing hydrogen atoms. Ligands are removed from the
protein structures and are not included in the present analyses.

Gaussian Network Models.The details of the Gaussian
Network Model2 (GNM) and its extension considering the
directionalities of fluctuationssthe Anisotropic Network
Model1 can be found elsewhere. The GNM originates from
the theory of rubberlike elasticity7,8 and Tirion’s approach
of using a uniform spring constant parameter in the harmonic
analysis of protein motions.3 The cohesiveness of the protein
structure in the elastic network model is represented by
assuming that all pairs of nodes separated by less than a
certain cutoff distance are connected by uniform springs. In
the standard coarse-grained version, each residue is repre-
sented by a single point (node) positioned at its CR atom,
but we will also use an atomic version here where the points
represent atoms. There are two parameters in the model: the
cutoff distanceRc and the spring constantγ. The cutoff
distanceRc determines whether two residues are connected
by a spring, i.e., are in contact, without differentiating
between bonded and nonbonded interactions. These contacts
are mathematically expressed as the contact (Kirchhoff)
matrix,Γ, where theij th element of the matrix is-1 if nodes
i and j are connected by a spring, and zero otherwise, and
the diagonal elements are the sums of nondiagonal elements
in a given row (or column) taken with the negative sign.
Because of this definition the matrixΓ is singular (its
determinant is zero), and only the pseudoinverse ofΓ can
by calculated by using the singular value decomposition
(SVD) method. It can be shown that the zero eigenvalues of
Γ that are eliminated by using SVD correspond to the six
external rigid body degrees of freedom. The equilibrium
correlations〈∆Ri‚∆Rj〉 between fluctuations of residuesi and
j are proportional to theij th element of the inverse ofΓ

where∆Ri and∆Rj are the vectors representing the instan-
taneous displacements of theith and thejth nodes from their
mean positions. HerekB is Boltzmann’s constant,T is

temperature, andγ is is the spring constant. The mean-square
fluctuation〈(∆Ri)2〉 of the ith node is then given by theith
diagonal element [Γ -1] ii of the matrixΓ-1. The mean-square
fluctuations may be compared directly with the experimental
crystallographic Debye-Waller temperature factors (B-
factors) usually available in the pdb files by the equation

The pseudoinverse matrixΓ-1 can be expanded in the
series of eigenvaluesλk and eigenvectorsuk of the contact
matrix Γ as follows

where zero eigenvalues (that physically correspond to
motions of the center of mass of the system) are excluded
from the summation. This eigenexpansion has a direct
physical meaning by showing contributions from individual
modes associated with the eigenvalues ofΓ.28 The ith
component of the eigenvectoruk (corresponding to thekth
normal mode) specifies the magnitude of the mean-square
fluctuations of theith node in thekth mode. It can also be
shown that all eigenvalues ofΓ are non-negative. If we order
eigenvalues according to their ascending values starting from
zero, then the most important contributions in eq 3 are given
by the smallest nonzero eigenvaluesλk, that correspond to
the large-scale, slow, collective modes. Slowest modes play
a dominant role in the fluctuational dynamics of protein
structures, because of their contributions to the mean-square
fluctuations scale withλk

-1. It has been shown that the most
important motions of proteins29-31 or large biological struc-
tures (such as the ribosome)4-6,32,33that are associated with
their biological function can be clearly identified with a few
slowest modes of GNM. The large-scale changes of protein
conformations between ‘open’ and ‘closed’ forms, or domain
swapping in proteins, can be also well represented with
elastic network models.34 Reviews of elastic network ap-
plications can be found in refs 16 and 35.

Correlation Coefficients. The usual criterion for choosing
parameters is based upon achieving the best agreement
between the computed fluctuations and the experimental
B-factors. For this purpose, here we use the linear correlation
coefficient:

In this equation,N is the number of nodes, andxi andxj
are the mean-square fluctuations of theith node calculated
by GNM and their mean over all nodes, respectively.
Similarly, yi andyj are the experimentally determined B-factor
for the ith node and the mean over all nodes. The linear
correlation coefficient is a straightforward way to analyze
the extent of linear dependence between any two quantities.
Its value can range between 1 and-1, where the limiting

〈∆Ri‚∆Rj〉 )
3kBT

2γ
(Γ-1)ij (1)

Bi ) 8π2〈(∆Ri)
2〉/3 (2)

Γ-1 ) ∑
k

λk
-1ukuk

T (3)

C )

∑
i)1

N
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i)1

N

(xi - xj)2‚∑
i)1

N

(yi - yj)2
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values 1 and-1 correspond to perfect correlation and perfect
anticorrelation.

Overlaps. Absolute overlap between two eigenvectors,
each representing specific motions, is defined as

In this equation,x andy are two eigenvectors,xi andyi denote
their ith components, andθ is the angle betweenx andy. If
two eigenvectors are exactly collinear, then their absolute
overlap equals 1. If they are orthogonal to each other, i.e.
the angle between the two eigenvectors is 90°, then the
absolute overalp will be equal to zero. This provides a
measure of the extent of similarity in the directions of
motions for different modes.

Entropy. In the Gaussian Network Model fluctuations of
residues about their mean positions obey the Gaussian
distribution

The conformational entropy change∆Si resulting from
fluctuations in the position of theith residue can be obtained
from the equation

Equation 1 for the casei ) j was applied in the above
derivation. Equation 7 can be used to calculate the free
energy increase of entropic origin contributed by theith
residue, upon distortion∆Ri of its coordinates

This free energy change is inversely proportional to〈(∆Ri)2〉.
Physically, this signifies a stronger resistance to deformation,
including unfolding, of residues subject to smaller amplitude
fluctuations in the folded state.16

Results and Discussion
Choosing Spring Constants for Different Resolution
Scales.The Gaussian Network Model requires specification
of two parameters: the spring constant that defines the
strength of interactions and the cutoff distance that defines
whether two given nodes are in contact or not. The spring
constant ultimately scales the amplitudes of motions calcu-
lated from the contact matrix. When comparing results
obtained at different scales, the spring constant should be
adjusted to reflect the scale at which the protein is modeled.27

Here, the spring constants at each scale are calculated for
each protein by comparing fluctuations predicted by GNM
with experimentally determined B-factors, as this method
has proven to be generally successful in the past.

Choosing Cutoff Radii for Different Resolution Scales.
Correlations between the GNM-derived mean-square fluctua-
tions and crystallographic B-factors calculated from eq 4
clearly show the extent to which GNM results represent
actual protein motions. Phillips and co-workers14 showed that

GNM coarse-grained at the residue-level has a correlation
of about 0.6 with the experimental data, depending on the
cutoff radius and on the extent of inclusion of neighboring
molecules packed in the crystal. Although 60% correlation
at the residue-level is rather impressive, here we are studying
the effect of including other atoms together with solvent
molecules in the crystal on these correlations. Table 1 shows
the correlation coefficients for CR-atoms calculated at the
residue, atomic, proton, and the explicit solvent levels for
various cutoffs.

The results in Table 1 show that at the residue level, the
correlation increases with the increasing cutoff radius reach-
ing a peak around 11 Å as shown in Figure 1. However, the
average correlation coefficient never exceeds 0.56. Although
the value of this correlation is close to the result (∼0.6)

Table 1. Average Correlation Coefficients between
Computed Mean-Square Fluctuations and Experimental
B-Factors for Four Different Resolution Levels of
Coarse-Graining as a Function of the Cutoff Distancea

cutoff (Å) residue level atomic level proton level solvent level

1
2 0.17 0.37 0.27
3 0.46 0.59 0.51
4 0.17 0.61 0.58 0.42
5 0.38 0.59 0.59 0.48
6 0.38 0.57 0.59 0.52
7 0.51 0.60 0.60 0.56
8 0.55 0.60 0.61 0.56
9 0.52 0.60 0.61 0.57

10 0.56 0.60 0.60 0.58
11 0.56 0.61 0.60 0.59
12 0.54 0.60 0.60 0.59
13 0.55 0.59 0.59 0.59
14 0.55 0.58 0.59 0.60
15 0.54 0.57 0.58 0.59

a A correlation of 1 shows perfect correlation and 0 the lack of
correlation (maxima are indicated in bold).

Figure 1. Average correlation coefficients as a function of
the cutoff radius for the 8-protein set used in this study and
the 113-protein set used by Phillips.14 The correlation coef-
ficients between the results of residue-level coarse-grained
model and experimental B-factors for both data sets suggest
two optimal cutoff radii around 7.3 and 11.1 Å.
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obtained by Phillips,14 the optimum cutoff radius (11 Å)
found here is much larger than the Phillips’ optimum cutoff
of 7.3 Å. One major difference is that we have neglected
intermolecular contacts due to packing in crystal. It is also
important to note that the number of proteins in our data set
is quite limited (8 proteins only). For further comparison
with the Phillips group’s results,14 we repeated the average
correlation coefficient calculations as a function of cutoff
distance with their data set of 113 proteins. These results
shown in Figure 1 indicate that for the 113-protein data set,
another peak around 11.1 Å is also clearly visible. Figure 1
also demonstrates that although the 8-protein set consistently
exhibits lower correlations than the 113-protein set, the
average correlation coefficients of both sets have similar
patterns; thus the 8-protein set seems to be sufficiently
representative to make comparisons at various radii.

Table 2 lists the optimum cutoff distances for all eight
proteins for each of the four different resolution level models
studied here. The correlation coefficients are also given in
Table 2 in parentheses. A real surprise comes upon examina-
tion of average correlation coefficients obtained at better
resolution with more detailed scales. The inclusion of other
atoms in the normal mode analysis increases the average
correlation coefficient for the fluctuations of the CR-atoms
by 0.05-0.61. This is highly interesting, because although
all interactions are treated similarly, a better correlation is
obtained. The inclusion of all heavy atoms clearly provides
a superior representation of protein structure and protein
dynamics. Interestingly, the further inclusion of protons or
even atoms of the solvent does not enhance these correlations
and only shifts the optimum cutoff radius. The optimum
cutoffs for various scales differ: for atomic and proton-level
calculations, the optimum cutoff values are 4 and 9 Å,
respectively, and for the explicit solvent level the optimum

cutoff is 14 Å. It is worth emphasizing that the inclusion of
atoms redefines the packing density critical for protein
dynamics. While the consideration of protons in protein
structure is associated with small uncertainties such as the
ionization state of histidine, the inclusion of atoms of the
explicit solvent is much more uncertain. At least it is
encouraging that there is no visible loss of correlation when
these possibly incomplete sets of solvent atoms are included.

Atomic and Proton Resolution Level Models Give
Better Results than the Residue-Level Models.To analyze
the effect of the resolution scale of the model, we have
chosen one of the proteins from the data set lysine 49 PLA2
(pdb code: 1mc2) for a more detailed presentation of the
results. A schematic representation of the protein backbone
colored according to the magnitude of mean-square fluctua-
tions of residues derived from the experimental data and from
residue-level and explicit solvent-level models is shown in
Figure 2 (parts a-c, respectively). The residue-level model
computations were performed with the cutoff radius 7 Å and
the atomic-level calculations with the cutoff 5 Å. Figure 3
shows the computed mean-square fluctuations of CR-atoms
for the residue-level and the atomic-level models. B-factors
are also provided for comparison. The predicted fluctuations
are calculated by summing over all internal normal modes.
The mean-square fluctuations obtained for the residue-level
model have a correlation of 0.60 with B-factors, whereas
the atomic-level model calculations with 5 Å cutoff give a
correlation 0.73 with the experimental data. Figure 3 shows
that mean-square fluctuations predicted from the atomic-level
model are significantly closer to the experimental B-factors,
both qualitatively and quantitatively.

What is the source of the discrepancy between theoretical
predictions and the experimental data? For further analysis,
we focus on the PDZ2 domain of syntenin (1r6j). PDZ

Table 2. Optimum Cutoff Radii (Å) for Eight Proteins in the Data Set for Four Different Resolution Level Modelsa

1ucs 1iua 1r6j 1w0n 1mc2 1nwz 1v6p 1f9y

residue 8 (0.65) 13 (0.54) 14 (0.76) 12 (0.48) 7 (0.60) 10 (0.54) 6 (0.63) 19 (0.78)
atom 4 (0.67) 5 (0.56) 14 (0.72) 8 (0.58) 5 (0.73) 4 (0.67) 7 (0.64) 22 (0.78)
proton 3 (0.66) 5 (0.54) 15 (0.71) 8 (0.59) 5 (0.68) 3 (0.63) 7 (0.67) 23 (0.78)
solvent 15 (0.59) 15 (0.53) 18 (0.69) 9 (0.51) 5 (0.62) 10 (0.66) 7 (0.64) 23 (0.78)
a The correlation coefficients are given in parentheses.

Figure 2. The schematic picture of lysine 49 PLA2 (PDB id: 1mc2). The backbone is colored according to the magnitude of
mean-square fluctuations obtained (a) experimentally, (b) computed from the residue-level GNM, and (c) calculated from the
atomic-level GNM. Most mobile regions are colored with red, less mobile regions with green, and, finally, almost immobile regions
with blue.
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domains are mainly involved in the regulation of intracellular
signaling and in the assembly of large protein complexes.36

The structure of the PDZ2 domain of syntenin was resolved
with a resolution 0.73 Å, allowing determination of coor-
dinates of the hydrogen atoms in the crystal.37 The PDZ2
domain contains 82 residues and 1867 atoms (including
solvent atoms and hydrogen atoms). Figure 4 shows the
dependence of the absolute value of the difference between
predicted mean-square fluctuations and experimental B-
factors as a function of the number of contacts in the protein
structure. An inverse relationship can clearly be seen between
this difference and the number of neighbors (contacts). Since
nodes inside the protein core have more contacts, Figure 4
shows that the GNM predictions are generally less accurate
on the protein surface. This implies that atoms on the protein
surface should perhaps be treated in a more cooperative way
than atoms of residues inside the core.

Since the GNM is mainly used to analyze cooperative
global motions with functional relevance, a detailed analysis
of slowest normal modes is of critical importance. For this

purpose, we show in Figure 5 the overlaps of the eigenvectors
computed for the residue-level and proton-level models. The
overlap is defined by eq 5 as the absolute value of the cosine
of the angle between these two eigenvectors. The absolute
value of the overlap is used because the termukuk

T in eq 3
does not depend on the direction of the eigenvectoruk, and
the use of absolute cosine ensures that a 180° rotation still
specifies the same type of motion. The overlap is calculated
only for the eigenvector components corresponding to the
CR-atoms. Figure 5a-d illustrates these overlaps for four
different proteins: (5a) 1ucs, (5b) 1r6j, (5c) 1w0n, and (5d)
1f9y.

Each point in Figure 5a-d shows a pair of eigenvectors,
one computed from the residue-level model and the other
from the proton-level model that have an absolute overlap
of at least 0.4. The results were obtained by using optimum
cutoff radii for each level of resolution for various proteins
according to Table 2. For the case of syntenin, the eigen-
vectors corresponding to the first 10 slowest modes in both
the residue-level and proton-level models have overlap higher
than 0.4. However, this correspondence does not always hold;
for example, for the case of pyrophosphokinase HPPK, this
overlap is less good. More detailed studies are needed to
conclude whether there may be certain regularities in the
overlaps of modes in protein multiscale models.

Figure 5 shows scattered, sporadic, rather weak overlaps
for 1ucs (Figure 5a) but not for other proteins (Figure 5b-
d): The small (64 residues) type III antifreeze protein rd1
(pdb id: 1ucs) indeed shows very scattered overlaps, but
for the larger proteins, there is a strong overlap between
corresponding eigenvectors (around the diagonal of the plot)
and very weak overlap between dissimilar eigenvectors (far
from the diagonal). These high overlaps between these two
different scales can be due to the protein size, which is
indirectly related to packing density (the larger the protein,
then the larger is its core having high packing density). Since
the successes of Elastic Network Models depend on having
an adequate representation of protein packing, larger proteins
in general might be expected to exhibit better multiscale
overlaps.

The Effect of Fluctuations in Elastic Network Models
on Protein Entropy. We have calculated the correlation
coefficient (defined by eq 4) between the free energy change
of entropic origin given by eq 8 and the numbers of contacts
for alpha-carbons of each residue at four different levels of
coarse graining. The results have been averaged over the
set of eight proteins and are shown in Table 3 as the function
of the cutoff distance used for defining contacts. It is
interesting that Table 3 strongly resembles Table 1. This
resemblance originates from the fluctuational nature of these
free energy changes.

Figure 6 shows plots of the absolute value of the entropy
of fluctuations as a function of the total number of contacts
for 3 different proteins: 1f9y, 1iua, and 1mc2. The calcula-
tions have been performed for the standard residue-level
coarse-grained GNM. We used six different values of the
cutoff radius defining contacts, ranging from 5 Å to 10 Å
with increments of 1 Å. Each of these six cutoffs is
represented by a marked point in Figure 6 starting from 5 Å

Figure 3. The mean-square fluctuations for lysine 49 PLA2
computed from the residue-level and the atomic-level models
using optimal cutoffs. Results are shown for CR atoms only.

Figure 4. The absolute differences between atomic-level
model predictions and experimental B-factors for the PDZ2
domain. The calculations are performed at the cutoff 5 Å as
a function of the number of contacts (neighbors).
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on the left to 10 Å on the right. The linearity of the plots in
Figure 6 re-emphasizes the dependence of entropy on packing

density. A related study was also done by us38 and by Halle,39

where an inverse relationship between mean-square fluctua-
tions and contact densities can be seen. It is also worth noting
that entropy depends on the size of the protein. The largest
of the three proteins 1f9y (158 residues) has the smallest
entropies, and the smallest one 1iua (83 residues) has the
largest entropies for the same number of contacts, as seen
in Figure 6. This means that the fluctuation entropyper
contact is smaller for larger proteins, i.e., large proteins
exhibit more cooperative motions.

Conclusions
We have applied normal mode analysis with multiscale
coarse-graining to high-resolution protein structures. The
atomic, proton, and explicit solvent level models all provide
quite similar results, showing significantly higher correlations
of the predicted fluctuations of CR-atoms with the experi-
mental B-factors than the residue level GNM. At the residue-
level coarse-graining, the optimum cutoff radius is∼11 Å,
which is significantly larger than the value 7.3 Å obtained

Figure 5. The absolute overlaps, |cos θ|, between eigenvectors obtained for the residue-level and the proton-level models for
(a) type III antifreeze protein rd1 (1ucs), (b) syntenin Pdz2 domain (1r6j), (c) carbohydrate binding domain Cbm36 (1w0n), and
(d) E. coli pyrophosphokinase HPPK (1f9y). The calculations were performed by using optimum cutoffs for each protein for a
given model. Proteins are arranged from (a) to (d) according to increasing protein size.

Table 3. Average Correlation Coefficients between the
Free Energy Change Due to Fluctuations (Entropy) and the
Contact Number (Energy) as a Function of the Cutoff
Distance for Four Different Resolution Level Modelsa

cutoff (Å) residue level atomic level proton level solvent level

1
2 -0.32 -0.03 0.01
3 0.15 0.50 0.50
4 0.19 0.76 0.91 0.89
5 0.61 0.95 0.99 0.97
6 0.73 0.99 1.00 0.99
7 0.89 1.00 1.00 1.00
8 0.95 1.00 1.00 1.00
9 0.98 1.00 1.00 1.00

10 0.99 1.00 1.00 1.00
a Correlation coefficients have been averaged over the set of eight

proteins. High values are achieved for the three more detailed models
at lower cutoff values, as is also seen in Table 1.
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by Phillips and co-workers.14 This suggests that the optimum
cutoff radius may depend on the specific protein structure,
and the inclusion of intermolecular contacts in the crystal
seems to be necessary at the residue level resolution. The
absence of these intermolecular contacts in our model must
be compensated by an increased cutoff that increases the
number of springs and leads to better agreement with
experimental data. The inclusion of atoms in our models
significantly improves predictions of fluctuations of CR-atoms
and gives better correlations with experimental B-factors.
Additionally better resolution atomic scale models require
small cutoff radius (4 Å). More detailed atomic resolution
level elastic network models are likely to provide a better
representation of motions in proteins. Our results also show
that small proteins may require atomic scale resolution
models to achieve a good representation of their dynamics.
However, the atomic level GNM computations for larger
proteins require significantly larger computer resources than
those for the residue-level GNM. An alternative that offers
a compromise might be mixed coarse-grained modeling of
proteins proposed by Doruker and Jernigan20,21,27sto include
a high level of detail for the most important parts of the
protein structure and less detail for other parts. Our analysis
shows that the multiscale normal mode analysis can be useful
for understanding and predicting the collective motions in
proteins.
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Abstract: Over the last 10-15 years a general understanding of the chemical reaction of protein

folding has emerged from statistical mechanics. The lessons learned from protein folding kinetics

based on energy landscape ideas have benefited protein structure prediction, in particular the

development of coarse grained models. We survey results from blind structure prediction. We

explore how second generation prediction energy functions can be developed by introducing

information from an ensemble of previously simulated structures. This procedure relies on the

assumption of a funneled energy landscape keeping with the principle of minimal frustration.

First generation simulated structures provide an improved input for associative memory energy

functions in comparison to the experimental protein structures chosen on the basis of sequence

alignment.

Introduction
Every other summer, research groups compare their different
protein structure prediction methods via the Critical Assess-
ment of Techniques for Protein Structure Prediction (CASP)
experiment. During the CASP experiment, sequences of
experimentally determined protein structures that are not
publicly available are placed on the Web. This exercise is
double blind where neither the organizers nor the participants
know the experimentally determined structure. Groups
respond with up to 5 ranked predictions, before a predeter-
mined date, such as the publication of the structures. Since
the inception of CASP, a three-dimensional structure predic-
tion category has expanded to address related prediction
questions such as the sequence to structure alignment quality,
amino acid side-chain placement, multidomain domain
boundaries, and the ordered or disordered nature of a protein
sequence.1

These different prediction questions can be examined from
a common framework: the principle of minimal frustration.
The principle of minimal frustration states that native contacts
must be more favorable, in a strict statistical sense,2 than
non-native contacts in order for proteins to fold on physi-
ologic time scales.3 Without a sufficient energetic bias toward
the native state, the multidimensional energy surface as a
function of native structure possesses too many minima for
an efficient stochastic search. Such an energy surface would
lead to slow folding kinetics, even if the proteins never found
a sufficiently stable native state. This is not true since we
know most proteins fold without assistance.4 The opposite
of a rough energy surface is biased toward the native basin
without any local minima is an absolute manifestation of
the principle of minimal frustration. Funneled energy surfaces
have no unfavorable energetic traps (i.e. Goj Models) and
have been shown to reproduce most features of experimental
folding kinetics.5-7 These energy landscape concepts can
richly be applied in several areas of chemistry and physics.8

Apparently, evolution’s energy function is minimally frus-
trated.

The correlation between a protein sequence and its three-
dimensional structure can be described using similar land-
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scape language. As a protein sequence diverges away from
a consensus wild type sequence, the potential for energeti-
cally unfavorable interactions increases. The wild type
sequence and its homologues will fold toward the same
native basin. Only once enough frustrating contacts are added
to wild type sequences will the sequence no longer cor-
respond to the native state ensemble. Sequences with over
25% sequence identity to previously determined protein
structures are called comparative modeling targets. The
energy landscape underlying such a prediction is a Goj Model
based on the structure of the known homologue. This heavily
funneled energy surface yields high-resolution structures,
with the discrepancies in the turns and residues which have
poor sequence to structure alignments. Figure 1 demonstrates
the distribution of homology of proteins sequence to known
structures included in CASP6. Since proteins below 25%
sequence identity are considered new fold recognition targets,
70% of the structures were comparative modeling targets.
Recently sequenced genomes such asE. coli have the same
ratio of ab initio to comparative modeling targets, which
suggests the analysis of this ratio over time could be a useful
measure of the progress of efforts to experimentally find
examples of all of Nature’s protein structures.

In contrast to comparative modeling, ab initio structure
predictions do not have the advantage of creating Goj-like
energy surfaces. While many ab initio targets contain less
than 150 residues, and thus are candidates for standard
techniques, there are several that are longer as shown in
Figure 2. Most longer sequences will be multidomain
proteins. This causes new problems. Folding a protein with
two hydrophobic cores allows for new sources of frustration,
beyond those present in single domain proteins. To obtain
predictions for such problematic sequences, they usually must
be divided into their constituent domains. Current methods
for dividing the sequence into domains range from purely
sequence based algorithms, which look for sequence patterns
in multiple sequence alignments, to simulation techniques
that look for hydrophobic core formation among multiple
independent simulations.9-11

The case studies we highlight of difficult structure predic-
tions were chosen from our participation in the CASP5 and
CASP6 experiments. In CASP5, we utilized several improved
techniques, such as a backbone hydrogen bond term for the
proper formation of beta sheets and a liquid crystal-like term
to ensure parallel or antiparallel sheet formation.12 We also
performed target sequence averaging which enhances the
funneling of the prediction landscape13 and assessed our
ensemble of sampled structures with a 20 letter contact for
submission.14 Our most striking result from this round of
blind prediction was a prediction for target T0170 protein
databank15 code (PDB ID IUZC). Figure 3 presents the
sequence dependent overlay of our model 1 structure with
the experimentally determined structure. The sequence
dependent alignment quality of this structure is high as
measured by aQ score of 0.38.Q is an order parameter
defined in eq 1 that measures the sequence dependent
structural complementarity of two structures, whereQ is
defined as a normalized summation of C-alpha pairwise
contact differences.

Figure 1. The difficulty of the prediction targets as defined
by percent identity. Proteins below 25 sequence identity are
usually considered ab initio or fold recognition targets.

Figure 2. The ab initio prediction targets amino acid lengths
for CASP6.

Figure 3. Sequence dependent superpositions of model 1
structure against the native state for CASP5 target T0170
(PDB ID 1UZC). Blue represents the prediction, and the native
state is represented with red.
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The resulting order parameter,Q, ranges from 0, when there
is no similarity between structures at a pair level, to 1 which
is an exact match.Q has been shown to be more sensitive
in determining the quality of intermediate quality protein
structure predictions.13 Q scores of 0.4 for single domain
proteins equals an RMSD of 5 Å. In most cases the reference
state for theQ score is the native state, but often one wants
to compare structural similarity between structures in a
simulation. A sequence independent measure CE16 also
scores well (CE Z-score) 4.1). The CE Z-score measures
structural complementarity without regard to sequence
information and is parametrized such that structure between
a Z-score greater than 4 belong to the same protein structure
family. The contact map of the prediction, Figure 4, which
identifies all of the C-alpha intermolecular interactions within
9 Å where the axes are the index of the protein, shows the
correct packing of the helices. Figure 5 shows the size of
partially correct continuous in sequence segments under an
RMSD cutoff. When compared against the other predictions,
our model 1 prediction (dark blue) was among the best of
all submitted structures. Also the relative success of the
prediction classifies this target as being of moderate dif-
ficulty. In this example CASP demonstrates that small (70
residues) all-alpha proteins are beginning to be successfully
predicted by a variety of ab initio techniques.

Methods
Energy Functions and Sampling.We used an Associative
Memory Hamiltonian (AMH) with optimized parameters to

sample and predict structures.17-19 The AMH uses a reduced
description of the amino acid chain in order to gain the orders
of magnitude computational acceleration over all atom
models needed to fold moderate length proteins with ordinary
computational resources and has been described in great
detail before.13 This is possible due to reducing the number
of atoms per residue from over 10 to only three backbone
atoms: the CR, Câ, and O. The remaining backbone heavy
atoms (N, C′) can be reconstituted using the ideal geometry
of the peptide bond as a template. Also we reduced the
complexity of the amino acid code from 20 letters to four.
We chose the four letter code, which has the advantage of
preserving a diversity of contacts, because it is still simple
enough that the number of coefficients that need to be
optimized does not create problems of inaccurate statistics
due to limits of interactions encountered in the molten
globule state. Specifically four amino acid classes are
defined: hydrophilic (A, G, P, S, T), hydrophobic (C, I, L,
M, F, W, Y, V), acidic (N,D,Q,E), and basic (R,H,K).20 The
optimization procedure produces an energy landscape that
discriminates the native state from misfolded states, while
avoiding kinetic traps reasonably well.2,21 The AMH is an
analogue to the neural networks designed by Hopfield to
synthesize information from multiple previous experiences.22

This energy function recalls structural patterns in a set of
known protein structures. The Hamiltonian produces an ener-
getically favorable minimum when there is sufficient coher-
ence between a set of three-dimensional protein structures.

The AMH energy function, in its most general sense,
contains a backbone term,Eback, and interaction term,Eint,
defined by

The backbone energy term consists of several terms that
reproduce the self-avoiding behavior of the polypeptide chain
given by

As in many molecular mechanics energy functions, co-
valent bonds are preserved by using the SHAKE algorithm23

ESHAKE, which enables an increase of the time step size and
eliminates the need for a traditional harmonic calculation.
The SHAKE algorithm preserves the distances between
neighboring CR-Câ and CR-O atoms. The neighboring
residues limit the variety of angles the backbone atoms can
occupy, producing a Ramachadran plot.24 This distribution
of angles is reinforced by a potential,Erama,with low barriers
to encourage rapid local backbone movements. Another term,
Eev, maintains a sequence specific excluded volume constraint
between CR-CR, Câ-Câ, O-O, CR-Câ atoms. The chain
connectivity and planarity of the peptide bond due to
resonance is ensured by means of a harmonic potential,Echain.
Also the chirality of the CR, due to its four different bonding
partners, is maintained using scalar product of neighboring
unit vectors of carbon and nitrogen bonds,Echi.

While Eback creates peptide-like stereochemistry, it does
not introduce the majority of the attractive interactions that
result in folding. Such interactions are supplied by the rest

Figure 4. Contact map of target T0170 (PDB ID 1UZC) model
1 structure against the NMR structure.

Figure 5. Percentage of residues under a RMSD limit (dark
blue - model 1, light blue - model 2-5, orange - other groups
prediction).

Etotal ) Eback+ Eint (2)

Eback) -(ESHAKE + Erama+ Eev + Echain+ Echi) (3)
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of the potentialEint. The interactions described byEint depend
on the sequence separation|i - j|. Specifically, they are
divided into three proximity classesx(|i - j|): x ) short
(|i - j| < 5), x ) medium (5e |i - j| e 12) andx ) long
(|i - j| > 12) as defined by eq 4

Also these distance classes are also referred to as local,
supersecondary, and tertiary, respectively.

The AMH interaction potentialEint is based on correlations
between a target’s sequence signified byi, j, and the
sequence-structure patterns in a set of memory proteinsµ
represented asi′, j′, and a pairwise contact potential. The
pairs in the target and in the memory are first associated
using a sequence-structure threading algorithm.14 The data-
base is assumed to contain a subset of pair distances, which
may match the associated pair distances in the target
structure. The general form of the associative memory
interaction is

where the similarity between target pair distancesrij, with
aligned memory pair distancesri′j′

u , is measured by Gaussian
functions whose widths are given byσij ) |i - j|0.15 Å. The
set of parameters,γ, encode the similarity between residues
i and j and the memories residuesi′ and j′. Favorable
interactions occur during coherence in the distances achieved
in the sequence to structure alignments. The encoding of the
alignment information in eq 5 is only an example of what is
used for the all-alpha energy functions. Other encodings have
been used in the alpha-beta energy function12 to improve
the discrimination between helices and strands. While the
first term in eq 5 is the superposition of interactions over a
set of experimentally determined structures, it also shares a
dependence on the sequence separation between the interact-
ing residues. For residues separated by greater than 12
residues, a contact potentialElong, as described by the second
term in eq 5, which does not depend on interaction
information from the structures, is used to define local in
sequence interactions. In this termCk(N) represents a
sequence length dependence scaling to account for the
variation in probability distributions based on sequence
length. Five wells instead of the three defined here by
Uk(rij) determine interactions in the alpha-beta energy
function.12 Energy unitsε are defined excluding backbone
contributions in terms of a native state energy in eq 6

whereN is the number of residues. A distance class scaling
a is constant in each of the energy classes because they are
designed to be equal during the optimization.

The solvent in these energy functions is treated in a mean
field manner, where the implicitly solvated native states of
the proteins define the energy gap to the molten globule state.
Solvent effects are also present in the sequence to structure
alignment energy functions, but they are not explicitly
represented in the molecular dynamics energy function.
Water mediated contacts with an expanded 20 letter code in
the contact potential were introduced,25 based upon previous
work which examined protein recognition.26,27 The water
mediated contacts along with a new one-dimensional burial
term has shown promising results especially for long proteins.

Once the energy function is optimized, the minima of the
energy function are probed via simulated annealing with
molecular dynamics simulations. This minimization tech-
nique integrates Newton’s equations of motions to determine
the energy of the next time step. Simulated annealing slowly
reduces the temperature from a high value as in the tempering
of steel in metallurgy. This minimization algorithm allows
for local searches, while allowing modest energy barriers to
be overcome.

Energy landscape ideas have generated an optimization
scheme for creating funneled energy surfaces. While fun-
neled, the parametrization does not eliminate all non-native
minima. The superposition of several energy surfaces reduces
the likelihood of such trapping in local minima.28,29 The
flexibility of the AMH framework provides several ways of
incorporating multiple sequence alignment information. Some
of the options include creating a consensus sequence,13

simulating different homologue sequences concurrently, and
averaging the resulting forces and energies.12 The averaged
AMH energy function we used averages the forces and the
energies of these simulation over a set of sequences, because
it allows for more generalizable results than may occur with
other techniques, and is described as in eqs 7 and 8

To superimpose multiple energy landscapes, we need a
multiple sequence alignment to a set of sequence homo-
logues. Sequences homologous to the target sequence are
first identified by using PSI-Blast with default parameters.30

Each sequence above and below a certain sequence identity
thresholds (70% and 30% in this work) is then aligned against
each other, and proteins that have greater than 90% sequence
identity to other identified sequence homologues are re-
moved. The culling of the sequence homologues via open
source bioinformatic libraries is necessary for two reasons.31

Some classes of proteins have a large number of sequence
homologues, and performing a multiple sequence alignment
can be impractical. Also removing sequence homologues
attempts to remove biases introduced when there are few
homologues. The remaining sequences were aligned using
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a multiple sequence alignment algorithm.32 Within the AMH
energy function, gaps occurring in a sequence alignment
could be addressed in a variety of ways, in this work gaps
in the target sequence are ignored, while gaps within
homologues are completed with residues from the target
protein. This strategy may introduce biases toward the target
sequence, but this approach is preferred to ignoring interac-
tions. Figure 6 shows a representative multiple sequence
alignment for a target, colored with respect to the four letter
code of the AMH. If one focuses on the hydrophobic yellow
residues, the alternating hydrophobic hydrophilic patterns for
beta strands formation are apparent.

Another way of introducing the characteristics of multiple
funneled energy landscapes is using information derived from
neural networks trained on multiple sequence alignments.
Even with different architectures, neural networks typically
achieve 75% accuracy when predicting secondary structure.
Recently it has been shown that artful combinations of two
different predictions can slightly improve the results.33 This
secondary structure information was added by a biasing
energy function to either a helix or a strand via,EQss )
105ε(Q-Qss)4,13 whereQss is defined by eq 9

Qss takes the same form of theQ defined before in eq 1
except that potential acts overn independent secondary
structures units derived from secondary structure prediction.
The distances that define energy minimum,rij

ss, are deter-
mined from experimentally determined Cartesian distances.
Previously in an effort to incorporate this secondary structure
information, the Ramachandran potential has been altered
to bias the backbone.34 The local in sequence potentialEQss

is preferred to the Ramachandran potential biasing because
it avoids SHAKE violations when the strength of the bias is
increased.

For most selected CASP6 targets, we followed the same
protocol. We averaged the AMH potential over multiple
sequence homologues when they were available. In most

cases, information from secondary structure prediction was
used to bias secondary structure units to their predicted
structures. Molecular dynamics with simulated annealing
sampled low-energy structures. Also constant temperatures
slightly above the predicted glass temperature were used to
generate candidate structures. We collected structures above
TK, which usually gives the fastest folding thereby compro-
mising between the funneled and glassy behavior of the
energy function. Once the kinetics of the structure slows,
the diversity of structures encountered disappears. The slow
kinetics regime typically predominates around a tempera-
ture of 0.9. While using a linear annealing schedule up to
TK, about 25 different collapsed structures were collected
during each simulation. The amount of sampling performed
for each structure varied from about 500 to 20 000 different
structures. While this was roughly 50 times more sampling
than we had previously performed in the CASP setting, it is
dwarfed by the efforts of others who can sample in the
millions of structures by using more powerful computational
resources.35 Subsequently, a smaller subset of structures was
selected for submission by evaluating the size of the
hydrophobic core and the hydrophilic surface area. Further
selection criteria included visual inspection, agreement with
the preliminary secondary structure prediction, and low
energies predicted from a second optimized contact energy
function.

Selection of Structures
To select candidate structures from independent simulated
annealing or constant temperature trajectories, we calculated
both the buried hydrophobic surface area and the exposed
hydrophilic surface area along the trajectory. In an effort to
calculate the buried or exposed surface area, we assigned
residues which have greater than the mean total surface area
as solvent exposed, and the converse as solvent buried. We
scaled each surface area by a weight to represent the
likelihood of amino acid burial. It was modeled to the free
energy cost of transferring each amino acid from octanol to
water36 in an effort to introduce a sequence specificity as
shown in eq 10

This normalization is desirable because the surface acces-
sibility is calculated from our minimal CR, Câ, and O atoms,
which produces amino acids of the same volume. Such an
energy term would be more valuable if nonadditive interac-
tions and a larger number of hydration layers were added.
The unavoidable inaccuracies in atomistic force fields and
the slow glassy kinetics of side-chain rearrangements pre-
vented any completion of the backbone and side chains with
all-atoms or minimization of putative structures.37

Another parameter we used after sampling to select and
examine structures was based on sequence specific backbone
probabilities. The specificity of local interactions has been
fruitful for improving collapsed proteins structure predic-
tions.38 In a similar spirit sequence specific nearest neighbor
probabilities were also used.39 Local signals have also been

Figure 6. Multiple sequence alignment for target T0212 (PDB
1TZA) colored with respect to a four letter code, where red
represents acidic residues, blue represents polar residues,
yellow represents nonpolar residues, and green represents
basic residues.
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theoretically shown to contribute roughly a third of the total
folding gap for R helical proteins.40 Similarly we started
looking at such probabilities to further improve the backbone
potential of the AMH but without needing secondary
structure prediction.

Somewhat surprisingly, the summation of the resulting log
probabilities from 4012 highly resolved protein structures
could be used as an additional measure as part of a strategy
for the selection of structures out of an ensemble. Table 1
shows the linear correlation coefficients between structures
of varying Q-scores, sampled aboveTK which is where the
best predictions usually occur before glassy dynamics
dominates the kinetics. For both proteins with allR andR/â
compositions, the summed log probabilities provide dis-
crimination but not within the allâ folds. These results shown
in Table 2 echo the previous findings in terms of theφ, ψ
probability maps and also that all beta structures are less
well predicted when a dihedral angle energy function is
minimized. The weakness of nearest neighbor excluded
volume effects to determine local structure is also demon-
strated in the consistent weakness of secondary structure
prediction with respect to beta strands. Alpha helices are
correctly predicted to roughly 80% accuracy, while beta
strands average 60% accuracy by such pure sequence based
algorithms. The difficulty of predicting some circular dichro-

ism spectroscopy results for beta to coil transitions can also
be attributed to the weakness of the local backbone excluded
volume interactions.

Results
Blind Simulations. For ab initio blind predictions in CASP6,
we selected sequences if there were no experimentally
determined homologous structures found by automated
comparative modeling servers. The overall results for the
ab initio structure prediction simulation are summarized in
Table 3, where the abbreviations are length) the number
of amino acids, temp) temperature where the best struc-
ture was encountered, subQ or sampQ ) the best sampled
and submitted structures, respectively, as judged by a
function of Q, and traj) number of independent trajec-
tories simulated. The CASP6 targets are classified under
the following categories (NF)new fold, FR/A)fold rec-
ognition analogue, FR/H)fold recognition homologue,
CM/H)comparative modeling hard). Targets T0207 and
T0270 were removed from the experiment so their CASP
class are undefined. Structures for T0207 and T0272-b were
not submitted. There are a few main points from these data.
Using aQ of 0.4 as a measure of successful prediction, we
were able to encounter high quality structures for 4 targets
and nearly so for 4 others. The temperature at which the
best structures were sampled was between the 1.2 and 0.8,
which is the annealing regime we investigated most through-
ly. This suggests our annealing schedules were close to the
behavior we sought a priori. The longer the length of the
target sequence clearly reduced the quality of our predictions.
Also the proteins where we had a greater number of
trajectories naturally showed better structures. A final
observation identifies the difference between the best submit-
ted structure and the best sampled structure as disappointingly
large for some of the targets. This can be attributed to our
strategy of maximizing the number of simulations performed
rather than more carefully studying our trajectories. This

Table 1: Linear Regression of Hydrophobic Burial Energy

proteins fold class correlation coefficient

1R69 R 0.22
1BG8 R 0.33
1UTG R 0.63
1MBA R 0.40
2MHR R 0.46
1IGD R/â -0.70
3IL8 R/â -0.06
1TIG R/â 0.02
1BFG â 0.16
1CKA â -0.14
1JV5 â 0.11
1K0S â 0.27

Table 2: Linear Regression of Mscore

proteins fold class correlation coefficient

1R69 R 0.29
1BG8 R 0.04
1UTG R 0.26
1MBA R 0.26
2MHR R 0.10
1IGD R/â 0.37
3IL8 R/â 0.13
1TIG R/â 0.19
1BFG â 0.08
1CKA â 0.03
1JV5 â -0.07
1K0S â -0.10

Etrimer ) ∑
i)2

N-1

LogP(i - 1, i, i + 1,φ,ψ) (11)

Table 3: CASP6 Results: Best Submitted and Sampled
Structures

target length fold sub Q samp Q temp traj CASP

T0281 70 R/â 0.34 0.48 0.85 986 NF
T0201 94 R/â 0.36 0.44 1.39 199 NF
T0212 123 â 0.26 0.42 1.30 97 FR/A
T0230 102 R/â 0.31 0.42 1.05 395 FR/A
T0207 76 R/â - 0.39 0.98 297 -
T0224 87 R/â 0.30 0.38 1.20 501 FR/H
T0263 97 R/â 0.34 0.38 0.94 404 FR/H
T0272-a 85 R/â 0.30 0.37 0.94 30 FR/A
T0265 102 R/â 0.29 0.34 0.83 374 CM/H
T0213 103 R/â 0.26 0.32 0.98 448 FR/H
T0243 88 R/â 0.31 0.32 0.95 418 FR/H
T0239 98 R/â 0.25 0.32 0.99 424 FR/A
T0214 110 R/â 0.24 0.30 0.41 348 FR/H
T0242 115 R/â 0.27 0.30 0.89 358 NF
T0270-b 125 R/â 0.27 0.28 0.99 32 -
T0270-a 122 R/â 0.25 0.27 0.80 47 -
T0272-b 124 R/â - 0.26 0.81 34 FR/A
T0273 186 R/â 0.22 0.24 0.98 189 NF

710 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Prentiss et al.



difference would be smaller if greater care was taken in the
selection of the structures, but the number of high quality
structures would have been less.

Calculating the free energy of several randomly chosen
CASP6 targets in Figure 7 provides us with probabilities of
what we would have expected to see if more simulations
had been performed during the CASP season. We can
estimate how many independent structures need to be seen
at this temperature to sample the region 10kBT greater than
the minimum of the free energy. We see roughlye10 ≈ 2 ×
104 independent sampled structures would be needed at a
temperature of 1.0. Target T0242 (PDB ID 2BLK) illu-
strates why the best structure we encountered had aQ score
of 0.3. For this target, we sampled roughly 7000 different
structures. To achieve aQ of 0.45, according to the free
energy analysis we would need to increase our sampling by
a factor of 3.

When extrapolating to lower temperatures, we see lower
barriers to the folded state, and thus if sampling were more
complete one would see better structures at these tempera-
tures. This further cooling would be a favorable strategy
except that dynamic slowing due to the approach of the glass
transition interferes, which occurs at a temperature of 0.9.
Naturally, it is best to sample just above the glass transition
temperature, which can be approximately found fromQ-Q
correlation (< Q(t)Q(t + τ) >),41 and by using the Kolmog-
orov-Smirnov test to assess the independence of samples.42

Table 4 indicates what was the best structure we would be
likely to see under such sampling conditions. The differences
between thermodynamically accessible structures and those

that were sampled suggests that increased simulations would
have improved the best structures sampled considerably. The
free energy of target T0243 (PDB ID not available) is
significantly different due to its unusual architecture that
contains a buried helix.

As in Figure 4, we compare contact maps between the
predictions and the experimentally resolved structure. Often
contact maps give more insight than superimposed structures
especially when viewing in 2 dimensions. We compare the
submitted structures with the best structure encountered
during our sampling to determine what aspects of folding
are being captured by our energy functions. For a short target
T0201 (PDB ID 1S12), we see that sometimes a small
difference in the contact maps in Figure 8 can greatly
improve the quality of the prediction even though a large
number of contacts are already correct. There was a larger
fraction of incorrect contacts in our best submitted structure
for target T0230 (PDB ID 1WCJ) than we would have seen
in the best generated structure as shown in Figure 9. The
incorrect parallel docking of the first two helices is largely
resolved in the best sampled structure, and theQ score
improves considerably. Similar analysis for target T0281
(PDB ID 1WHZ) shows incorrect long range contacts
between the two otherwise properly oriented helices and
disordered intermediate interactions as in Figure 10. Again
the best sampled structure has these problems largely
resolved.

One amusing way to analyze predicted structures is to view
the results of different structure prediction schemes as
intermediates along a kinetic folding coordinate. How far
did the simulated annealing get in the folding pathway? By
mapping the likelihood of folding43 against its location on a
folding free energy surface, we can assess how close the
model structure is to the folded state in a kinetic sense. The
energy function for the kinetic modeling is a Goj model i.e.
ideally nonfrustrated energy function. The difference between
the Goj model and the structure prediction energy functions
is a measure of the quality of those structure prediction
schemes. A pairwise additive Goj model was created based
on the native structure of the experimentally determined
protein. As it has been discussed previously,13 this Goj model
has both polypeptide backbone energy terms that are the
same as in the structure prediction energy function as
described by eq 3 and an interaction potential where the
Gaussian interaction potential distancesrij

N are determined
by the native state formally described in eq 12.

The interactions are defined in this minimal model as residues
with greater than three residues in sequence separation
between CR-CR, CR-Câ, Câ-CR, Câ-Câ atom pairs. The
weightsγGoj or the depth of the Gaussian wells are set to
(0.177,0.048,0.430) in order to approximately divided the
interaction energy equally between the different distance
classes as defined in the original structure prediction energy
function. The width of the gaussians is defined by the
sequence separation as before. Notice that the Goj Hamilto-

Figure 7. Free energy calculations for CASP6 targets T0213,
T0214, T0224, T0242, and T0243.

Table 4: Likely Quality of Structure Seen at a Free
Energy of 10 CASP6

target PDB length probable Q sampled Q

T0213 1TE7 103 0.43 0.32
T0214 1S04 110 0.40 0.30
T0224 1RHX 87 0.39 0.38
T0242 2BLK 123 0.45 0.30
T0243 - 88 0.28 0.32

EGoj) -
ε

a
∑
i<j

- 3γGoj[x(|i-j|)]exp[-
(rij - rij

N)2

σij
2 ] (12)
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nian does not contain a summation over a set of memory
structures as in the AMH; this is because all of the contacts
in this definition of a Goj model use only the native state.
One hundred independent simulations of this Goj energy
function are performed starting with the best structure of three
different structure prediction groups. Pfold is then calculated
by simply determining whether the simulation started from
the model structure folds to the native structure. The results
in Figure 11 compare three minimalist models, one of which
(the Baker Group) has undergone a further atomistic refine-
ment. The minimalist models are only a fewkBT from the
barrier’s peak; they only infrequently cross it. It also suggests
that a detailed less coarse grain sampling procedure may be
necessary for correctly assigning hydrophobic packing and
hydrogen bonding patterns.

The Next Generation in Structure Prediction
Examining the contact maps of structures encountered during
the CASP experiment, we observed that contacts between
residues with a large separation in sequence can be inac-
curate, even when most of the contacts within a 12 residues
sequence separation are nativelike. A different way of ex-
pressing this idea is that the amount of funneling is different
within the different distance classes. While this was not used
in the recent CASP exercise, we thought it would be inter-
esting and straightforward to improve the prediction energy
function by using these first generation results as better mem-
ory structures in the AMH. Sequence to structure alignments
yield gapless identity alignments thereby eliminating any
possibility of secondary structure registry shift irregular-
ities.

Figure 8. Contact maps for the best submitted (Q)0.36) and the best sampled (Q)0.44) structures for target T0201.

Figure 9. Contact maps for the best submitted (Q)0.31) and the best sampled (Q)0.42) structures for target T0230.

Figure 10. Contact maps for the best submitted (Q)0.34) and the best sampled (Q)0.48) structures for target T0281.
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Different energy functions have been used to identify
nativelike proteins from an ensemble of simulated structures.
Alternatively, one can rely on energy landscape ideas and

assume a mean field contact potential derived from the
energy minima of the simulated energy function. This
approach has the additional advantage that it does not rely
on using a distinct energy function: one is simply seeing
how close simulated annealing was to completely accessing
the global minimum of the prediction energy function. To
select structures a pairwiseQ denoted by a lower caseq is
calculated between all of the ground-state structures encoun-
tered in 200 independent simulations.

By dividing the interchain interactions under the same
definitions as used in the energy function, the potential for
improvements from such second generation structures over
the original memories is considerable for protein 256B. As
seen in Figure 12, the low-temperature structure as identified
by q has an increased amount of nativelike contacts in all
distance classes. This style of analysis also suggests potential
changes in the energy function. The long distance in sequence
interactions are also improved over that original memory
used in the energy function. To utilize this improvement the
energy function in the distant interaction class was modified.
The original function used a multiwell contact potential,

Figure 11. Goj Model free energy surface with final prediction
structures shown. The Pfold values for the three proteins are
the Wolynes Group 0.07, the Scheraga Group 0.02, and the
Baker Group 0.97 with an error of (0.1.

Figure 12. These figures show the total Q and the Q in the different distance classes between PDB structures, structures from
a temperature of 1, and a temperature near zero for structures used as inputs to AMH simulations. The lowest temperature
show the largest improvement because they are fully collapsed.

Protein Structure Prediction: The Next Generation J. Chem. Theory Comput., Vol. 2, No. 3, 2006713



which does not use any information from the memory
proteins. For this third distance class the next generation
energy function uses associative memory contacts much as
was done before for modeling with homologues.44 The
energy function now takes the form

The parameters for this new distance class are taken from
the second distance class. The total energy is defined over
the set of memory structures as defined by eq 14

instead of using the values taken from the optimization. Some
next generation memory structures are more collapsed than
the memory structures used in the initial round of simulation.
Furthermore the scaling is changed from the initial round of
simulation’s 1:1:1 scaling among the three different (local,
super-secondary, tertiary) distance classes to 1.5:0.5:1 in an
effort to approximate the equal division of energy in each
distance class. To examine the equilibrium properties of this
energy function, we need to estimate the glass transition
temperature. As previously explored,42 we use the Kolmog-
orov-Smirnov test to determine if two independent simula-
tions have been sampled from the same equilibrium distri-
bution. This test ensures that simulations are equilibrated.

Once the glass transition temperature (TK) is estimated
using the Kolmogorov-Smirnov test as seen in Figure 13,
we can use now standard techniques to quantify the equi-
librium proprieties of different energy functions. The proteins
we used for study of the next generation AMH strategy are
cytochrome B562 (PDB ID 256b) and HDEA (PDB ID
1BG8), because they are both of moderate size and one of
them (1BG8) was not in the training set of proteins that
optimized the original energy function. An additional ad-
vantage of this choice is these proteins have different fold
types. According to CATH45 HDEA belongs to the orthogo-

nal bundle architecture, while cytochrome B562 represents
an up-down bundle. Using umbrella sampling combined
with the weighted histogramming method, we are able to
sample parts of phase space that would rarely be encountered
during a simulation.46 When using memories with a larger
number of native contacts, we see improved free energy and
energy profiles as shown in Figure 14. This is even more
impressive when we consider this energy function has not
yet been properly optimized for this new Hamiltonian. For
the other target, the results are also not surprising. In this
case the next generation memories used to simulate this
protein were not of greater structural quality than the initial
set. Thus a very similar free energy profile was generated
as seen in Figure 15. Our use ofq as an order parameter
successfully identified the highQ structures for the 256B
test case. This is due to the highly funneled characteristic of
the first generation energy function. The original energy
function for 1BG8 is not as funneled, so therefore there is
poorer enrichment by scanning withq. This limitation could
be overcome by increasing the amount of sampling of
structures in the first generation simulations. More simula-
tions would guarantee better structure as was demonstrated
during the CASP5 exercise summarized in Table 3. This
difference in the enrichment could be anticipated by using
the Kolmogorov-Smirnov measure to differentiate the dis-
tribution of the little q values encountered between the
memories derived from simulation and the protein databank.

Conclusion

These case studies from our participation in the CASP
experiment only provide a snapshot of our group’s prediction
schemes. It produces a series of lessons for us, and we hope
for others. In the future, more balanced efforts between the
sampling and selection of structures from that ensemble
would appear to be desirable. More efforts in selection would
have clearly improved the results submitted in CASP6. While
it was computationally impractical to quench all of the
structures simulated during the prediction season, the com-

Figure 13. Kolmogorov-Smirnov test shows the constant temperature simulation falling out of equilibrium at a lower temperature
of 1.4. The different probability distributions of structures between two independent simulations is no longer the same.

Eint ) - ∑
3

c ε

ac
∑

µ

n

∑
i<j

N

γ(Pi, Pj, Pi′
µ, Pj′

µ)Θ(rij - ri′j′
µ ) (13)

ε )
1

36
∑

1

µ Eamh
model

4N
(14)
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parison of the contact maps demonstrated further that
tempering of the structure would have improved intermediate
range ordering. Using preliminary structures as input to a
next generation of AMH modeling improves the quality of

the prediction results. While these results may initially appear
to be a model or energy function specific, we feel that any
algorithm that uses structures as an input would benefit from
similar next generation approaches.

Figure 14. The free energy the two different energy functions for the protein 256B, shows roughly a 5-10 kBT improvement for
this protein. The primary improvements are in the medium- and long-range nonlocal distance classes.

Figure 15. The free energy the two different energy functions for the protein 1BG8 show little improvement. The memories
though show no enrichment in native contacts.
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Abstract: The hydroperoxyl anion HO2
- is one of the simplest examples for multidimensional

hydrogen-atom transfer. This is reflected in the tunneling splittings, which have been theoretically
predicted to be highly selective concerning the excitation of either the O-O stretching, the O-H
stretching, or the H-O-O bending vibration. Using the available quantum mechanical spectrum
up to 5000 cm-1, we scrutinize the performance of a recently proposed trajectory-based method
to calculate tunneling splittings (Giese, K.; Ushiyama, H.; Kühn, O. Chem. Phys. Lett. 2003,
371, 681). It is found that this new method is capable of reproducing the general behavior of
the tunneling splittings rather well. Furthermore, for this particular system, the error shows a
systematic trend, which suggests the applicability of a scaling correction that could be based
on a small number of exact splittings.

1. Introduction
Tunneling is a ubiquitous phenomenon in reactions involving
hydrogen atoms and its isotopes.1,2 Being a fundamental
quantum effect, it continues to provide an inspiration for
developing approximate methods for the efficient calculation
of tunneling splittings. The semiclassical Wentzel-Kram-
ers-Brillouin (WKB) approximation is not only the oldest
but also the most rigorous approach in this respect, and its
one-dimensional formulation is well-established.3 However,
multidimensional WKB theory appears to be too demanding
to be turned into a practical scheme,4-7 and quasi-one-
dimensional approximations are often used.8 Degrees of
freedom (DOF) orthogonal to a one-dimensional tunneling
path are included, for instance, in instanton theory,9 for which
a number of successful implementations have been de-
veloped.10-17 On the other hand, the revival of semiclassical
methods in the time domain18 triggered the development of
trajectory-based approaches, for example, within the semi-
classical initial value representation19-21 or by using the
concept of multiple spawning.22

An even simpler approach which has the advantage of
being straightforwardly interfaced with ab initio on-the-fly
molecular dynamics goes back to Makri and Miller (MM

method;23 for applications, see also refs 24-27). Here, the
recipe for calculating a tunneling splitting consists of running
an ensemble of classical trajectories in one of the minima
of the potential. Whenever the projection of the momentum
onto a predefined tunneling direction changes sign, the
trajectory is continued as a straight line along the tunneling
direction through the classically forbidden region.

Reasonable choices for the tunneling direction depend on
the actual potential, for example, on the type of coupling
between the reaction coordinate and the considered vibra-
tional mode. Although several possibilities have been
discussed,23-25,28 in particular, straight-line tunneling paths
can only perform reasonably if the coupling between the
reaction coordinate and vibrational mode is small.29 Follow-
ing the classification of the configuration space according
to the solutions of the Hamilton-Jacobi equations, the action
S can be real (R), imaginary (I), or complex (C) (see, e.g.,
ref 6 and Figure 1), and considering a simple two-
dimensional symmetric mode coupling potential, the MM
method based on straight-line paths connecting the minima
and parallel to the reaction coordinate will perform best if
tunneling goes through the C region. When tunneling mainly
goes through the I region, the MM method will fail.

Recently, an extension of the MM method (called EMM)
has been proposed,29 which is based on the concept of
tunneling trajectories developed by Takatsuka and co-

* Corresponding author fax:+49083854792; e-mail: ok@
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workers.30 For the case of the above-mentioned two-
dimensional symmetric mode coupling potential, it was
shown that EMM outperforms MM in the case of strong
couplings. This is possible because the tunneling is not
restricted to occur along a predefined path. The aim of the
present paper is to extend our previous model study and apply
the EMM method to a real molecular system, that is, the
hydroperoxyl anion, HO2-.

Among the nonrigid triatomics of the form HX2, the
hydroperoxyl anion has a rather low barrier for hydrogen-
atom transfer and the distances of heavy atoms differ
considerably between theCs minimum and theC2V saddle
point geometry (see caption to Figure 2). Therefore, the
minimum-energy path has a large curvature, which is an
indication of a truly multidimensional transfer process. Chan
and Hamilton31,32 obtained an accurate potential energy
surface using the QCISD(T)/6-311++G(2df,pd) level of
quantum chemistry. The parameters of the relevant geom-
etries are given in Figure 2. The lowest vibrational eigenstates
were obtained by the same authors using a combination of
a discrete variable representation and a Lanzcos diagonal-
ization (in the following, denoted QM, see Table 1). The
fundamental transitions are at 3575.1 cm-1 (O-H stretch),
1066.7 cm-1 (H-O-O bend), and 709.8 cm-1 (O-O
stretch). The tunneling splittings are considerably mode-
specific: For instance, for the O-O stretch fundamental

transition, the splitting is 2× 10-4 cm-1, while for a
combination excitation with one quanta, respectively, in the
O-O stretch and H-O-O bend, it is 1× 10-2 cm-1. Thus,
the hydroperoxyl anion appears to be very well-suited as a
test case for the newly developed EMM method, because
the tunneling splittings differ by orders of magnitude among
different eigenstates.

The paper is organized as follows: In section 2, we will
first give a brief review of the EMM method. We continue
by discussing the specific implementation of MM and EMM
strategies for the case of HO2

-. The results obtained for both
methods are compared to the numerically exact quantum
mechanical data in section 3. We summarize in section 4.

2. Theory
2.1. The EMM Method. Before we review the EMM
approach, let us briefly recall the MM method.23 Here, an
ensemble of classical trajectories is propagated in the
classically allowed region in the neighborhood of a minimum
of the potentialV(q). If at time tn the projection of the
momentump onto a tunneling directiond changes sign, a
turning point is reached and the trajectory is continued as a
straight line in the classically forbidden region. Denoting this
turning pointqn

/, the tunneling probability for an individual
trajectory at timet is given by (in mass-weighted coordinates)

Figure 1. Illustration of the EMM method for a symmetric
two-dimensional (x, q) potential and two turning points (1 and
2) leading to tunneling through the C (case i) and I (case ii)
regions, respectively.

Figure 2. Definition of coordinates used for the hydroperoxyl
anion (see text). The geometrical parameters as obtained by
Chan and Hamilton using the QCISD(T)/6-311++G(2df,pd)
method are RHO ) 0.9619 Å (1.1491 Å), ROO ) 1.527 Å
(1.6991 Å), and γ ) 97.34° (42.3°) for the minimum (transition
state)32 (the figure is not to scale). The barrier height for
hydrogen atom transfer is 71 kJ/mol (5941 cm-1).

Table 1. Mode Specific Tunneling Splittings ∆E of the
Hydroperoxyl Aniona

En
(/hc (cm-1) ∆n/hc (cm-1)

state + - QM MM EMM

(0,0,0) 0 0 0.000 03 0.000 02
(0,0,1) 709.8 709.8 0.0002 0.000 04 0.0003
(0,1,0) 1066.7 1066.7 0.0009 0.001 0.004
(0,0,2) 1408.7 1408.7 0.001 0.0001 0.002
(0,1,1) 1753.4 1753.4 0.01 0.01 0.03
(0,2,0) 2084.3 2084.3 0.03 0.1 0.2
(0,0,3) 2092.5 2092.5 0.004 0.0007 0.007
(0,1,2) 2426.2 2426.3 0.08 0.1 0.1
(0,2,1) 2745.3 2745.6 0.3 1.2 1.1
(0,0,4) 2756.8 2756.8 0.02 0.005 0.03
(0,3,0) 3063.5 3064.1 0.6 3.4 2.8
(0,1,3) 3081.2 3081.5 0.3 0.9 0.7
(0,2,2) 3388.2 3390.2 2.0 7.1 5.6
(0,0,5) 3398.9 3399.1 0.2 0.06 0.2
(0,3,1) 3692.5 3698.3 5.8 10.3 9.9
(0,1,4) 3714.9 3716.1 1.2 3.9 3.2
(0,4,0) 4000.4 4011.0 10.6 14.2 13.5
(0,2,3) 4010.6 4013.5 2.9 10.4 9.2
(0,0,6) 4017.1 4020.0 2.9 0.3 0.6
(0,3,2) 4285.0 4316.4 31.4 10.1 9.5
(0,1,5) 4323.9 4328.1 4.3 8.9 6.7
(0,4,1) 4562.1 4606.9 44.8 9.9 9.2
(0,2,4) 4600.0 4620.9 20.9 10.8 8.6
(0,0,7) 4608.3 4624.3 16.0 1.6 2.4
(0,5,0) 4826.9 4916.3 89.4 7.7 7.4
(0,3,3) 4895.2 4919.6 24.4 6.1 5.0
(0,1,6) 4907.2 4931.4 24.2 9.5 8.9
(0,1,6) 4907.2 4931.4 24.2 .5 8.9

a The values En
( and the quantum mechanical (QM) splittings ∆n

are taken from ref 32.

P(t) ) ∑
tetn

exp(-
1

p
∫0

êmax dêx2[V(qn
/ + êd) - V(qn

/)]) (1)
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whereêmax is the maximum length of the straight-line path
for which the square root is real. The tunneling splitting is
then given by

where〈...〉 denotes the ensemble average.
While this approach involves an a priori definition of a

tunneling direction, which is usually taken as a straight-line
path, the EMM method does not have such constraints. Here,
the trajectories are propagated, and a parity of motion,σj )
(1, is assigned to each DOF such that real-valued momenta
can always be defined via30

For σj ) +1 andσj ) -1, the motion is classically allowed
and forbidden, respectively. Note that transformation eq 3
is noncanonical ifσj ) -1. Inserting eq 3 into the usual
Hamiltonian yields

where σ ) (σ1,...,σN) is the vector of parities of motion.
Trajectories in the (pj,q) space can be generated by Hamil-
ton’s equation of motion

The first equation, eq 5, is the unchanged Newton’s equation
of motion. However, the second equation, eq 6, determines
that, for σj ) -1, the velocityq̆j and momentumpjj have
opposite directions. Notice that eqs 5 and 6 are equivalent
to the formulation in ref 30 and have a canonically invariant
form. This implies that the method of characteristics can be
used to construct an action function based on a field of
trajectories.33 However, for the present purpose, we define
the action along a trajectory on aσ sheet (for constant energy)
by

where (pj0,q0) are the initial conditions of the trajectory. As
was noted before, the transformation eq 3 is noncanonical;
that is, trajectories generated for different sets of paritiesσ
refer to different dynamical systems, and it is necessary to
resort to intuitive arguments in order to connect solutions
belonging to different sheets.

The calculation of tunneling splittings in the EMM
approach proceeds as follows: (i) Initial conditions for an
ensemble in either the left or the right well are generated,
for example, from normal-mode sampling.25 (ii) A trajectory
is propagated in the R region of the potential (see Figure 1)
until it hits a classical turning pointqn

(cl). In ref 29, it was
suggested that these turning points can be defined by the

conditionpj‚di ) 0, where{di} is a set of tunneling directions
which is defined by the normal-mode vectors of the potential
minimum. (iii) Whenever a trajectory encounters such a
turning point, the parityσj of the corresponding directiondj

is flipped from+1 to -1 and the propagation is continued
according to the eqs 5 and 6. The turning point condition is
also used to determinenonclassicalturning points outside
the R region: When the turning point condition is fulfilled
for a trajectory in the forbidden region, then another parity
σk of the corresponding direction is flipped from+1 to -1.
Both trajectories in the forbidden region, the one withσj )
-1 andσk ) +1 as well as the one withσj ) -1 andσk )
-1, will be integrated in this case (see Figure 1). The
extension to more than two dimensions is straightforward.
(iv) When a trajectory that is propagated in the forbidden
region crosses the symmetry lineΣ, the complex action of
that trajectory is computed. The action is given by the integral
eq 7 along the trajectory fromqn

(cl) to the crossing point on
the symmetry line. There may be several trajectories that
emanate from one classical turning pointqn

(cl). Only the
action that has the smallest imaginary part is kept, and its
absolute value is denotedWn. (v) The contributions of all
nonclassical trajectories with the smallest action that have
emanated from classical turning pointsqn

(cl) at time tn are
summed up according to

from which the splitting is obtained via eq 2. For more
details, we refer to the original publication30 as well as to
the earlier paper on the EMM method.29

2.2. Implementation for HO2
-. Both methods, MM and

EMM, are formulated in Cartesian coordinates. For MM, this
is because the straight-line paths are defined as Cartesian
vectors; for EMM, the parities of motion are associated with
Cartesian momenta. Recently, Guo and Thompson28 applied
the MM approach to hydrogen peroxide (HOOH) and used
the torsional angle as the tunneling coordinate instead of a
straight line. This was possible because a single internal
coordinate was (assumed to be) responsible for the tautomer-
ization. However, a generalization seems to be hardly
possible when more internal non-Cartesian coordinates have
to be considered. To apply these methods to a case like the
hydroperoxyl anion, it is therefore necessary to describe the
molecule in a Cartesian coordinate system.

First, we notice that two rotational DOF can be removed
by confining the motion to a plane. For the remaining DOF,
the coordinate vectorsR, r , ands, as defined in Figure 2,
are employed. The positions of the two oxygen atoms,r 1

and r 2, and the position of the hydrogen atom,r 3, can be
expressed as

Assuming (without restriction) that the center of mass of the

P(t) ) ∑
tnet

exp(-
2

p
Wn) (8)

r 1 ) R - r (9)

r 2 ) R + r (10)

r 3 ) R + s (11)

∆ ) 2p
d
dt

〈P(t)〉 (2)

pjj ) pj /xσj (3)

Hh (pj,q;σ) ) ∑
j

σj

2
pjj

2 + V(q) (4)

p̆j ) - ∂Hh
∂qj

) - ∂V
∂qj

(5)

q̆j )∂Hh
∂pjj

) σj pjj (6)

S(pj0,q0,σ;t) ) ∑
j
∫0

t xσj pjj(τ) q̆j(τ) dτ (7)
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triatomic is fixed at the origin, it follows that

wheremH andM are the mass of a hydrogen and the total
mass of the triatomic, respectively. The Lagrangian of the
system can be derived straightforwardly as

where mO is the oxygen mass andV(s,r ) is the potential
energy surface. The configuration space (s,r ) of this
Lagrangian is four-dimensional. This means thatsbecause
there are three internal coordinatessan individual trajectory
is only unique up to an arbitrary rotation around the four-
dimensional origin (s) 0, r ) 0) corresponding to a rotation
around the six-dimensional center of mass.

In the following, the vibrational eigenstates will be labeled
asn ) (n1, n2, n3), where the quantum numbers correspond
to the O-H stretch (n1), H-O-O bend (n2), and O-O
stretch (n3) vibrations. The initial conditions for the en-
sembles of trajectories corresponding to an eigenstaten were
obtained by normal-mode sampling with energy rescaling,25

where the energy was chosen to be the mean of the exact
quantum mechanical energy for a split pair of levels. The
normal-mode analysis with respect to a four-dimensional
minimum, (s(min),r (min)), yields three vibrational normal modes
plus an infinitesimal rotational vector. The normal modes
are only guaranteed to be orthogonal to the infinitesimal
rotational vector that corresponds to the minimum; for a
displaced geometry, there is a slightly different rotational
vector. Therefore, for each trajectory, the angular momentum
was removed, and in order to keep the energy fixed, the
momenta were rescaled.

To assess the quality of the initial state sampling, we have
calculated power spectra of the sum of momentaZ(t) ) ∑i

Pi(t):

where the brackets indicate an averaging over an ensemble
of classical trajectories. Exemplary spectra for the ground
state (0, 0, 0) at a total energy of 2676 cm-1 and state (0, 1,
5) at a total energy of 7000 cm-1, respectively, are shown
in Figure 3. The state (0, 1, 5) was chosen as being typical
for a highly excited state. In both spectra, one may identify
three main peaks that correspond to quasi-periodical motion
with the three fundamental frequencies. For the ground-state
spectrum, these peaks are narrow, indicating that phase space
points on (or very close to) a certain invariant torus are
sampled.34 A comparison with the exact quantum mechanical
fundamental transitions (dashed vertical lines) shows that this
invariant torus almost coincides with the ground-state invari-
ant torus. Conversely, in the spectrum of state (0, 1, 5), the
main peaks are broadened and possess a substructure. The
significant shifts of the peak maxima with respect to the
quantum mechanical fundamentals are due to the anharmo-
nicity of the potential. Thus, for the state (0, 1, 5), one
expects the normal-mode sampling to be less efficient.
Nevertheless, the appearance of three distinct peaks indicates
that an invariant torus corresponding to the quantum state
exists at least approximately.

For the MM method, the tunneling direction is defined
such that the O-O distance vector 2r is held fixed for the
tunneling process; that is, at each point (s,r ), the tunneling
direction could be calculated from

a choice which was also used for malonaldehyde in refs 24
and 26. If the hydrogen would be located in the left well
(i.e., s‚r < 0), then a straight line alongdMM leads
automatically to aC2V configuration of the triatomic. This
configuration is a point on the symmetry surfaceΣ that is
defined bys‚r ) 0 in the present case.

However, the molecule will rotate along a straight line
defined by Cartesian directions as given by eq 15. This is
because only the hydrogen moves along these straight lines,
and the complementary counter rotation of the O-O axis is
missing. Because of the mass ratio of about 1:16 between
hydrogen and oxygen, the error introduced by the straight-

Figure 3. Power spectra I(ω) (cf. eq 14) for the ground state (0, 0, 0) and excited state (0, 1, 5). The power spectra were
obtained by propagating ensembles of 100 trajectories and Fourier transformation of Z(t) ) ∑iPi(t) with Gaussian broadening
exp{-t2/τ2} and τ ) 5 ps. The propagation time was 14.5 ps. Fundamental transitions are indicated as dashed lines (cf. Table
1).

dMM ) (r /|r |
0 ) (15)

R ) -
mH

M
s (12)

L ) 1
2
mH(1 -

mH

M )s3 2 + 1
2
(2mO)r3 2 - V(s,r ) (13)

I(ω) ) 1
2π

lim
Tf∞

1
T

〈|∫0

T
dt Z(t) exp(-iωt)|2〉 (14)
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line approximation may be small, although its magnitude is
unknown a priori. However, a rotation-free tunneling direc-
tion and also a related rotation-free tunneling path can be
constructed. To this end, let us consider a modified tunneling
direction that is given by

whereF ) F(s1,r 1) is the infinitesimal rotational vector at
the (turning) point (s1,r 1). With definition eq 16, the rotation
in the vicinity of the turning point is removed. A complete
rotation-free path may be obtained by solving the ordinary
differential equation:

whereX(ê) is a 4D vector as a function of the coordinateê
along the curved path. The tunneling direction eq 16 is
considered to beX-dependent, such thatF is evaluated at
each point on the path whiledMM is held fixed.

However, it turned out that the correction to the tunneling
splittings due to the rotation-free tunneling path, eq 17, is
negligible for the present molecule. Therefore, the MM
tunneling integral, eq 1, was computed by following a
straight-line tunneling path defined by the rotation-free
direction eq 16, and turning points are given by the zeros of
P‚dMM

R , whereP is the four-dimensional momentum.
In analogy to eq 15, the EMM turning point condition was

modified such that, for each point (s,r ), the set of vectors
{F,d1,d2,d3} is Schmidt-orthogonalized. Here,di corresponds
to the normal-mode direction of the three fundamental
vibrations at the minimum. The procedure guarantees that,
for a turning pointP‚di′ ) 0 with Schmidt-orthogonalized
normal-mode vectordi′, the parity of motion is flipped to
-1 for a direction that is orthogonal to the rotational direction
at that turning point. The generalized trajectories are then
generated for a reduced space that is spanned by the three
Schmidt-orthogonalized normal-mode directionsdi′. Notice
that this is a generalization of the condition used for the MM
tunneling directions and turning points. In particular, the
straight line generated by direction eq 16 can be expressed
as a linear combination of thedi′ values. The integration of

a trajectory is stopped when the symmetry surfaceΣ has
been reached, that is, whens‚r g 0.

For each vibrational level,n ensembles of 1000 classical
trajectories were propagated using a fifth-order symplectic
integrator35 with a fixed step size of 0.48 fs. For the accurate
determination of turning points, the step size was reduced
to 0.048 fs. The propagation time was 240 fs, which
corresponds to about 5 times the vibrational period of the
weakest mode. The energy was bound within a typical
maximum tolerance of 0.1 cm-1.

In Figure 4, cumulated EMM tunneling probabilities〈P(t)〉
for, respectively, the ground state (0, 0, 0) and state (0, 1, 5)
are shown, which correspond to the power spectra in Figure
3. Compared to the ground state, there is an oscillation
superimposed on the approximate linear increase of〈P(t)〉
for state (0, 1, 5). This can be attributed to the sampling
method; that is, the trajectories are only near the invariant
torus.25 Only those states are considered for which the linear
regression of the data points yields a relative standard
deviation of less than 1%. Notice that this excludes the states
(1, n2, n3) which show a larger deviation. The sampling error
was estimated by performing five distinct runs for the (0, 0,
1) level; the relative standard deviation was 8% of the tunnel
splitting.

3. Results
In Table 1, tunneling splittings obtained by diagonalizing
the Hamiltonian (QM data taken from ref 32) are compared
with semiclassical results obtained within, respectively, the
MM and EMM approaches. When comparing the MM results
for, for example, the fundamental of the O-O vibration (0,
0, 1) with those for the QM, one finds an underestimation
of almost 1 order of magnitude. Conversely, the EMM result
for that vibrational state agrees quite well with the QM. The
same finding applies to overtones of the O-O vibration up
to state (0, 0, 5). For the fundamental of the H-O-O bend
vibration (0, 1, 0), the tunneling splittings are overestimated
by the EMM. The same applies for states (0, 2, 0) and (0, 3,
0). Also, the MM yields too-large tunneling splittings for
the two states (0, 2, 0) and (0, 3, 0). Finally, we note that,
for the MM method, we have investigated the rotational error
due to the use of a tunneling path which is not rotation-free
for the lowest 10 states in Table 1. It turns out that, for the

Figure 4. Cumulated EMM tunneling probabilities 〈P(t)〉 (ensemble of 1000 trajectories) for the ground state (0, 0, 0) and excited
state (0, 1, 5).

dMM
R )

dMM - (dMMF)F
|dMM - (dMMF)F| (16)

dX
dê

) dMM
R [X(ê)] (17)
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reported number of digits, only for state (0,0,3) does the
tunneling splitting change (to 0.0008 cm-1).

In Figure 5 the magnitude of the tunneling actionWn at
the symmetry surfaceΣ is visualized for the state (0, 0, 1)
by point-cloud plots for EMM and MM. For visual clarity,
the local density of points has been chosen to be proportional
to ∑nWn

-4(RHO, ROO): a higher density corresponds to smaller
action and, thus, a larger tunneling probability. For state (0,
0, 1), the maximum of the EMM and MM is at (RHO, ROO)
≈ (1.2, 1.65) Å and (1.3, 1.65) Å, respectively. Thus, the
EMM prefers tunneling at shorterRHO values that are closer
to the transition state. This is clearly the reason for the larger
tunneling probabilities, leading in turn to a larger tunneling
splitting.

To visualize the performance of the EMM as compared
to that of the MM more globally, the semiclassical results
are plotted versus the QM results in Figure 6 on a double
logarithmic scale. The EMM results do systematically
overestimate the QM results for splittings smaller than about
2 cm-1. The correlation between MM and QM seems to be
more erratic than that for EMM and QM. However, the
absolute error of the log values (concerning all values shown

in Figure 6) is similar, namely, 0.55 and 0.45 for MM and
EMM, respectively. To show that there is a significant
improvement concerning the EMM results, the log values
for all splittingse 2 cm-1 were fitted by a linear function,
f(x) ) A + Bx, with x ) ∆(QM). For MM and EMM, it was
found that (A, B) ) (0.5 ( 0.2, 1.3( 0.1) and (0.4( 0.1,
1.04 ( 0.05), respectively. For an exact correlation, one
would expect (0, 1). Thus, the difference between the EMM
and QM results is mainly the constant factor 100.4 ≈ 2.5.
This suggests immediately that acalibration of the results
would be reasonable if certain exact splittings are known.
As far as the MM splittings are concerned, there is a
significant deviation from slope 1, and the results cannot be
corrected by simply introducing a constant factor. For states
with splittings larger than about 2 cm-1, there are also
underestimations by EMM. These states are rather highly
excited; that is, the normal-mode sampling is less efficient,
which is most likely a major source of error. Moreover, the
quantum spectrum is dominated by a 2:3 Fermi resonance
between the OH bend and the OO vibration.31 This leads to
a perturbation of the spectra that cannot be accounted for
by the present semiclassical methods.

Finally, the results are analyzed with respect to the number
of parities that were flipped. Figure 7 shows EMM tunneling
splittings for selected fundamentals and overtones (cf. Table
1) and tunneling splittings that were obtained by keeping
only thoseWn values in the sum eq 8 for which there were,
respectively, one (“1”), two (“2”), or three (“3”) negative
parities when the generalized trajectory crossed the symmetry
surfaceΣ; the sum (“sum”) corresponds to the values given
in Table 1. The case of three negative parities is irrelevant.
Surprisingly, both cases with one and two parities contribute
equal amounts (in a logarithmic sense). For the two-
dimensional symmetric coupling potential, the MM tunneling
direction d ) (-1, 0)t becomes equivalent to one of the
normal modes for vanishing coupling.29 For the hydroperoxyl
anion, however, the normal modes do not coincide with the
definition of the straight line direction, eq 16. Thus, the
reason for the better performance of the EMM for the

Figure 5. Point cloud plot of the tunneling probability, exp(-2Wn/p), at the symmetry surface (C2v configuration), where Wn is
the absolute value of the imaginary part of the action obtained for a path from the nth turning point to the point (RHO, ROO) on
the symmetry surface. The local density of points at (RHO, ROO) is chosen to be proportional to 〈∑n(Wn)-4〉. The saddle point is
indicated (#); the minimum is not a point on the symmetry surface, but the minimum bond length values are given for comparison
and marked by “Min”.

Figure 6. Mode-specific tunneling splittings ∆n (logarithmic).
Values obtained by MM and EMM vs the exact QM result.
The solid line corresponds to perfect agreement.
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hydroperoxyl anion can be attributed to the more physical
treatment of the connection condition of the semiclassical
wave function across the caustic surfaces separating the
regions of real, complex, and imaginary actions.

4. Conclusions
The recently proposed extension of the Makri-Miller
model29 has been applied to calculate tunneling splittings of
vibrational modes for a three-dimensional ab initio potential
energy surface describing the hydrogen-atom transfer in the
hydroperoxyl anion.32 For moderate excitation energies, it
was found that the results of the extended Makri-Miller
model systematically overestimate the quantum mechanical
values, while the conventional Makri-Miller results show
over- and underestimations in an erratic manner. It was
pointed out that a calibration of the extended Makri-Miller
method results by a constant factor is reasonable. It should
be stressed that both methods rely on several ad hoc
assumptions that can only be justified by numerical tests, as
in this study. The present findings suggest that the extended
Makri-Miller method gives a more realistic description of
the connection of the semiclassical wave function across the
different regions of configuration space. However, whether
this feature is more general remains to be shown. Further-
more, it turned out that tunneling with one and two parity
changes is almost equally important (in a logarithmic sense).
This observation should be of high relevance for current
attempts to use generalized trajectories for time-dependent
wave-packet dynamics.36

Finally, the present method has to be brought into the
context of ab initio molecular dynamics simulations with an
on-the-fly calculation of the forces which has been used in
connection with the Makri-Miller model.26 Because the
extended Makri-Miller method is trajectory-based as well,
there seems to be no principal problem with an implementa-
tion of an ab initio molecular dynamics scheme. However,
it should be emphasized that the benefits of this method come
at the price of an increased numerical complexity. First,
significantly more tunneling trajectories need to be calculated,
and several of them are subsequently discarded. Second, the
solution of Hamilton’s equation of motion for the parity-

based trajectories will typically require a smaller step size
than the calculation of the potential energy along a straight
line. Nevertheless, the present study shows that this new
protocol may deserve further investigation.
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Abstract: We present a simple and general scheme for efficient Boltzmann sampling of

conformational space by computer simulation. Multiple replicas of the system differing in

temperature T or reaction coordinate λ are simulated independently. In addition, occasional

stochastic moves of individual replicas in T or λ space are considered one at a time on the

basis of a generalized Hamiltonian containing an extra potential energy term or bias that depends

on the distribution of all replicas. The algorithm is inherently suited for shared or heterogeneous

computing platforms such as a distributed network.

Introduction
Despite rapid advances in computer technology, statistical
sampling of systems governed by rugged potential energy
surfaces remains a challenge, which underscores the need
for efficient computational algorithms.1-6 For example, the
time scales of conformational transitions of biomolecular
systems span many orders of magnitude. Many of these
events are not directly accessible by atomistic computer
simulations, precluding Boltzmann sampling of conforma-
tional space.

A number of statistical mechanical methods using general-
ized ensembles have been developed in recent years to
enhance sampling efficiency. Some of these approaches are
designed to induce a random walk either in temperature,
potential energy, spatial coordinates, or transformation
parameters in the Hamiltonian. In simulated tempering
(ST),7,8 a random walk in temperature is achieved by taking
periodic steps from absolute inverse temperatureâi to âj

subject to acceptance of the following Metropolis Monte
Carlo test:

whereâi andâj are the inverse of the Boltzmann constant
multiplied by absolute temperature, the potential energyE(q)
is a function of atomic coordinatesq, andai andaj are weight
factors that must be determined in advance using an iterative
procedure. Similarly, the multicanonical algorithm (MU-
CA)9,10 results in a random walk in potential energy space.
Extending the Hamiltonian to include a transformation
coordinateλ is another way to get around barriers because
the higher dimensionality of phase space results in an
increased number of alternate routes by which barriers can
be avoided. A random walk along a transformation coordi-
nate can be realized via adaptive umbrella sampling (AUS)
methods,11-15 where the Hamiltonian governing movement
is defined as

In eq 2, the potential energyE is a function of atomic
coordinatesq and transformation coordinateλ, andU(λ) is
a biasing potential that must be adapted such that it removes
any barriers that exist along the transformation coordinate.
In ST, MUCA, or AUS, random walk behavior is achieved
only once the system “adapts” or learns the correct weight
factors for movement along the parameter of interest, a
system-dependent procedure that introduces extra complexity
as well as possible artifacts if not done carefully (see ref 16

* Corresponding author tel.: 416-813-5686; fax: 416-813-5022;
e-mail: pomes@sickkids.ca.

† The Hospital for Sick Children.
‡ Department of Biochemistry, University of Toronto.
§ Institute of Biomaterials and Biomedical Engineering, University

of Toronto.

paccept) min(1, exp{-[(âj - âi)E(q) + (aj - ai)]}) (1)

H(q,λ) ) E(q,λ) + U(λ) (2)
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for more details). Furthermore, although adaptive methods
clearly improve sampling uniformity along the coordinate,
in some cases, uniform sampling may only be achieved in
very long simulations because of ruggedness in orthogonal
degrees of freedom.17

In the past decade, replica exchange (RE),18-20 also known
as multiple Markov chain or parallel tempering, has emerged
as a powerful alternative to adaptive methods. In RE, multiple
noninteracting copies or replicas of a system, each governed
by the same potential energy function but differing in
temperature, are simulated at once. Periodically, the simula-
tions are halted, and replicasi and j with neighboring
temperaturesTi andTj are swapped with a probability given
by the following Metropolis Monte Carlo condition:

Temperature swaps cause each replica to undergo a random
walk in temperature, providing a means (for any replica) to
escape from a potential energy trap. Like adaptive methods,
RE may also be used to attain a random walk in a parameter
of the Hamiltonian,21-23 λ. Swaps between adjacent replicas
i and j are accepted with a probability given by

When data from all replicas are taken together, perfect
sampling uniformity along the temperature or reaction
coordinate is attained. Furthermore, no adaptation of a biasing
potential is required because the weight factors are known a
priori. In the realm of biomolecular studies, large-scale
applications of RE have pushed back limitations in the scope
of problems and the size of systems studied.19,23-31 Recent
studies have applied the method to folding a 46 amino acid
protein domain,32 and the approach has been extended to
two-dimensional random walks in pressure and temperature.31

The principal drawback of RE is that it requires a homoge-
neous and often large computing cluster to implement
efficiently. Because the number of replicas required follows
the square root of the number of degrees of freedom in the
system,18 the simulation of complex systems eventually
becomes impractical.

Here, we present distributed replica (DR) sampling, a
simple and general scheme for efficient Boltzmann sampling
of conformational space by computer simulations. As in RE,
multiple replicas of the system, covering a preassigned range
in temperature or reaction coordinate space, are simulated
independently. The main difference with RE is that, instead
of performing pairwise exchanges of replicas, stochastic
moves of individual replicas inT or λ space are considered
one at a time. The target distribution of replicas is enforced
by a generalized Hamiltonian containing an extra potential
energy bias that depends on the distribution of all replicas.
Contrary to adaptive methods, DR does not require prelimi-
nary determination of the bias. We show with a simple but
relevant example that the DR algorithm leads to random-
walk movement along the parameter of interest with an
efficiency comparable to that of RE. Because it avoids the
need for all replicas to run synchronously, DR is intrinsically

suited for implementation on a shared or inhomogeneous
computing platform such as a large-scale distributed network.

Method
Let us considerN noninteracting copies (or “replicas”) of a
system of interest, all of which are governed by an identical
potential energy function,E(qi,λi), whereqi represents the
atomic coordinates of the atoms in replicai and λi is the
coupling parameter for the reaction coordinate of interest
(the reaction in question may be either an alchemical or a
spatial transformation). The DR method makes use of an
additional potential energy term,D(λ1,λ2,...,λΝ), henceforth
referred to as the distributed replica potential energy (DRPE),
which enforces the distribution of replicas across the range
of the transformation coordinate (i.e., an energy penalty is
associated with a nonideal distribution). The generalized
Hamiltonian for stateX ) {q1,λ1,q2,λ2,...,qN,λN}, combining
all replicas together with the DRPE, is given by

The weight factor for stateX is given by

We consider oneλ move at a time. Suppose that theλ value
of replica m is to be changed fromλm to λm + δλm, thus
taking stateX to stateX′:

In order for the exchange process to converge toward the
equilibrium distribution, it is sufficient to impose the detailed
balance condition on the transition probabilityp(XfX′):

From eqs 5, 6, and 8, we have

where

This can be satisfied using the Metropolis Monte Carlo
criterion:

Like RE, the DR method may also be performed in
temperature space. To this end, we first defineX )
{q1,â1,...,qN,âN}. The corresponding dimensionless general-
ized Hamiltonian is

Hλ(X) ) ∑
i)1

N

E(qi,λi) + D(λ1,λ2,...,λN) (5)

W(X) ) exp[-â Hλ(X)] (6)

X ) {q1,λ1,...,qm,λm,...,qN,λN} f X′ )
{q1,λ1,...,qm,λm + δλm,...,qN,λN} (7)

W(X) p(XfX′) ) W(X′) p(X′fX) (8)

p(XfX′)
p(X′fX)

) exp(-â∆) (9)

∆ ) E(qm,λm + δλm) - E(qm,λm) + D(λ1,λ2,...,λm +
δλm,...,λN) - D(λ1,λ2,...,λm,...,λN) (10)

paccept) min[1, exp(-â∆)] (11)

Hâ
*(X) ) ∑

i)1

N

âi E(qi) + D*(â1,â2,...,âN) (12)

paccept) min(1, exp{-[âi - âj][E(qj) - E(qi)]}) (3)

paccept) min(1, exp{-â[E(qi,λj) - E(qi,λi) + E(qj,λi) -
E(qj,λj)]}) (4)
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where the asterisk indicates a dimensionless quantity. The
appropriate Monte Carlo acceptance probability of a move
involving a changeδâm in the inverse temperature of replica
m is

where

Many possibilities exist for calculating the DRPE, and
several variations were tested as a part of the development
of this method. One that was found to work very well, which
was used in the analysis reported here, is as follows. The
DRPE function is calculated from three algorithmic steps:
(1) Theλ (or â) values for all replicas are sorted in ascending
order. The following holds true for the new order,λi,sorted:

(2) The spacing system is transformed to a uniform unit
spacing arrangement to giveλi,unit:

where f -1 is the inverse of a functionf, which maps the
replica index to the nominalλ value of that replica (i.e., the
λ position where the replica started). Note that because
replica indices are integers,f is constructed by linearly
interpolating between adjacent points.

(3) This step involves the following equation:

wherec is a parameter that scales the DRPE function for
the purpose of adjusting the move acceptance probability.
Note that the DRPE must necessarily be a state function (i.e.,
it must conserve energy). See Table 1 for an example DRPE
calculation.

Note that the DRPE defined in eqs 15-17 acts to reinforce
spacing between theλi values of the replicas, and it has no
effect on the absolute positions of theλi values. Therefore,
to prevent a concerted drift of all replicas away from the
region of interest, a few extra nonmoving, nonsimulated
dummy replicas can be included, typically positioned just
beyond the endpoints.

A DR simulation is realized as follows. Initially, each
replica i is created at a different position,λi, spanning the

transformation coordinate, and is optionally equilibrated. The
spacing between adjacentλi values is chosen on the basis of
the application at hand and may be uniform or nonuniform.
The following two steps are then iterated: (1) Each replica
is run as an independent molecular dynamics or Monte Carlo
simulation for a set period of time or number of steps,
typically on its own CPU in a computing cluster. The method
does not require all of the simulations to run simultaneously
nor does it require simulations to finish (or be halted) in a
coordinated manner as is typical in standard replica exchange
algorithms.λi values are fixed during the course of these
simulations. (2) Periodically, one replica is considered for a
λ move. The probability of acceptance isp(XfX′) (see eq
11).

There are no restrictions on the intervals between replica
move attempts, although some optimal interval will exist for
a given application. Frequent move attempts allow a greater
mobility of the λi values, but at the cost of increased
overhead. The distance by whichλi changes during aλ move
is also not restricted and can be optimized for the application
at hand.

Test Application
The performance of the DR method is illustrated with a two-
dimensional model system designed such that a significant
energy barrier exists in a degree of freedomx orthogonal to
a reaction coordinateλ. As depicted in Figure 1, the reaction
involves the conversion of a double-well potential to a single
well. A total of 51 replicas spaced uniformly along the
reaction coordinate, each initially atx ) -1, were con-
structed. For each replica, the particle evolved on the 1D
energy landscape governed by Monte Carlo moves at a
temperature of 298 K with a fixed step size of 0.01. A total
of 107 moves alongx were simulated per replica. The
calculation was performed with fully independent replicas,
with DR, and with RE. After 10 steps elapsed for all DR
replicas (20 steps for RE), aλ move (or a swap between
neighbors) was attempted for one replica (or one replica pair)
chosen at random, giving the particles a chance to move in
the λ dimension. When either DR or RE was used, each
replica experienced on average about 19 600 move attempts
alongλ (one swap event in RE is equivalent to twoλ moves
in DR).

Sequential moves of DR replicas inλ space are illustrated
in Figure 2. An effective random walk is achieved by
individual replicas over the entire simulation (Figure 2b).
The occasional rapid replacement of one replica by another
is tantamount to a pairwise exchange reminiscent of RE
(Figure 2a). However, the fact that DR replicas move one at

Table 1. Example of a Distributed Replica Potential Energy Calculation

index 1 2 3 4 5 6

nominal (or ideal) λ positions of replicas 0.0 0.1 0.2 0.4 0.6 1.0
current λi positions of replicas (after several

λ moves and one effective λ swap)
0.0 0.2 0.11 0.4 0.6 1.0

λi,sorted values after step 1 (sorting) 0.0 0.11 0.2 0.4 0.6 1.0
λi,unit values after step 2 (spacing

transformation)
1.0 2.1 3.0 4.0 5.0 6.0

DRPE result after step 3 (assuming c ) 0.1 kcal/mol) 0.1 kcal/mol

paccept) min[1, exp(-∆*)] (13)

∆* ) δâm E(qm) + D*(â1,â2,...,âm + δâm,...,âN) -

D*(â1,â2,...,âm,...,âN) (14)

λi,sorted> λi-1,sortedfor i ) 2 toN (15)

λi,unit ) f-1(λi,sorted) (16)

D ) c∑
i)1

N

∑
j)1

N

[(λi,unit - λj,unit) - (i - j)]2 (17)
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a time also leads to overlaps of two or more replicas and
temporary gaps inλ space. The DRPE function acts to
enforce spreading of the replicas inλ space. On average,
sampling is close to the target uniform distribution (Figure
3a). There is a nonlinear relationship between the root-mean-
square deviation from uniformity and the acceptance ratio

(Figure 3b). Both of these quantities are controlled by the
stiffness of the DRPE function (i.e., by the scaling constant
c in eq 17). While sampling uniformity is achieved only for
an infinitely forbidding DRPE (c f ∞), deviations from the
target distribution only become significant for relatively large
acceptance ratios (loose DRPE). With intermediate ac-
ceptance ratios (i.e., 20-70%), the DR method nearly
achieves the desired sampling profile.

In the limit of independent replicas, severe deviations from
the theoretical sampling distribution alongx are evident at
small values ofλ (Figure 4). For some replicas, the energy
barrier prevents crossings altogether during the entire simula-
tion, trapping the particle in the metastable well atx ) -1.
Considerably longer simulations would be necessary to
achieve statistical convergence. The energy barrier can be
bypassed if the system is allowed to evolve freely on
pathways throughλ space as well asx. The sampling
distributions obtained using DR (with an acceptance ratio
of 65%) and RE simulations are shown in Figure 4c,d. Both
cases show dramatic improvements in sampling efficiency
over independent replicas (Figure 4b) and good agreement
with the theoretical distribution (Figure 4a). Accordingly,
these two simulations yield mean force and free energy
profiles within the statistical error from each other (Figure
5), indicating that DR is as efficient as RE in the given test

Figure 1. Model potential energy surface used to test DR
sampling. (a) The energy profile gradually switches from a
bistable well at λ ) 0 (with minima at x ≈ (1) to a single well
at λ ) 1 and x ) 0. (b) Two-dimensional representation; a
DR trajectory illustrating barrier avoidance by diffusion in λ
space is also shown.

Figure 2. Diffusion of distributed replicas in λ space. (a)
Representative trajectories of a few DR replicas over a small
interval of wall-clock time corresponding to approximately 40
move attempts. Lines were slightly shifted vertically for clarity.
(b) Two representative complete trajectories illustrate a
random walk in λ.

Figure 3. Relationship between sampling profiles and ac-
ceptance ratios in DR simulations. (a) Sampling profiles along
the reaction coordinate λ obtained from three DR simulations,
each with 51 replicas but differing in acceptance ratio, p )
0.02, 0.65, and 0.82. (b) Root-mean-square deviation from
sampling uniformity as a function of acceptance ratio. The
lines are included to guide the eye.
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case. Importantly, the equally good agreement with the exact
solution also shows that DR is as accurate as RE.

The effectiveness of the DR method is compromised at
both low and high acceptance ratios. If the ratio is low, the
systematic sampling error is large because of poor sampling
along x (as is illustrated by the results obtained with
independent replicas; see Figures 4b and 5). If the acceptance
is high (soft DRPE), then the replicas accumulate in regions
of lower energy (i.e., at the endpoints in the present case)
and statistical sampling errors alongλ grow due to the fact
that high-lying regions do not get sampled effectively. Thus,
it is desirable to strike a balance between the acceptance
ratio and the deviation from the target distribution. In the
present case, an acceptance ratio as high as 65% leads to
acceptable deviations from sampling uniformity and to
accurate results (see Figures 4 and 5). By comparison, it
should be noted that 96% acceptance is achieved in the RE
simulations on the same set of replicas. By construction, RE
never departs from sampling uniformity; the desired ac-
ceptance ratio is modulated instead by trial simulations with
different numbers and spacings of replicas. With DR, the
step size taken byλ during a replica move can be optimized
for the application at hand. This can be done either a priori
or on the fly. Step sizes can be any distance and can be made
as small as required in order to decrease the system energy
penalty and increase the acceptance probability.

Although this is not apparent in the simple model system
tested here, another advantage of DR over RE is expected
in applications where a large energy penalty is associated
with λ moves (such as in simulations involving atomic
displacements in dense media). Because the exchange of two
replicas is associated with two separate conformational
energy penalties (one for each replica), the probability of
accepting a move is the product of two small probabilities.
This ultimately leads to low mobility inλ space and, thus,

Figure 4. Sampling distribution for the model system depicted in Figure 1: exact (analytical) distribution (a) and distributions
obtained with 51 replicas spanning the range λ ) 0-1, successively from independent replicas (no λ move) (b), from DR with
a 65% acceptance ratio (c), and from RE (d).

Figure 5. Potential of mean force (a) and mean force (b)
acting on the particle along the reaction coordinate. The
theoretical curves are shown with continuous lines; results
obtained from independent replicas (circles), from distributed
replica sampling (crosses), and from replica exchange (squares)
are also shown. In the latter two cases, the size of the symbols
is larger than the statistical sampling error.
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poor sampling efficiency. The energy penalty for an exchange
can be reduced by decreasing the spacing between nominal
λ values of the replicas and, thus, increasing the number of
replicas that span the reaction coordinate. However, smaller
separation distances between replicas also hamper coordinate
mobility. In contrast, replica moves in the DR method are
associated with a single conformational energy penalty
because, although the DRPE is analogous to a potential
energy, it is not generally a function of system complexity.
Furthermore, the severity of this penalty can be adjusted to
some extent through the DRPE scaling constantc. For this
reason, the sampling efficiency in DR is expected to be better
than that in RE as the system complexity increases, although
only in applications involving a spatial reaction coordinate
and a dense medium. This advantage does not exist in
temperature space.

Concluding Discussion
We report a simple yet powerful simulation technique that
can be used in a range of applications utilizing both physical
and alchemical transformations as well as in exhaustive
sampling where a random walk in temperature is key. The
method is of comparable efficiency to that of RE. Because
it shares essential characteristics with RE, DR could be used
with similar extensions. For example, it could be combined
advantageously with adaptive-type methods such as ST and
MUCA.24-28

The essential advantage of DR over RE lies in the ease of
implementation on computer platforms. Traditional RE
methods require dedicated CPUs in a homogeneous comput-
ing system. This is due to the need for replicas to finish
simultaneously so that a swap event can occur. Thus, efficient
implementation on shared or unreliable computing clusters
or on large-scale distributed computing systems is very
difficult to realize because CPUs often sit idle, waiting for
other replicas to finish a simulation segment. For this reason,
efforts to distribute replica exchange simulations have
focused on minimizing this wait time through an optimized
allocation of jobs on the basis of CPU speed.33-35

As the need for a larger number of replicas increases (in
cases of complex systems), the feasibility advantage of DR
over RE rises. Because DR undergoes replica jumps rather
than replica exchanges, no CPU need ever wait for others
to finish. A 100% utilization of all available CPU resources
is thus realized. Furthermore, the method is not sensitive to
changes in CPU speed or CPU availability, both of which
cannot be considered fixed on most clusters. DR will
continue running even if some replicas are suspended because
of a drop in the number of available CPUs. DR sampling is,
therefore, a different approach designed from the ground up
to naturally suit shared or large-scale distributed computing
platforms.
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Abstract: The Generalized Born Surface Area theory (GBSA) has become a popular method

to model the solvation of biomolecules. While efficient in the context of molecular dynamics

simulations, GBSA calculations do not integrate well with Monte Carlo simulations because of

the nonlocal nature of the Generalized Born energy. We present a method by which Monte

Carlo Generalized Born simulations can be made seven to eight times faster on a protein-
ligand binding free energy calculation with little or no loss of accuracy. The method can be

employed in any type of Monte Carlo or Hybrid Monte Carlo-molecular dynamics simulation

and should prove useful in numerous applications.

Introduction
A proper representation of water is essential for the study
of numerous important biomolecular processes. The tradi-
tional microscopic approach explicitly models thousands of
water molecules to solvate a protein and then applies periodic
boundary conditions to the whole system. While rigorous,
this approach entails a heavy computational cost. Continuum
electrostatics provides an elegant way to model the influence
of the solvent on the solute structure and dynamics. In this
approach the solvent is considered as a high dielectric
continuum that is interacting with partial charges that are
embedded in a solute molecule of lower dielectric. The solute
response to the reaction field of the solvent dielectric can
then be modeled by applying laws of classical electrostatics.
The dramatic reduction in the number of degrees of freedom
of the simulated system increases the rate of convergence
of properties that are averaged over many snapshots. Among
the many flavors of continuum electrostatics theories that
have been developed in the last two decades, the Generalized
Born Surface Area (GBSA) method has become popular in
biomolecular simulations.1 This is in no doubt due to the
efficiency of the method and its reasonable accuracy.
Furthermore, under certain approximations, the GBSA theory

can be expressed in a pairwise form that can be implemented
relatively easily within traditional biomolecular simulation
packages.2-4

In a GBSA simulation, the force field is augmented with
an extra term, the solvation energy∆Gsolv, taken as the sum
of a polarization energy∆Gpol and a nonpolar energy term
∆Gnonpol.

In eq 1∆Gnonpol is often taken as proportional to the solvent
accessible surface area (SASA) of the system. Alternative
more elaborate treatments have recently been proposed in
the literature.3 The term∆Gpol is obtained from eq 2.

εvac and εsolv are the dielectric constants of the vacuum
and the solvent respectively,qi is the atomic partial charge
of atom i, rij is the distance between a pair of atomsij , and
Bi is the effective Born radius of atomi.

The effective Born radiusBi is in essence the spherically
averaged distance of the solute atom to the solvent. Modi-
fications to eq 2 have been occasionally proposed,5 but much
of the improvements in the accuracy of the Generalized Born
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∆Gsolv ) ∆Gpol + ∆Gnonpol (1)

∆Gpol ) -
1

2( 1

εvac

-
1

εsolv
)∑

i
∑

j

qiqj

xr2
ij + BiBje

(-r2
ij/4BiBj)

(2)
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models has come from a better calculation of the Born
radii.6-8 One method to compute this quantity is the Pairwise
Descreening Approximation (PDA) of Hawkins et al.2

described by eq 3. While the PDA is not the most accurate
way to calculate a Born radius, it is one of the fastest and
has proven popular.

In eq 3 rij is the distance between a pair of atomsij and
Ri is the intrinsic Born radius of atomi, that is, the Born
radius that atomi would adopt if it were completely isolated.
Finally Sj is a scaling factor which compensates for system-
atic errors introduced by this approximate Born radii calcula-
tion.

GBSA is widely used in the context of molecular dynamics
simulations. For example, some interesting studies of GBSA
molecular dynamics simulations of RNAs are discussed by
Sorin et al.,9,10 while Felts et al. used GBSA molecular
dynamics to study the potential of mean force of small
peptides.11 To date, few Monte Carlo GBSA simulations have
been reported in the literature. The flexible docking algorithm
of Taylor et al. uses Monte Carlo moves and a GBSA model
of water.12 The Concerted Rotation with Angles (CRA)
algorithm of Ulmschneider et al. uses novel Monte Carlo
moves to fold peptides in a GBSA force field.13,14While the
treatment of small peptides with a Monte Carlo GBSA
method is still efficient compared to the explicit solvent
alternative, or desirable in the case of Monte Carlo protein
backbone moves, the method quickly loses its appeal as the
system size increases. A Monte Carlo simulation of a
biomolecule requires many more moves than molecular
dynamics time steps because only portions of the system
under study are updated at every move. Because most of
the system does not change coordinates, and the force field
terms are usually separable, it is generally sufficient to
calculate only the change in energy of the part that has
moved, which is very efficient. However, inspection of eq 3
shows that the Born radius of atomi depends on the position
of every other atomj in the system. In turn, this means that
the pairwise energies from eq 2 have the same dependency.
As a result, the energy between atoms that did not move
must be recomputed after every Monte Carlo move, and a
full GB energy calculation must be performed after every
Monte Carlo move. For even a mid-sized protein the
computational cost can be very high. This is not a problem

in a molecular dynamics simulation because the total energy
of the system is calculated after every step in any case.

The aim of this article is to introduce methods that can
overcome the limitations of a standard GBSA implementation
within the framework of a Monte Carlo simulation. This
work is motivated by the availability of powerful Monte
Carlo methods such as concerted rotations13 or configura-
tional bias for sampling protein systems,15 and the efficiency
that can be attained by combining them with a GBSA model.

System Setup
In this work, the GBSA method was implemented in a
modified version of the Monte Carlo package ProtoMS2.1.16

Polarization energies were computed using eq 2, and the Born
radii were calculated with eq 3. The Surface Area calcula-
tions were implemented using the method of Shrake and
Rupley,17 and a probe of 1.4 Å radius was used. The
parameter set used for this GBSA model comes from a
previous study (“PDAnum2” in ref 18).

To test the approximations introduced below we selected
as a test case a set of protein-ligand relative binding free
energy calculations which are shown in Figure 1. The
perturbations are typical of the mutations performed in a
protein ligand binding free energy calculation and cover
apolar to apolar (1to2), polar to apolar (1to3 and4to5), and
polar to polar (4to6) perturbations. The two different proteins
considered exhibit a very different binding site. Neuramini-
dase has a polar, solvent exposed, binding site, while cyclo-
oxygenase-2 has a buried, fairly hydrophobic binding site.
The test case should therefore represent a broad class of
protein-ligand interactions that are studied by free energy
perturbation methodologies. The binding mode of the inhibi-
tors was inferred on the basis of a similar ligand complexed
to a monomer of the N2 strain of influenza A (PDB code
1BJI)19 or the PDB structure of murine cox2 complexed to
SC-558 (PDB code 1CX2).20 When necessary, hydrogens
were added to the crystallographic structure using the
program reduce.21 Sugars, cofactors, crystallographic waters,
and ions were removed. The protein was set up with the
AMBER99 force field, inhibitors were set up with the GAFF
force field, and the atomic partial charges were derived using
the AM1/BCC method22 as implemented in the package
AMBER8.23 The system was energy minimized using the
Sander module of AMBER8 and a Generalized Born force
field (the igb keyword was set to 1).23 The backbone of the
energy minimized protein was kept rigid for subsequent
Monte Carlo simulations which were conducted with a
modified version of the ProtoMS2.1 package.16 To reduce
the computational cost, only the protein residues that have
one heavy atom within 15 Å of any heavy atom of the ligands
were conserved. The bond angles and torsions of the protein
side chains within 10 Å of any heavy atom of the ligand
and all the bond angles and torsions of the ligand were
sampled during the simulation, with the exception of rings.
The bond lengths of the protein and ligand were kept rigid.
The total charge of the system was brought to zero by
neutralizing lysine residues lying in the outer (frozen) part
of the scoop (residues number 511 and 532 for cox2, 432
and 273 for neuraminidase). The protonation state of the
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histidine residues was decided by visual inspection of the
crystallographic structures. The resulting model of cox2 had
155 residues and neuraminidase 145 residues. A 10 Å
switched residue based cutoff was employed in all simula-
tions. In the Generalized Born simulations, a cutoff of 20.0
Å for the calculation of the Born radii was applied.

Replica exchange thermodynamic integration24,25 (RETI)
was applied to these systems, and the necessary ensemble
of states were formed using Metropolis Monte Carlo
sampling26 at a temperature of 25°C. In the RETI protocol,
standard finite difference thermodynamic integration (FD-
TI)27 is performed at each value of the coupling parameter
λ (∆λ)0.001). Occasionally, moves that exchange system
coordinates between replicai at λ ) A of energyEA(i) and
replica j at λ ) B of energy EB(j) are attempted, subject to
the following acceptance test.

The occasional exchange of coordinates between the
different simulations enhances configurational sampling and
hence convergence of the calculated properties, while the
acceptance test ensures that each replica converges the
simulation to the correct distribution of states.24,25

Solute moves were attempted 10% of the time, with the
remainder being protein side chain moves. In the unbound
state, 2000 (2K) moves of equilibration were performed
before 200K moves of data collection. In the bound state,
the system was preequilibrated at one value ofλ for 600K
moves. The resulting configuration was distributed over 12
values of the coupling parameterλ (0.00, 0.10, ..., 0.90, 0.95,
1.00), and further equilibration was performed for 100K
moves. Data were collected over the remaining 900K moves.
Replica exchange moves were attempted every 5K configu-
rations.

The error on the free energy gradients was calculated by
taking the standard error of batch averages (size 1K). The

standard error of these averages was then integrated over
the λ coordinate to yield the maximum error.

The speedup reported in the next sections are calculated
as ratios of the time taken to complete 1000 MC moves on
the test systems between two particular simulation protocols.

Approximated Generalized Born Potential
A rigorous GB calculation means that the GB energy between
each pair of atoms must be recalculated after every move.
However, the impact of a moving atom on the Born radius
of a distant atom is small. We have therefore structured the
implementation of the GB calculation such that the energy
of a pair of atoms is recalculated only if the Born radius of
either atom has changed by more than a specified threshold
value after a MC move. A large number of pair interactions
can be skipped in this fashion, resulting in a significant
speedup. In this implementation, only the necessary old and
new GB energy pair terms are recalculated to update the
total GB energy. This keeps additional memory requirements
low and makes the method easily applicable to larger system.

This approximation may have unwanted effects. For
example, the total energy would not be completely conserved
in a hypothetical Monte Carlo simulation in the NVE
ensemble. However, the fact that useful results can be
obtained from Molecular Dynamics simulations where
fluctuations in the total energy are introduced because of
errors in the integrator suggests that as long as the impact
of the approximation is small, the resulting ensemble will
closely mirror the correct one.

To assess the impact of this approximation, we have run
a series of short free energy simulations with a GBSA force
field at different values of the threshold parameter. The plots
reported in Figure 2 are constructed by running a simulation
for N steps with a specified value of the threshold parameter.
The total energy of the last generated configuration is then
recorded and compared to the value that is obtained by

Figure 1. Representation of the ligands considered in this free energy study. For visual emphasis, the parts of the ligands
being perturbed are highlighted by bold, straight lines.

exp[â([EB(j) - EB(i)] - [EA(j) - EA(i)])] g rand (0, 1) (4)
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calculating the total energy with no approximation. This
procedure is repeated 10 times for a number of values ofN.
An arguably acceptable error on the total energy would be
about 0.1% since this is in the accepted range of MD
integrator errors.28 The systems run in neuraminidase are
more sensitive to the approximation, and at a high threshold
value, the deviations become quickly large. The systems run
on cox2 appear much less sensitive. In both systems, at a
threshold of 0.005 Å and up to 5000 MC moves the error is
below 0.1%.

An added requirement for a free energy calculation is that
the free energy gradients are not too sensitive to this
approximation. In this application, we use a finite difference
scheme, and the gradients are formed from the difference in
total energy at a value ofλ - dλ andλ + dλ. In Figure 3
the protocol described previously is applied to report the free
energy gradients accumulated atλ ) 0.50. The gradients are
formed from the difference of two large numbers and are
therefore more sensitive to small errors in the total energies.
The free energy gradients of the perturbations run on
neuraminidase are seen to be much more sensitive to the
threshold than those run on cox2. Because the binding site
of neuraminidase is much more solvent exposed and
comprises several polar amino acids, a rigorous treatment
of the GB energy appears more important than for cox2,

where the buried, hydrophobic binding site is less sensitive
to solvent effects. After 1000 MC moves, at a threshold of
0.001, the average error on the free energy gradients is still
0.20 ( 0.07 kcal‚mol-1‚λ-1 for 1to3, while for 4to5 it is
essentially negligible at high and low threshold values. From
a computational perspective, the cost of a full GBSA
calculation after 1000 approximate GBSA calculations is
small. By updating completely the GB energy every 1K MC
moves and with a suitably small threshold parameter, the
errors on the total energy and the free energy gradients can
be kept sufficiently low such that they have a small or
negligible influence on the computed free energy.

To verify more rigorously the sensitivity of the systems
to the threshold, a series of GBSA free energy simulations
is run for each system with a varying threshold parameter.
The impact of the threshold parameter on the calculated free
energy is shown in Figure 4. For the perturbations in cox2,
the calculated free energies are within the statistical error of
the exact simulation over the range of thresholds studied.
For the perturbations in neuraminidase, the free energy is
more sensitive to the value of the threshold parameter, and
a high value of the threshold yields results that deviate
significantly from the rigorous calculations; this is more

Figure 2. Relative error in percent of the total energy as a
function of the number of Monte Carlo moves for a threshold
of 0.005 Å (black line, circles) and 0.05 Å (dashed line,
squares). Each point is the average of 10 different simulations,
and the error bar represents the associated standard error.
Similar plots for the perturbations 1to2 and 4to6 are observed
(data not shown).

Figure 3. Absolute error in the free energy gradients as a
function of the number of Monte Carlo moves for a threshold
of 0.001 Å (black line, circles) and 0.005 Å (dashed line,
squares). Each point is the average of 10 different simulations,
and the error bar represents the associated standard error.
Similar plots for the perturbations 1to2 and 4to6 are observed
(data not shown).
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marked for1to3 than1to2, with results agreeing to within a
statistical sampling error from a threshold value of 0.002 Å
or less. These results are consistent with the increased
sensitivity of the free energy gradients to the threshold for
the neuraminidase systems observed in Figure 3. Figure 5
shows the speedup relative to a full GBSA calculation.
Because the computational expense is similar for the systems
run on the same protein, speedups are shown for1to3 and
4to5 only. Even with a threshold as low as 0.001 Å, a
considerable speedup is achieved because the Born radii of
several protein atoms are insensitive to the displacement of
a distant residue. On these systems and over the range of
thresholds studied, the simulations run 2.4-3.8 times faster.

On the range of systems studies here, the influence of the
threshold parameter on the calculated binding free energies
has been shown to be negligible (cox2) or minor (neuramini-
dase) and can be minimized by reducing sufficiently the
threshold parameter, at the cost of additional simulation time.
That a balance can be struck between speedup and accuracy
can prove useful. In applications where accuracy is important,
almost rigorous calculations can be made with a sufficiently
low threshold. On the other hand, less accurate calculations
that could be useful in the context of fast free energy

calculations could be run with a higher threshold. The
optimum value of the threshold varies according to the
system but can be estimated rapidly by plotting the drifts in
the free energy gradients for a series of short simulations.
For the systems studied here, it appears that a good
compromise would be achieved with a threshold of 0.005
Å.

Simplified Sampling Potential
Theory. A novel methodology to perform Monte Carlo
simulations has recently been proposed by Gelb.29 He shows
that it is possible to perform a Monte Carlo simulation in
which the potential energy is evaluated using an approximate,
less expensive potentialEú than a more realistic potential
Eπ and still form an ensemble of states that are distributed
according to the rigorous potential. The method is very
powerful as in principle any kind of simplified potential/
expensive potential combination can be devised.

The method can be briefly summarized as follows:
1. Start a simulation in statei.
2. PerformsN steps of standard Metropolis sampling with

a simple potentialEú of limiting distribution ú until a state
j is reached.

3. Set statei ) statej with probability ø ) (πjúi)/(πiúj).
In this equationπi andúi are the probability of statei in the
two different distributionsπ andú.

4. Accumulate any property of interest that is a function
of the coordinates of statei.

5. Return to 1 or terminate after a number of iterations
In essence, a standard Monte Carlo simulation is conducted

for N steps with a potential chosen for its convenience
(usually computational efficiency). However, because the
probabilities of statei andj in the two distributionsπ andú
generally differ, it is necessary in step three to correct for
any bias introduced by the potentialEú. This acceptance test
makes sure that the ensemble formed during the simulation
converges toward the distributionπ instead ofú. In the NVT
ensemble, step three amounts to accepting statej according
to

The acceptance test is therefore based on the difference
of differences of energies of statei and j between the two
potentialsEπ andEú. With this method, no statistics for the
target ensembleπ can be collected during step two, and the
number of data points accumulated is reduced compared to
a traditional Monte Carlo simulation. This does not neces-
sarily affect convergence because subsequent configurations
in the Markov chain are typically highly correlated and do
not contribute new information to the running average. That
is to say, it is equally good to sample the distribution of
interest less often if the samples are less correlated.

To date, applications of this methodology have been
reported by Hetenyi et al.30,31 (who seem to have developed
a similar method independently). Hetenyi reported a 3.0-
4.7 speedup in the simulation of a Lennard-Jones fluid using
for Eú a potential similar toEπ but with a shorter cutoff.
Gelb reported similar results on a similar system.29 In a
second application by Hetenyi, a MC Ewald sum simulation

Figure 4. Influence of the threshold parameter on the
calculated free energy for the selected perturbations in the
bound state. The error bar represents the associated statistical
error.

Figure 5. Relative speedup that can be achieved in the
simulation of the perturbations 1to3 (circles, black line) and
4to6 (squares, dashed line) in the bound state with a varying
threshold parameter. The speedups are based on the time
taken to perform 1K Monte Carlo moves.

exp[â([Eπ(j) - Eπ(i)] - [Eú(j) - Eú(i)])] g rand (0, 1) (5)
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of water was running 4.5-7.5 times faster using this
methodology. This method has been employed by Iftimie et
al. to perform ab initio simulations using a classical
potential.32

If the change of energy in going from statei to j is similar
with the two Hamiltonians, the probability of accepting the
configurationj will be close to unity. On the other hand, if
the two potentials differ too much, then the acceptance rate
will drop, and the method will lose efficiency since all the
steps performed withEú have been wasted. Therefore a good
approximate potentialEú must be faster than, and yet very
similar to,Eπ. This is of course difficult to achieve.

Application to a GBSA Model. The complete application
of the GBSA theory requires the calculation of a Surface
Area (SA) dependent term to yield a solvation free energy.
The inclusion of this term can be expensive and becomes
significant once the GB calculations have been accelerated
with the use of a threshold. For example, the simulation of
4to5 with a GB threshold of 0.005 is about 1.8 times slower
once the SA calculations are enabled.

The fluctuations in the SA term are known to be small
compared to the other energy components of the force field.
This observation has led other workers to devise schemes
where the SA term is only periodically updated.33,12,14While
reasonable, this approximation is not completely rigorous.
Other workers have developed faster, approximate SASA
calculations schemes, but these algorithms do not calculate
reliably the small changes in SASA associated with the small
conformational changes observed between MC moves.34

However, the effect of the SA term can be rigorously
included in the GBSA simulation by adopting a particular
simplified sampling potential methodology. The simple
potentialEú corresponds to a GB simulation run without a
SA term, while the correct potentialEπ includes SA
calculations.

In addition, we consider other means to further speed up
the calculations by adopting a less rigorous solvation model
for the simplified potential. Here two different simplified
solvation models are investigated: a distance dependent
dielectric (DDD) force field and a simplified GB force field
(fastGB). In the DDD force field the GB equations are
replaced by aε(r) ) 4r distance dependent dielectric. In the
fastGB force field smaller cutoffs are applied: a residue
based cutoff, Born radii cutoff, and thresholds of 6.0, 12,
and 0.05 Å, respectively. Furthermore, since no statistics are
collected with fast GB, it is not necessary to compute free
energy gradients, which avoids the expensive GB energy
calculations for the perturbed states. The rigorous potential
is taken as a GB simulation with a threshold of 0.005 Å and
a rigorous SA calculation.

Table 1 lists the average acceptance rate of the correction
step for the two different potentials as a function of the
number of moves performed. The speedup compared to the
rigorous GBSA simulation is also reported. The parameter
M is the number of moves performed with the quick potential
before attempting to add the generated configuration to the
ensemble. As this quantity increases, the acceptance rate
diminishes. As has been pointed out, a tradeoff must be made
between computational efficiency and sampling efficiency.29

With the DDD model, the acceptance rate decreases faster
than the speedup increases, and a short value ofM is favored.
Even after only 5 steps, the acceptance rate is only 55-
65%. For the systems in neuraminidase, the acceptance rate
of the correction step is actually similar to using vacuum
conditions (data not shown). This illustrates that the con-
figurations favored by a GBSA force field are rather different
from those preferred by a DDD force field.

With the fastGB model the decreases in the acceptance
rate are more or less counterbalanced by the increase in
speedup, and no value ofM is clearly favored. In addition,
the acceptance rates are much higher and around 90% for
M equal to 5.

If we make the assumption that simulations run with the
DDD and fastGB force field explore the configurational
space at the same rate, then these results suggest that the
combination of the two potentials fastGB/GBSA yields more
efficient sampling than the DDD/GBSA combination.

To demonstrate this more decisively, in Figure 6 we
investigate the convergence of the calculated free energies
in the bound state for 5 independent simulations performed
with the different protocols and a value ofM set to 10. After
900K moves of data collection, almost all the fastGB
simulations have converged to within the error bounds of
the results obtained with GBSA 0.005 Å. With the DDD
protocol, the results are more spread out, and several
simulations are outside the error bounds. It is apparent that
the fastGB protocol converges better the free energies than
the DDD protocol for the same number of iterations.

Taken together, the results in Table 1 and Figure 6 suggest
that a low acceptance rate for the correction step hinders
convergence. The DDD simulations are slightly faster than
the fastGB simulations. However, since the simulation results
are much better converged with the fastGB protocol, it should
be preferred over a DDD model. By combining the fastGB
potential with the value ofM set to 10 and with a GBSA
0.005 Å potential described in the previous section, an
approximately 2.3-fold speedup over a standard MC simula-
tion run with GBSA 0.005 Å can be achieved. The present
results demonstrate that the simplified sampling potential
methodology, applied here to increase the efficiency of

Table 1. Acceptance Rate at the Correction Step and
Relative Speedup for Different Combinations of Potentials
and Number of Moves M with the Approximate Potentiala

M
DDD

rateb (%)
DDD

speedupc
fastGB

rateb (%)
fastGB

speedupc

1to3
5 56.7 2.2 90.2 2.1
10 36.7 2.4 83.4 2.3
20 18.2 2.9 76.3 2.7
25 13.6 3.1 71.5 2.8

4to5
5 65.4 2.2 91.2 2.0
10 47.7 2.5 87.1 2.3
20 27.9 2.9 80.8 2.5
25 22.5 3.1 78.2 2.7
a The results for 1to2 and 4to6 are similar to 1to3 and 4to5 .

b Average across all values of λ. c Relative to a GBSA simulation with
a threshold of 0.005 Å.
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Generalized Born calculations for the first time, allows
significant computational savings without additional ap-
proximations.

Conclusion
A novel methodology by which free energy calculations in
a Generalized Born framework can be made more efficient
within Monte Carlo simulations has been proposed. It can
be summarized as follows:

1. An approximate Generalized Born potential in which
the energy of the system is only partially updated after a
MC movesthe impact of this approximation on the calcu-
lated free energies can be made arbitrarily small at the
expense of computational time by adjusting a single param-
eter.

2. Sampling driven by an inexpensive potential with a
special Monte Carlo acceptance test that removes any bias
in the distribution introduced by the cheap potentialsthis
allows in addition the rigorous incorporation of surface area
calculations at a minimum computational cost.

In Table 2 timings for various combinations of these
approximations on two of the four systems are reported.
Protocol 4, which combines the two approximations is seven
to eight times faster compared to protocol 1 which would
correspond to a standard implementation of a GBSA force

field. Protocol 4 is also only about 4.1-4.3 times slower
than a simulation run in a vacuum (protocol 5) which
compares favorably with the typical efficiency of molecular
dynamics GBSA simulations.23 While the increased ef-
ficiency has been demonstrated on a free energy calculation,
improvements in standard MC simulations could be sought
with the same method.

We may ask whether the partial rigidity of the system and
the simplified treatment of solvation affects the accuracy of
the calculated binding free energy. The simulation results
can be compared with experimental figures by constructing
a thermodynamic cycle, which requires the ligand perturba-
tions in the unbound state to be performed. We stress that
free energy calculations in the unbound state are extremely
rapid (on the order of a few minutes), and there is no need
to introduce the methods developed to speed up the simula-

Figure 6. The convergence of the calculated free energies in the bound state using different sampling potentials. The estimated
free energy is plotted as a function of the number of Monte Carlo moves performed. In each figure, on the left-hand side, 5
independent simulations run with fastGB are shown. On the right-hand side, 5 independent simulations run with DDD are shown.
The horizontal line is the estimate of the free energy obtained after 900K moves with the potential GBSA 0.005 Å. The dashed
lines represents the statistical error associated with this number.

Table 2. Time Required To Complete a Block of 1K
Moves for Selected Approximationsa

protocol solvation model
simplified
potential

time
1to3 (s)

time
4to5 (s)

1 GBSA exact no 633.4 746.3
2 GBSA threshold 0.001 Å no 241.8 312.0
3 GBSA threshold 0.005 Å no 198.6 243.0
4 GBSA threshold 0.005 Å fastGB 79.8 104.2

M ) 10
5 vacuum no 19.5 24.1

a ProtoMS2.1 on a Pentium IV 2 GHz compiled with g77.
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tions in the bound state. The calculated binding free energies
are listed in Table 3. The implicit solvent protocol reproduces
well the relative binding free energy of1to3 but underesti-
mates somewhat the binding free energy of the three other
systems, although the trends are respected. The main
emphasis of this work was to introduce a novel methodology
to perform Generalized Born Monte Carlo free energy
calculations efficiently. A thorough investigation of the
influence of the solvation model on the relative binding free
energies will require the comparison of explicit and implicit
solvent simulations on a larger set of systems. Such studies
will be made computationally tractable by the present
technique.
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Table 3. Calculated and Experimental Binding Free
Energies of the Tested Systems with the ApproxGB+SA
Protocola

perturbation ∆∆Gexp ∆∆Gbind ∆Gprot ∆Gwat

1to2 -1.6 -0.3 ( 0.3 0.1 ( 0.2 0.4 ( 0.1
1to3 -2.7 -2.7 ( 0.3 24.5 ( 0.3 27.2 ( 0.2
4to5 <-4.6 -2.4 ( 0.1 17.7 ( 0.1 20.1 ( 0.1
4to6 <-5.6 -3.1 ( 0.2 10.0 ( 0.2 13.1 ( 0.1

a The threshold was set to 0.005 Å. The figures are in kcal‚mol-1.
The experimental figures were taken from ref 35 for the neuraminidase
inhibitors and from ref 36 for the cox2 inhibitors.
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Abstract: Density functional theory calculations have been performed with the B3LYP and

MPW1K functionals on the hydrogen atom abstraction reactions of ethenoxyl with ethenol and

of phenoxyl with both phenol and R-naphthol. A comparison with the results of G3 calculations

shows that B3LYP seriously underestimates the barrier heights for the reaction of ethenoxyl

with ethenol by both proton-coupled electron transfer (PCET) and hydrogen-atom transfer (HAT)

mechanisms. The MPW1K functional also underestimates the barrier heights, but by much less

than B3LYP. Similarly, a comparison with the results of experiments on the reaction of a phenoxyl

radical with R-naphthol indicates that the barrier height for the preferred PCET mechanism is

calculated more accurately by MPW1K than by B3LYP. These findings indicate that the MPW1K

functional is much better suited than B3LYP for calculations on hydrogen abstraction reactions

by both HAT and PCET mechanisms.

Many hydrogen atom abstraction reactions proceed by a
classical hydrogen-atom transfer (HAT) mechanism, involv-
ing three electrons distributed among three atomic orbitals
(AOs).1 As shown schematically in Figure 1a, the proton
and one of the electrons in the X-H bond being broken are
both transferred to the singly occupied orbital on radical Y•.

However, in recent years, both experimental and compu-
tational studies have found that, when the abstracting radical
center carries at least one unshared pair of electrons and the
hydrogen to be abstracted is bonded to an atom that also
has an unshared pair of electrons, a proton-coupled electron
transfer (PCET) mechanism may be preferred over a HAT
mechanism.2 As illustrated in Figure 1b, such a PCET
mechanism involves a total of five atomic orbitals. The
proton in the X-H bond is transferred to a lone pair of
electrons on radical Y•, and simultaneously, an electron is transferred from a lone pair on X to the singly occupied

orbital on Y. Thus, unlike the case in HAT, where the proton
and the electron of the hydrogen atom are transferred from
X to the same AO on Y, in PCET, the proton is transferred
between one pair of AOs on X and Y and the electron is
transferred between another pair of AOs on these two atoms.

* Corresponding author phone: (940) 565-3658; fax: (940) 565-
4460; e-mail: borden@unt.edu.

† University of Washington.
‡ University of North Texas.

Figure 1. Schematic depiction of (a) HAT and (b) PCET
mechanisms for the abstraction of a hydrogen atom from an
X-H bond by radical Y•.
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We have reported the results of unrestricted (U)B3LYP
calculations on the preferred mechanism for the degenerate
hydrogen abstraction reactions of a benzyl radical with
toluene, a methoxyl radical with methanol, and a phenoxyl
radical with phenol.3 Our calculations found that, for the first
two of these reactions, a HAT mechanism is favored.
However, for the reaction of phenoxyl with phenol, our (U)-
B3LYP calculations found a PCET mechanism to be
preferred,4 and we have presented an analysis of why the
mechanism of this reaction differs from that of the reaction
of methoxyl with methanol.

Although Becke’s three-parameter functional,5 when com-
bined with the correlation functional of Lee, Yang, and Parr,6

usually gives good results for reactions of closed-shell
molecules, the same is not true for reactions of radicals.
Truhlar and co-workers have pointed out that (U)B3LYP
calculations underestimate the barrier heights for a set of 40
HAT radical reactions, with a mean signed error of-4.8
kcal/mol.7 In the same paper, Truhlar et al. showed that
MPW1Ksa modified version of the Perdew-Wang gradient-
corrected exchange functional, with one parameter optimized
to give the best fit to the kinetic data for these 40 radical
reactionssreduced the mean signed error in the barrier
heights for these reactions to-1.3 kcal/mol.

It is not known whether B3LYP makes similar or, perhaps,
even larger errors for PCET reactions than for these 40 HAT
reactions. It is also not known whether MPW1K is more or
less accurate than B3LYP in computing the barrier heights
for PCET reactions.

To assess how well these two functionals perform in
calculations on a PCET reaction, we have carried out
calculations on the degenerate abstraction of the hydroxyl
hydrogen of ethenol (the enol of ethanal) by an ethenoxyl
radical via a PCET mechanism.

We chose this very simple reaction because we wanted to
be able to compare the performance of both B3LYP and
MPW1K against that of a high-quality ab initio method,
which could be anticipated to give reliable results. For this
purpose, we selected the G3 method.8

In this manuscript, we report a comparison of the results
of (U)B3LYP and (U)MPW1K density functional theory
(DFT) calculations with the results of G3 calculations for
computing the HAT and PCET barrier heights for O-H
hydrogen abstraction from ethenol by an ethenoxyl radical.
We have also computed the (U)MPW1K barrier heights for
both types of mechanisms in the reaction of phenol with a
phenoxyl radical, which we studied previously with (U)-
B3LYP calculations,3 and in addition, we have performed
(U)MPW1K and (U)B3LYP calculations on the reaction of
a phenoxyl radical withR-naphthol. For the last of these
three reactions, we report a comparison of the (U)MPW1K
and (U)B3LYP computational results with the experimental
results obtained by Foti et al.9

Computational Methodology
Truhlar and co-workers used the 6-31+G(d,p) basis set10 in
their comparisons of the B3LYP and MPW1K functionals,7

so we elected to use the same basis set in this study for both
types of DFT calculations. We also carried out single-point
(U)B3LYP and (U)MPW1K calculations with the aug-cc-
pVTZ basis set on the reaction of an ethenoxyl radical with
ethenol.11

The geometries of the stationary points for the G3
calculations were obtained by performing (U)B3LYP cal-
culations with the 6-31G(d) basis set.12 Unrestricted wave
functions were used for all of the calculations on radicals.
Geometries were optimized, transition structures (TSs)
located, and vibrational analyses performed using the Gauss-
ian 03 package of electronic structure programs.13 The
unscaled vibrational frequencies were used to obtain the zero-
point energies and heat capacities that were necessary in
order to convert the differences in electronic energies into
differences in enthalpies at 298 K.

Results and Discussion
Hydrogen Abstraction from Ethenol by an Ethenoxyl
Radical. Figure 2 gives the most important bond lengths
and bond angles in ethenol, ethenoxyl, the hydrogen-bonded
complex formed from them, and the transition structure for
abstraction of the hydroxyl hydrogen of the alcohol by the

Figure 2. Important geometrical parameters of the stationary
points, located by three different types of calculations, in the
reaction between ethenoxyl and ethenol.

H2CdCHsOH + •OsCHdCH2 f

H2CdCHsO• + HOsCHdCH2 (1)
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oxygen of the radical. (U)MPW1K/6-31+G(d,p), (U)B3LYP/
6-31+G(d,p), and (U)B3LYP/6-31G(d) geometrical param-
eters are all provided.14 Complete descriptions of all of the
optimized geometries are available in the Supporting Infor-
mation.

PCET, via a planar transition structure, was found to be
the preferred mechanism for hydroxyl hydrogen abstraction
from ethenol by ethenoxyl. In theC2h transition structure,
as the proton in the hydrogen-bonded complex is transferred
from ethenol to aσ lone pair in ethenoxyl, aπ electron is
transferred from the alcohol to the radical.

Attempts to find the transition structure for hydrogen
abstraction by a HAT mechanism were unsuccessful. To
estimate what the energy of such a transition structure would
be, we optimized a partially constrained geometry inCi

symmetry. In this “transition structure”, the double bonds
were constrained to planarity (i.e., the H-C-C-H and
H-C-C-O dihedral angles were frozen at 0° or 180°) and
the CdC-O-O dihedral angle was fixed at 90°. The most
important bond lengths and bond angles in the (U)B3LYP
and (U)MPW1K geometries, optimized with these con-
straints, are also given in Figure 2, and a full description is
provided in the Supporting Information.

The relative energies (and enthalpies) at the (U)B3LYP,
(U)MPW1K, and G3 levels of theory of the separated
reactants, hydrogen-bonded complex, PCET TS, and the
partially constrainedCi geometry (HATCi “TS”) are shown
graphically in Figure 3. The results given in this figure reveal
that, with the 6-31+G(d,p) basis set, (U)B3LYP and (U)-
MPW1K give nearly the same energy as the G3 calculations
for the strength of the hydrogen bond formed between
ethenol and ethenoxyl. However, with the larger aug-cc-
pVTZ basis set, the (U)B3LYP and (U)MPW1K energies
of the hydrogen-bonded complex, relative to the isolated
reactants, are both about 1 kcal/mol higher than the G3
energy.

Although, relative to the isolated reactants, (U)B3LYP and
(U)MPW1K give very similar energies for the hydrogen-
bonded complex between ethenol and ethenoxyl, the PCET
TS and the constrained HAT “TS” are calculated to be,
respectively, 9.8 and 7.5 kcal/mol lower in energy by
(U)B3LYP/6-31+G(d,p) than by (U)MPW1K/6-31+G(d,p).
Calculations with the aug-cc-pVTZ basis set give essentially
the same differences between the (U)B3LYP and (U)MPW1K
results as the calculations with the 6-31+G(d,p) basis set.
Obviously, hydroxyl hydrogen abstraction from ethenol by
ethenoxyl, by either a PCET or HAT mechanism, is predicted
to be much more facile by (U)B3LYP than by (U)MPW1K.

We assume that the G3 calculations give reliable results
for the hypothetical model reaction of ethenoxyl with ethenol.
If this assumption is valid, the G3 results, which are also
shown graphically in Figure 3, indicate that (U)MPW1K
gives a much more realistic estimate of the PCET and HAT
barrier heights than does (U)B3LYP.

For the PCET mechanism, the G3 barrier height of∆Hq

) 12.9 kcal/mol, relative to the isolated reactants, is 13.1
kcal/mol higher than the (U)B3LYP/aug-cc-pVTZ barrier
height, but only 3.4 kcal/mol higher than the (U)MPW1K/
aug-cc-pVTZ barrier height. Thus, it appears that (U)B3LYP
and (U)MPW1K both underestimate the PCET barrier height,
but (U)B3LYP underestimates it by much more than (U)-
MPW1K.15

(U)B3LYP, (U)MPW1K, and G3 all find that the HAT
“TS” is considerably higher in energy than the PCET TS.
This qualitative agreement lends credence to the preference
for a PCET over a HAT mechanism, which is predicted for
the hypothetical reaction of ethenol with ethenoxyl by all
three computational methods.

Hydrogen Abstraction from Phenol by a Phenoxyl
Radical.The finding that (U)MPW1K apparently gives much
more accurate results than (U)B3LYP for hydrogen abstrac-

Figure 3. Relative energies (and enthalpies) of stationary points, computed by different methods with different basis sets, for
the reaction between ethenoxyl and ethenol. The designation G3B3/6-31G(d) means that the geometries for the G3 calculations
were optimized with the (U)B3LYP functional and the 6-31G(d) basis set. When the results of (U)B3LYP/6-31G(d) vibrational
analyses were used, zero-point and heat capacity corrections were removed from the G3 enthalpies, so that the purely electronic
energies of the PCET TSs and the constrained HAT Ci “TSs” could be compared, not only at the (U)B3LYP and (U)MPW1K
levels of theory but also at the G3 level.
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tion from ethenol by ethenoxyl led us to reinvestigate
hydrogen abstraction from phenol by phenoxyl, using (U)-
MPW1K/6-31+G(d,p) calculations. The (U)MPW1K results
are shown graphically in Figure 4. For comparison, the results
that we previously obtained at the (U)B3LYP/6-31G(d) level
of theory,3 as well as (U)B3LYP/6-31+G(d,p) results, are
also shown in Figure 4.

Both sets of DFT calculations find that the PCET transition
structure is lower in energy than theC2h constrained HAT
“TS”. The energy difference is computed to be 4.6 kcal/mol
by (U)MPW1K/6-31+G(d,p), 6.1 kcal/mol by (U)B3LYP
and the same basis set, and 7.1 kcal/mol by (U)B3LYP/6-
31G(d). When the 6-31+G(d,p) basis set is used, the two
functionals place the hydrogen-bonded complex between
phenoxyl and phenol below the isolated reactants by almost
exactly the same energy and enthalpy.

As shown in Figure 4, the major difference between the
results obtained with the two functionals is in the enthalpy
that is computed to be required in order to pass over the
PCET TS. Starting from the isolated reactants, the activation
enthalpy for the PCET reaction of phenoxyl with phenol is
predicted to be 8.2 kcal/mol lower by (U)B3LYP/6-31+
G(d,p) calculations than that by (U)MPW1K/6-31+G(d,p).
This difference in predicted barrier heights is only 15%
smaller than the difference of 9.7 kcal/mol between the (U)-
B3LYP/6-31+G(d,p) and (U)MPW1K/6-31+G(d,p) values
of ∆Hq for the PCET reaction of ethenol with ethenoxyl.

Hydrogen Abstraction from R-Naphthol by a Phenoxyl
Radical. The activation parameters for degenerate hydrogen
exchange between phenol and phenoxyl have not been
measured, so a comparison of the very different values of
∆Hq, predicted by (U)B3LYP and (U)MPW1K, with an
experimental value is not possible. However, the exothermic
abstraction of the hydroxyl hydrogen atom fromR-naphthol
by a phenoxyl radical has been found to haveEa ) 2.2 (
0.3 kcal/mol and logA ) 8.9 ( 0.3 kcal/mol.9 Therefore,
we performed calculations on this reaction, to assess how
well (U)B3LYP and (U)MPW1K do in calculating the
activation enthalpy for it.

As shown in Figure 5, (U)B3LYP/6-31+G(d,p) predicts
a PCET TS energy that is 7.8 kcal/mol lower than that

computed by (U)MPW1K/6-31+G(d,p). (U)B3LYP un-
equivocally predicts a barrierless reaction between phenoxyl
and R-naphthol. If this bimolecular reaction really were
barrierless, it would be expected to be found experimentally
to have a negative energy of activation16 rather than the small
but positive value measured by Foti et al.9

In contrast to (U)B3LYP, (U)MPW1K predicts an activa-
tion energy that is in very good agreement with the value of
Ea ) 2.2 ( 0.3 kcal/mol, reported by Foti et al.,9 because
the calculated activation enthalpy should be based on the
isolated reactants rather than on the hydrogen-bonded
complex between them.17,18After converting the (U)MPW1K/
6-31+G(d,p) value of∆Hq ) 1.5 kcal/mol for the isolated
reactants toEa ) 2.7 kcal/mol, the (U)MPW1K activation
energy is within 0.5 kcal/mol of the experimental value.

Conclusions
A comparison of the results of (U)B3LYP and (U)MPW1K
calculations on the reaction of ethenoxyl with ethenol with
the results obtained by G3 calculations shows that all three
methods find a PCET reaction mechanism to be favored over
a HAT mechanism. However, the G3 results indicate that
the enthalpies of activation, computed by DFT with these
two functionals, are too low for both the PCET and HAT
reaction mechanisms.

Nevertheless, the errors in barrier heights made by (U)-
MPW1K are much smaller than those made by (U)B3LYP.
For example, for the favored PCET mechanism for the
reaction of ethenoxyl with ethenol, the (U)MPW1K/aug-cc-
vPTZ enthalpy of activation is 9.7 kcal/mol closer than the
(U)B3LYP/aug-cc-pVTZ value to the G3 value of∆Hq )
12.9 kcal/mol. Similarly, the barriers to the PCET reactions
of a phenoxyl radical with phenol and withR-naphthol are
calculated by (U)MPW1K/6-31+G(d,p) to be higher than
those predicted by (U)B3LYP/6-31+G(d,p) by, respectively,
8.2 and 7.8 kcal/mol. The (U)MPW1K activation energy of
Ea ) 2.7 kcal/mol for the latter reaction is in excellent
agreement with the experimental value ofEa ) 2.2 ( 0.3
kcal/mol.

Figure 4. Relative energies (and enthalpies) of stationary
points, computed by (U)B3LYP/6-31G(d), (U)B3LYP/6-31+G-
(d,p), and (U)MPW1K/6-31+G(d,p), for the reaction between
phenoxyl and phenol.3 Figure 5. Relative energies (and enthalpies) of stationary

points, computed by (U)B3LYP/6-31+G(d,p) and (U)MPW1K/
6-31+G(d,p), for the reaction between phenoxyl and R-naph-
thol.
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Because several recent studies of PCET reactions have
been based on (U)B3LYP calculations,3,4a-c,g the barrier
heights for these reactions were almost certainly underesti-
mated by the calculations. For future DFT calculations on
PCET reactions, the use of Truhlar’s MPW1K functional is
strongly recommended by the results reported here, because
MPW1K is likely to provide much more reliable results than
B3LYP.

Supporting Information Available: Geometries and
energies of all the minima and TSs on the potential energy
surfaces for the hydrogen transfer reactions of ethenol/
ethenoxyl, phenol/phenoxyl, andR-naphthol/phenoxyl (40
pages). This information is available free of charge via the
Internet at http://pubs.acs.org.
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isolated reactants, the complex is also calculated to be lower
in entropy by 28.1 cal/mol K. Thus, at 298 K,∆G ) 1.7
kcal/mol for complex formation, and the equilibrium con-
stant, in terms of mole fractions of phenoxyl,R-naphthol,
and the hydrogen-bonded complex formed from them isK
) 5 × 10-2. In the solvent mixtures used by Fotie et al., the
equilibrium constant for concentrations, expressed in mol/
L, is about a factor of 10 smaller than the value for mole
fractions. The highest concentrations ofR-naphthol used were
0.3 M, so under these conditions, the ratio of hydrogen-
bonded complex to free phenoxyl radical would have been
on the order of 10-4. There are obvious inaccuracies in using
enthalpy and entropy, computed for the gas phase, to
calculate the equilibrium constant for hydrogen-bonded
complex formation in the solvent mixtures used in ref 9.
Nevertheless, the very small equilibrium constant that we
do obtain provides good reason to believe that the phenoxyl
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does not react withR-naphthol in an irreversibly formed
hydrogen-bonded complex between them. Instead, our
calculations predict that complex formation is reversible, so
that the overall enthalpy of activation should be based on
the free reactants, rather than on the hydrogen-bonded
complex between them.

(18) A bimolecular reaction between phenoxyl andR-naphthol,
rather than a unimolecular reaction of an irreversibly formed
hydrogen-bonded complex, is more consistent with the
experimental value of logA ) 8.9 ( 0.3 for the reaction.9
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Abstract: An adiabatic conformational analysis of serotonin (5-hydroxytryptamine, 5-HT)
using quantum chemistry led to six stable conformers that can be either +gauche (Gp),
-gauche (Gm), and anti (At ) depending upon the value taken by ethylamine side chain and
5-hydroxyl group dihedral angles φ1, φ2, and φ4, respectively. Further vibrational frequency
analysis of the GmGp , GmGm , and GmAt conformers with the 5-hydroxyl group in the anti
position revealed an additional red-shifted N-H stretch mode band in GmGp and GmGm
that is absent in GmAt . This band corresponds to the 5-HT side-chain N-H bond involved in
an intramolecular nonbonded interaction with the 5-hydroxy indole ring. The influence of this
nonbonded interaction on the electronic distribution was assessed by analysis of the spin-
spin coupling constants of GmGp and GmGm that show a marked increase for C2-C3 and
C8-C9 bonds in GmGm and GmGp , respectively, with a decrease of their double bond
character and an increase of their length. The Atoms in Molecules (AIM), Natural Bond Orbital
(NBO), and fluorescence and CD spectra (TDDFT method) analyses confirmed the existence
in GmGp and GmGm of a through-space charge-transfer between the HOMO and the
HOMO-1 π-orbital of the indole ring and the LUMO σ* N-H antibonding orbital of the
ammonium group. The strength of the cation-π interaction was determined by calculating
binding energies of the NH4

+/5-hydroxyindole complexes extracted from stable conformers.
The energy decomposition analysis indicated that cationic-π interactions in the GmGp and
GmGm conformers are governed by the electrostatic term with significant contributions from
polarization and charge transfer. The lower stability of the GmGm over the GmGp comes
from a higher exchange repulsion and a weaker polarization contributions. Our results provide
insight into the nature of intramolecular forces that influence the conformational properties of
5-HT.

1. Introduction
Serotonin (5-hydroxytryptamine, 5-HT) belongs to the group
of monoamines neurotransmitters that includes catechola-

mines (dopamine, noradrenaline, adrenaline) and histamine.
5-HT is widely distributed in various organisms and controls
a wide variety of physiological and behavioral processes1
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mainly through 15 different receptors types.2 The intensity
and duration of 5-HT signaling is determined by its reuptake
into cells through the 12 transmembrane domain (TMDs)
5-HT transporter.3 The important physiological roles of 5-HT
and its implications in many pathological states has stimu-
lated intensive research on the design of drugs targeting the
serotonergic system. Since drug design needs a clear un-
derstanding of the physicochemical properties of the natural
compound that is generally used as reference for in silico
protocols, it is of prime importance to explore the confor-
mational properties of 5-HT.

At physiological pH, 5-HT is protonated4 and exists in
several conformers due to the flexibility of its ethylamine
side chain and the value taken by dihedral anglesφ1 andφ2

(see Figure 1 for definitions of ethylamine side-chain dihedral
angles). The two 5-HT dihedral anglesφ1 andφ2 can be either
in +gauche (Gp), -gauche (Gm), or anti (At ) conformation,
and the 5-HT conformers will be henceforth named in the
text as for exampleGpAt when φ1 is in the +gauche
conformation andφ2 in the anti conformation. Conforma-
tional analysis of 5-HT has been performed using various
theoretical calculations and experimental methods. Dating
back to the early 1970s, several theoretical calculations have
shown the existence of low-energy conformers of 5-HT in
the gas phase,5 and empirical and semiempirical PCILO
quantum mechanical calculations suggested that both the
GpGp andGpAt conformers exist in aqueous solution,6 a
fact confirmed by NMR experiments.7 In the crystalline state,
5-HT exhibits either aGpGp, GpGm, orGpAt conformation
depending on the nature of the salt used.8 Later, based on
this information, a mixed model including explicit water
solvent without periodic boundary conditions and an empiri-
cal force field containing a Coulombic term with a distance-
dependent dielectric constant was used to perform molecular
dynamics simulations on 5-HT.9 These simulations showed
the existence of theφ1 and φ2 in the Gp, Gm, and At
conformations in water, whereas only theGp and Gm
conformations were observed in the gas phase. A protonated
5-HT conformational analysis has been performed at the
B3LYP/6-31G(d) theory level.10 The authors have reported
a set of stable conformers including mirror images and
corresponding transition states in the gas phase, with their
relative conformational stability in various solvents modeled

implicitly by using a polarized continuum model. More
recently, gas-phase conformational analysis of protonated
5-HT has been performed at the B3LYP/6-31G(d) up to
B3LYP/6-311++G(d,p) theory levels,11 in aqueous solution
using a continuum solvent model. Unfortunately, all the
available theoretical studies on 5-HT lack a real description
of the nature and amplitude of the intramolecular interactions
that influence the conformational stability of 5-HT. The main
reason comes from the small basis sets used in the calcula-
tions to describe weak nonbonded interactions such as charge
transfer, one of the components of cation-π interactions, that
need extended basis sets to be correctly described. Since
1971, it is widely admitted that cation-π interactions between
indole π-electrons and the cationic head of 5-HT are at the
origin of the higher stability of theGmGp and theGmGm
conformers over theGmAt conformer.5b,9 Hence, a non-
negligible charge transfer could account mainly for the
stabilizing forces in those cation-π interactions. Despite some
theoretical calculations of energy decomposition that have
been performed on ammonium/pyrole or benzene com-
plexes,12 until now, no quantum chemistry calculations have
been carried out to assert the real existence of such
interactions in 5-HT. The goal of the present study was thus
to investigate the physicochemical nature of the intramo-
lecular nonbonded forces driving the conformational behavior
of 5-HT. For this purpose, we have first studied the whole
molecule of 5-HT by performing an adiabatic conformational
search in the gasphase in order to find local energy minima
and transition-state conformations. The calculated NMR
shifts and spin-spin coupling constants of three selected
local minima, i.e.GmGp, GmGm, andGmAt , were in good
agreement with available NMR experimental data. The
calculated IR spectra as well as the topological and natural
bond orbital analyses revealed the existence of a real through-
space intramolecular charge transfer between the indole
π-orbitals and the cationic head N-H antibonding orbital.
To further appreciate the relative contribution of this charge
transfer in the cation-π interaction with those of other
dispersive and nondispersive forces, we performed an energy
decomposition analysis on NH4

+/5-hydroxyindole complexes
extracted from the three whole 5-HT local minima optimized
geometries.

Our investigations enabled us to provide additional and
important insight on the cation-π interactions present in the
5-HT molecule. Furthermore, our results will be useful for
the development of accurate force fields for 5-HT, 5-HT
derivatives, and 5-HT/5-HT receptor or transporter modeling,
that are important for the preparation of new drugs.

2. Computational Methods
An adiabatic conformational analysis of 5-HT was performed
by setting the dihedral angleφ1 to 90° and -90° and by
rotatingφ2 by increments of 60°, while φ3 was left free and
φ4 was assigned to 0° or 180° (for definition of dihedral
angles, see Figure 1). At each point of the conformational
search, the geometry of 5-HT was fully optimized using the
DFT-B3LYP method13 and the 6-31G(d) basis set in the gas
phase. All the geometries and energies of stable conformers
were further refined by performing a full optimization at the

Figure 1. Atomic numbering scheme and definition of
dihedral angles of the 5-HT molecule. The four dihedral angles
are defined as φ1 (C9-C3-Câ-CR), φ2 (C3-Câ-CR-N), φ3

(Câ-CR-N-Ha), and φ4 (C4-C5-O-H5).
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B3LYP/6-31+G(d,p) theory level, followed by a vibrational
frequency analysis in order to verify that each stationary point
was a real minimum.

The transition state between two stable conformers was
located using the QST314 method. The initial guess transition
state was obtained from geometry selected along the mo-
lecular dynamics (MD) trajectory of 5-HT. Langevin MD
simulations were performed in the microcanonical ensemble
for 1000 ps. Bond lengths were constrained with the SHAKE
algorithm, and the integration time step was 2 fs using the
CHARMM molecular mechanics package (see the Support-
ing Information for details).15 Finally, vibrational frequency
analysis was performed on all optimized transition states in
order to reassert their reality.

Infrared (IR) stretch spectra, i.e. wavenumbers (ν) in cm-1

and intensities (I) in km/mol, of 5-HT conformers were
obtained using vibrational frequencies calculated at the
B3LYP/6-31+G(d,p) level. A scaling factor of 0.9605 was
applied in order to bring the fundamental stretch of indole
N-H into agreement with previously published experimental
data.16

The NMR isotropic shieldings (σ) were calculated using
the Gauge-Including Atomic Orbitals (GIAO)17 method at
the B3LYP/6-311+G(2d,2p) theory level. Calculations were
performed on the geometries optimized in the gas phase at
the B3LYP/6-31+G(d,p) theory level. The NMR shifts (δ)
for 5-HT were calculated using as references tetramethyl-
silane (TMS) for the C-atom andtert-butyl alcohol for the
proton. The one-bond NMR spin-spin coupling constants
1J(A,B)18 associated with atoms A and B were also deter-
mined.

A topological analysis was performed in order to calculate
the charge density (F) and its second Laplacian derivative
of charge density (∇2F) for the bond critical points (BCP)
using the Bader’s Atoms in Molecules (AIM) theory.19 To
evaluate the direction and magnitude of the charge-transfer
interactions, the Natural Bond Orbital (NBO)20 analysis of
5-HT conformers was performed using the NBO 3.1 pro-
gram.21 Moreover, the effects of electron delocalization and
the vertical excitation energies for the singlet excited states
of 5-HT conformers were calculated in the gas phase using
the time-dependent density functional theory (TDDFT)
method.22 All calculations were performed using the
B3LYP/6-311+G(2d,2p) theory level based on the B3LYP/
6-31+G(d,p) optimized geometries.

To get a better understanding on the nature and strength
of cation-π interactions, NH4+/5-hydroxyindole complexes
were generated using geometries of both the 5-hydroxyindole
ring and the protonated amine group, which were extracted
from whole optimized geometries of 5-HT local energy
minima. A hydrogen was added to C3(sp3) and N(sp3) atoms
in order to fill the unsatisfied valence resulting from the
broken Câ(sp3)-C3(sp2) and CR(sp3)-N(sp3) bonds. Bind-
ing energies (BE)23 of the complexes were refined from
single point energy calculations using the HF, B3LYP, and
MP2 methods at the 6-311+G(d,p) basis set. The basis set
superposition error (BSSE) for each complex was estimated
using the full counterpoise method24 at each level of
calculation.

To emphasize the constraints imposed on internal coor-
dinates in 5-HT by intramolecular nonbonded interactions,
we fully relaxed and optimized the 5-hydroxyindole ring and
the protonated amines group separately at the B3LYP/
6-31+G(d,p) theory level. We therefore compared their
internal energy within the complexes and after optimization
by calculating the 5-HT deformation energy (∆Edef).

Energy of the complexes was decomposed at the HF/
6-311+G(d,p) theory level, into physical meaningful terms25

of individual energetic components using the Kitaura and
Morokuma (KM)26 and reduced variational space self-
consistent field (RVS)27 decomposition analysis.

All quantum mechanics calculations were performed using
the Gaussian 03W28 program package, except for the KM
and RVS decomposition analysis which were performed
using Gordon and Chen29 analysis in the GAMESS USA30

package of programs. All 5-HT structures and molecular
orbitals were visualized using the ChemCraft 1.4 beta
software.31 MD simulations were performed using CHARMM
31 running on Silicon Graphics O2 R12000 workstation under
the IRIX 6.5 operating system.

3. Results and Discussion
3.1. Conformational Analysis of 5-HT. 3.1.1. Gas-Phase
Adiabatic Conformational Analysis of 5-HT. Potential
energy surface (PES) scans are helpful for generating
accurate empirical mechanics force field parameters for
5-HT. The adiabatic conformational search performed at the
B3LYP/6-31G(d) theory level revealed the existence of six
stable conformers of 5-HT and their six mirror images, in
good agreement with previously published data.10,11 Gas-
phase energies in Hartrees, the values of 5-HT dihedral
angles (φ1, φ2, and φ4), and all the conformers and their
relative energies are shown in Figure S1 and Tables S1
and S2 in the Supporting Information. The results show
that conformers1-6 and their corresponding mirror image
conformers7-12 are redundant since they have the same
internal coordinates and relative energies. The results
show that dihedral anglesφ4 of 5-hydroxyl group in
conformers1-3 are in the anti-conformation (OH-anti),
while those in conformers4-6 are in the syn-conformation
(OH-syn). Depending upon the value ofφ2 dihedral angle,
with φ1 set in theGm position, 5-HT conformers can be as
follows: (i) +gauche (GmGp) when it folds on the phenol
ring side (conformers1, 4), (ii) -gauche (GmGm) when it
folds on the pyrole ring side (conformer2, 8), or (iii) anti
(GmAt ) when it extends from the indole ring (conformers
3, 9).

Energetically, OH-anti conformers are more stable than
the corresponding OH-syn conformers. For OH-anti con-
formers, theGmGp conformer (1) is the global minima
followed by theGmGm conformer (2). For OH-syn con-
formers,GmGp and GmGm are the next most stable. In
the gas phase whatever the position (anti or syn) of the
5-hydroxy group, the lowest energy conformers correspond
to the GmGp and GmGm conformers. However, their
difference in energy is not significant. The origin of this
stability is due to the stabilizing electrostatic interactions
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occurring between theπ-electron cloud of the indole ring
and the cationic protonated amine group of 5-HT.

Reoptimization of all the conformers at the B3LYP/
6-31+G(d,p) level did not modify significantly their internal
coordinates value or their relative energies (see Tables S1
and S2 in the Supporting Information).

3.1.2. Location of Transition States on the 5-HT
Potential Energy Surface (PES).To fully scan the PES of
5-HT, to understand the interconversion process of the
ethylamine side chain between two neighboring stable
conformers and to confirm the existence of the six local
energy minima on the PES, we localized the transition-state
(Ts) structures using the QST3 method at the B3LYP/
6-31+G(d,p) theory level. To save calculation time for this
study, only the most stable 5-HT OH-anti conformers and
their corresponding mirror images were considered as
representative of the entire population of 5-HT conformers.
Using the above quantum chemistry PES study in the gas
phase, we generated the first set of empirical mechanics
parameters that were used to perform MD simulations of
5-HT. Guess conformations for the Ts study using QST3
calculations were extracted from Langevin MD simulation
trajectories by a clustering method (additional MD data are
provided in the Supporting Information, see Figure S2). The
results of QST3 optimization are shown in Figure 2 including
structures, dihedral angles, and energy barriers of Ts linking
two stable conformers. The analysis of vibrational frequency
spectra of Ts structures revealed only one imaginary
frequency indicating that all the conformations were real
transition states.

In a recent publication,10 the transition states between two
5-HT minima have been located using the QST3 method.
However, the conformers used as the reactant and the product
for QST3 calculations were arbitrarily extracted from the
5-HT PES, without any respect for the reliability of the
dynamics of the interconversion process of the ethylamine

side chain. For instance, anGmAt- like conformer was found
as a transition state between two conformers belonging to a
different group of mirror images (conformers2 and8 in the
present work). In our strategy we avoided bias in the choice
of guess transition-state conformers for QST3 calculations.
This was achieved by selecting adequately reactant and
product conformers, based on the analysis of authorized
rotation of the ethylamine side-chain dihedral angles along
MD trajectories. This strategy requires a good set of empirical
molecular mechanics force field parameters. We generated
the first set of CHARMM parameters based on the adiabatic
conformational analysis (Table S1 in the Supporting Infor-
mation) performed at the B3LYP/6-31+G(d,p) level and used
MD simulations to obtain guess transition-state conformers
for the QST3 calculations. Finally, the transition states
located using the QST3 method were used to refine the first
set of CHARMM parameters and to confirm the reliability
of the transition-state conformers. Only one imaginary
frequency was found in vibrational frequency analysis for
all optimized structures, confirming they are real transition
states with a first-order saddle point. Visual inspection of
the vectors of the atomic motions for the negative imaginary
frequency along the reaction coordinates enabled us to check
that the geometry of transition states corresponded to motions
required for the mechanistic scheme.

Figure 2 shows thatpattern 1 andpattern 3 are symmetric
since they have the same energy barriers and symmetric
geometries (dihedral angles in opposite signs),Ts1, Ts2, and
Ts3 being symmetric withTs8, Ts7, andTs6, respectively.
In pattern 1, ethylamine side-chain interconversion between
conformersGmGp, GmGm, and GmAt passes through
transition states where the dihedral angleφ2 is mostly driving
the conformational changes. The dihedral angleφ1 undergoes
changes imposed by dihedral angleφ2 in order to accom-
modate the conformation to the intramolecular nonbonded
interactions. ForTs1andTs2, dihedral anglesφ1 are similar.

Figure 2. Relative energies (∆E) in kcal/mol, dihedral angles (φ1 and φ2) in degree of local minima and Ts conformers, and
structures of all Ts localized along the interconversion pathway between 5-HT OH-anti local minimum conformations. Calculations
were performed using the QST3 Method at the B3LYP/6-31+G(d,p) theory level. Pattern 1 (black squares, triangles, and diamonds)
and pattern 3 (white squares, triangles, and diamonds) refer to the two groups of mirror images defined by the value of the
ethylamine side-chain dihedral angle φ1. Pattern 2 (black and white circles) refers to the Ts structures between the two groups
of mirror images.
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In Ts3, the attraction between the cationic head and the
π-electrons of the five-membered ring constrains the dihedral
angleφ1 to accommodate to a value of-63.73° to finally
get the value of-64.40° when Ts3 evolves toward the
GmGm conformer (conformer2). Those results, interpreted
with the above observation of a higher stability ofGmGp
conformers compared toGmGm, suggest that the most
important constraints imposed on 5-HT internal coordinates
concernGmGm conformers. However, the relative energy
betweenGmGp andGmGm conformers is very small. This
reinforces the hypothesis of an existing balance inGmGm
conformers between stabilizing intramolecular electrostatic
interactions between the cationic head andπ-electrons of
the five-membered ring and strong destabilizing repulsive
interactions.

The high relative energy ofTs3 might be attributed to a
progressive loss of stabilizing nonbonded interactions be-
tween the cationic head andπ-electrons of the indole ring
upon rotation of the ethylamine side chain fromGmGm to
GmAt conformers. These nonbonded interactions could be
sufficient to attract the cationic head and maintain the
stability of Ts3 but too weak to balance the internal
coordinate constraints imposed onφ1. Surprisingly, the
energy barrier betweenGmGm andGmGp is not high (2
kcal/mol) suggesting that interconversion betweenGmGp
andGmGm conformers is relatively easy by rotation of the
ethylamine side chain above the 5-HT ring plane. The largest
constraints imposed by steric hindrance on internal coordi-
nates inTs1 are bending anglesθ1 andθ2 that are opened
about 3° compared toGmGp andGmGm conformers (5°
and 2° for the GmAt conformerθ1 andθ2 angles, respec-
tively). The ethylamine side chain accommodates the repul-
sion upon rotation above the indole ring plane by opening
θ1 andθ2 angles. During MD simulations, interconversion
of the side chain between two groups of mirror images of
patterns 1 and 3 occurs only betweenGmAt and GpAt ,
throughTs4 and Ts5. For Ts4 and Ts5 dihedral angleφ1

the value is 0° or 180°, respectively, whereas the dihedral
angleφ2 is in anti orientation for both transition states.

3.2. Physicochemical Analysis of 5-HT.To better un-
derstand the nature of driving forces that influence the
conformational properties of 5-HT, we further investigated
the nature of intramolecular interactions and their relative
weight in 5-HT. For this purpose, we have focused our
attention on the three stable conformers1, 2, and3 (GmGp,
GmGm, andGmAt , respectively) in which the ethylamine
side chain is on the same side of the indole ring and 5-OH

groups in the anti position (Figure 3 and Tables S2 and S3
in the Supporting Information).

3.2.1. Calculated Infrared (IR) Spectra of 5-HT.
Harmonic vibrational frequencies (ν) and IR intensities (I)
of three representative conformers (Figure 3) were calculated
at the B3LYP/6-31+G(d,p) level. A scaling factor of 0.9605
was applied to frequencies of 5-HT conformers in order to
bring the fundamental indole NH stretches into agreement
with experimental results of the indole molecule (3525
cm-1).16a This sharp band is characteristic of indole deriva-
tives and commonly used for identification of tryptamine
and tryptophan derivatives.16b,32Seventy-two normal vibra-
tional modes were recorded for the three conformers.
However, only frequencies above 2800 cm-1 corresponding
to the fundamental vibration of stretch modes were analyzed
in our study. The stretching modes can be divided into three
groups: the heterocyclic system of the indole ring (aromatic
CH and indole NH stretches), the ethylamine side chain
(alkyl CH and amine NH stretches), and a hydroxyl group
(OH stretch). All stretching frequencies and intensities of
three 5-HT conformers are listed in Table S4 in the
Supporting Information. IR-stretching bands are provided in
the Supporting Information in Figure S3.

For the three conformers, the frequencies in the 2800-
3050 cm-1 region belong to alkyl CH stretches of the ethyl-
amine side chain. The lower frequencies in the 2881-2923
cm-1 and the 2985-2979 cm-1 regions were characterized
as symmetric stretches of CH2(â) and CH2(R)groups, re-
spectively. In addition, frequencies in the 2946-2971 cm-1

and the higher-frequency 3048-3035 cm-1 regions were
identified as antisymmetric stretches of CH2(â) and CH2(R)
groups, respectively. The CH2(â) stretches of theGmGp and
GmGm conformers are quite similar and have higher
frequencies and lower intensities than those found for the
GmAt conformer. The CH2(R) stretches are similar for the
GmGm andGmAt conformers and have higher frequencies
and lower intensities than those of theGmGp conformer.
The vibrational frequencies in the 3050-3130 cm-1 region
are attributed to the aromatic CH stretches of the indole
ring (3050-3080 cm-1 region for the phenyl ring and
3125-3131 cm-1 region for the pyrole ring) and are similar
for the three conformers.

The alkyl CH stretch frequencies have been claimed to
be sensitive to conformational changes in various indole
derivatives including the neutral form of 5-HT,32,33containing
a neutral ethylamine side chain through the interaction of
the CH2 group with the lone pair of amino nitrogen. In the

Figure 3. Structures of the three most stable 5-HT conformers 1, 2, and 3 (GmGp , GmGm , and GmAt , respectively). 5-OH
groups in anti position.
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cationic form of 5-HT, the observed red-shift of CH2(â)
stretch frequencies of theGmGm andGmGp conformers
as compared toGmAt comes from a phenomenon involving
electron transfer from indoleπ orbital to the CH antibonding
orbital of the CH2(â) group. This is confirmed by NBO
analysis (see below). The CH2(R) group is not affected by
π electron clouds since it is far away from the indole ring.

Particularities were observed for the three 5-HT conform-
ers in the NH stretch region (3100-3530 cm-1). All 5-HT
conformers have four NH stretches: one indole NH stretch
and three amine NH stretches. Amine NH stretch frequencies
corresponding to the NH bond pointing toward the indole
ring of GmGp and GmGm conformers are strongly red-
shifted as compared to that of theGmAt conformer, by
respectively 114 and 164 cm-1. Hence, very high intensities
of those bands were observed inGmGp and GmGm
conformers. In theGmAt conformer, no N-H bond is
pointing toward the indole ring, and the symmetric vibra-
tional frequency of the threeΝ-Η bonds are similar. Two
amine NH stretches were identified as antisymmetric stretches.
The first antisymmetric NH stretch ofGmGp andGmGm
conformers is red-shifted at 3321 cm-1 with a higher intensity
as compared to theGmAt conformer (3358 cm-1). The last
antisymmetric NH stretches ofGmGp and GmGm were
located in a similar region of frequencies (3377 and 3382
cm-1, respectively), with a blue-shift as compared to the
corresponding NH stretch ofGmAt (3358 cm-1) and a
similar intensity. The indole NH and OH stretching modes
of the three conformers are located in the 3523( 5 cm-1

and 3674( 3 cm-1 regions, respectively, with similar
intensities. For amine NH stretches, the relevant red-shifts
of harmonic vibrational frequencies and their increase in
intensity for GmGp and GmGm conformers favor the
existence of through-space NH-π/indole nonbonded interac-
tions. In theGmGp and GmGm conformers, the amine
N-Ha bond, which points toward the indole ring, is involved

in a charge transfer with the indoleπ-electrons cloud. This
is supported by the existence of several physical criteria that
are used to appreciate whether a hydrogen bond is established
between a hydrogen bond donor and a lone pair of a
hydrogen bond acceptor:16b,34(i) the elongation of the N-H
bond due to the increase of the electron population of the
N-H σ* orbital, (ii) a red-shift of the N-H frequency with
enhanced intensity, and (iii) the presence of a bond critical
point in the vicinity of the hydrogen bond that we will detail
below.

3.2.2. Calculated NMR Isotropic Shielding and Spin-
Spin Coupling Constants of 5-HT Conformers. The
correlation plots of NMR shifts (Figure 4) show a good
agreement between the calculated and the experimental
values of carbon chemical shiftsδC,35 for the three conform-
ers. We also evaluated the root-mean-square (rms) deviation
of predicted values from experimental ones for each atomic
position (Table 1). The largest deviation of calculatedδC
for the three 5-HT conformers were observed for carbon C5

(rms deviation of 12 ppm). Although the calculatedδC were
overestimated, their amplitudes at each position were quite
similar to the experimental ones. The calculated H chemical
shifts δH of H2, H4, H6, H7 and the two average values of
the side chain HR and Hâ of the three conformers are also in
good agreement with experimental data.35 The three con-
formers show low rms deviation from predicted values
(0.5-0.8 ppm) at each position, except at proton H4 for
which rms deviation is 1.08 ppm.

The analysis of calculated NMR isotropic shieldings (σ)
revealed that their values change depending upon the
conformation adopted by 5-HT (Table S5 in Supporting
Information). This is due to a change in the electron density
of some atoms in the conformers (see Table S6 in the
Supporting Information). This electron redistribution is
promoted by the formation of intramolecular interactions
between the N-Ha bond of the ethylamine side chain and

Figure 4. Correlation plots of (a) carbon chemical shift (δC) and (b) H chemical shift (δH) between available experimental and
predicted values (Table 1) obtained from the GIAO calculation at the B3LYP/6-311+G(2d,2p) theory level for the three most
stable conformers (OH anti, GmGp , GmGm , GmAt ).
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the indole ring orbitals. The charge density (calculated with
the help of the CHelpG Scheme36 modifications) concerns
mainly carbon atoms C2, C3, C4, C8, and C9. In theGmGm
and GmGp conformers, the N-Ha bond points toward
C8-C9 and C2-C3 bonds, respectively, resulting in a
withdrawal of electron density located at those bonds. The
total potential derived charge of the C8-C9 bond (charge C8
+ charge C9) decreases from 0.23, through 0.28 to 0.32 e-

when 5-HT adopts theGmGm, GmAt , andGmGp confor-
mations, respectively. This effect is most marked on carbon
C9 (from 0.09, through 0.11 to 0.21 e-). The decreasing
electronegativity at carbon C9 for theGmGp conformer and
the redistribution ofπ orbital electrons upon intramolecular
interactions led to the decrease of the calculated NMR
shieldingsσ(C9) that shifted by 1.2 and 2.8 ppm compared
to theGmAt andGmGm conformers. The carbon C8 charge
increases from 0.18, through 0.14 to 0.11 e- when 5-HT
adopts theGmAt , GmGm, and GmGp conformations,
respectively, while theGmGp calculated NMR shieldings
σ(C8) shift by 1.3 and 0.8 ppm in theGmGm andGmAt
conformers, respectively. The total bond charge of the
C2-C3 bond decreases from-0.24, through-0.20, to-0.14
e- when 5-HT adopts theGmGp, GmAt , and GmGm
conformations, respectively. This effect is not particularly
predominant at carbon C2 or C3 and the correlation between
charge decreases and calculated NMR shieldings is more
difficult to establish since electron delocalization and redis-
tribution mitigates the influence of N-Ha. Carbon C3

undergoes the influence of ethylamine side chain and the
decrease of charge (from-0.16, through-0.12, to-0.04
e- when 5-HT adopts theGmGp, GmAt , and GmGm
conformation, respectively), is accompanied by a decrease
of theGmGm conformer calculated NMR shieldingsσ(C3)
that shifted by 0.5 ppm compared to theGmAt conformer
and an increase ofσ(C3) that shifted by 5.3 ppm compared
to theGmGp conformer. This lack of correlation between
charges and NMR-carbon shiftsδ(C3) could be attributed to
a greater deviation of the calculated shieldings from the

experimental ones. Indeed, Table 1 shows that the greatest
deviation between experimental and calculated shifts con-
cernsδ(C3).

An additional atomic center of interest is represented by
C4. Carbon C4 undergoes a change in the natural charge from
-0.38, through-0.39, to-0.44 e- when 5-HT adopts the
GmAt , GmGm, andGmGp conformations, respectively. A
decrease of theGmGp conformer calculated NMR shielding
σ(C4) shifts by 2.2 and 4.5 ppm in theGmAt andGmGm
conformers, respectively.

For protons, the most significant modifications of NMR
isotropic shieldings upon 5-HT conformational changes are
observed for the amine proton Ha in gauche conformers
where the N-Ha bond interacts with the indole ringπ orbital
(Table S5 in the Supporting Information). In those conform-
ers, the proton Ha is localized within the diamagnetic
deshielding zone of the six- and the five-membered rings
for the GmGp andGmGm conformers, respectively. As a
result, chemical shifts of Ha in the theGmGm andGmGp
conformers are upfield (decrease ofσ(Ha)) with respect to
its shift in theGmAt conformer and to the shifts of the two
other protons of the amine side chain Hb and Hc. To support
this we calculated the shielding increment,∆δH, for proton
Ha in theGmGm andGmGp conformers by subtracting H
isotropic shielding calculated for optimized ammonium
molecule alone to the corresponding H isotropic shielding
in the whole 5-HT molecule at the same level of theory
(Table S7 in the Supporting Information). An increase of
the shielding increment,∆δH, for Ha confirmed the deshield-
ing of the proton in the presence of theπ orbitals in 5-HT.
An additional deshielding effect on proton Ha is due to the
electronegativity of the cationic head nitrogen atom that
decreases the electronic density around the proton Ha. This
phenomenon is due to the strong polarization of the N-Ha

bond when it points either to the C2-C3 or to the C8-C9

bond in theGmGm or theGmGp conformer, respectively.
We will demonstrate this polarization below, using the energy
decomposition analysis.

The observation of calculated one-bond nuclear spin-spin
coupling constants (1J) of 5-HT shows a decrease of the1J
upon conformational change from theGmAt to theGmGp
and GmGm conformers. This is indicated in Table 2 that
shows significant differences of calculated1J for C2-C3,
C3-C9, C4-C9, and C8-C9 bonds and modification of their
length. If theAt conformer is used as a reference for internal
coordinates, we can show for C2-C3, C3-C9, and C4-C9

bonds an elongation by 0.0018, 0.0024, 0.0041, and 0.0058
Å for the GmGp conformer and a bond length increase by
0.0059, 0.0055, and 0.0012 Å for theGmGm conformer.
As compared to theGmAt conformer, calculated1J(C2,C3),
1J(C3,C9), and 1J(C4,C9) decreased by (i) 2.3, 3.5, and 2.4
Hz and (ii) 4.7, 2.7, and 0.8 Hz for theGmGp andGmGm
conformers, respectively. The decrease of1J(C2,C3), 1J(C3,C9),
and1J(C9,C4) coupling constants in theGmGp andGmGm
conformers is mainly due to a decrease of their FC contribu-
tion (diamagnetic spin-orbit (DSO), paramagnetic spin-
orbit (PSO). Fermi contact (FC) and spin dipolar (SD)
contributions of 1J(C2,C3), 1J(C3,C9), and 1J(C4,C9) are
provided in Table S8 in the Supporting Information). Since

Table 1. Experimental and Calculated B3LYP/
6-311+G(2d,2p) GIAO δC and δH for the Three Most
Stable 5-HT Conformers (OH Anti, GmGp , GmGm , GmAt )

position exp. GmGp GmGm GmAt rms

C-Chemical Shift (δC)
C2 123.61 130.29 131.58 128.79 6.71
C3 108.38 109.06 104.76 104.24 3.20
C4 101.97 100.24 104.95 102.24 2.00
C5 150.26 163.36 162.86 161.39 12.31
C6 111.39 119.17 120.29 118.32 7.91
C7 111.72 120.92 119.30 118.84 8.02
C8 130.73 136.82 137.96 137.62 6.75
C9 127.39 134.09 131.52 132.97 5.57

H-Chemical Shift (δH)
H2 7.30 6.56 6.52 6.35 0.83
H4 7.12 5.91 6.25 5.99 1.08
H6 6.87 6.21 6.22 6.13 0.68
H7 7.42 6.87 6.80 6.65 0.65
Hâ(average) 3.12 2.57 2.63 2.52 0.55
HR(average) 3.31 2.72 2.97 2.94 0.45
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the FC operator18 probes the s-electrons at the sites of
coupling nuclei, the decrease of the FC contribution of these
1J coupling constants infers a decreasing s-character of the
σ orbital of C2-C3, C3-C9, and C4-C9 bonds. We have also
noted a decrease of the SD contribution of the multiple bonds,
indicating a decrease of theπ-character leading to a
weakening of the bonds.37 However this decrease is more
marked for some bonds, depending on the conformation
adopted by 5-HT,GmGp or GmGm. For instance, concern-
ing theGmGm conformer, the SD contribution decreased
dramatically for the C2-C3 bond and to a lesser extent for
the C3-C9 bond, since the N-Ha bond points to C2-C3.
For theGmGp conformer, the SD contribution decreased
for the C4-C9 bond. This is consistent with our above
observations on electron redistribution, isotropic NMR
shielding, and FC contributions. All of these observations
favor the existence of a plausible cation-π interactions
between N-Ha and the indole ring orbitals where a charge
transfer from theπ orbital of the 5-hydroxyindole ring to
the protonated amine group could occur. In turn, this should
affect the conjugated double bond in the indole ring,
modifying their bond character. In theGmGp conformer we
note a decrease of the s-character of the C8-C9 bondσ orbital
that accounts for the decrease of the FC contribution to the
1J(C8,C9) coupling. We also note a decrease of the SD
contribution, indicating a weakening of the C8-C9 bond.
Surprisingly, the value of1J(C8,C9) remains quite constant
for the three conformers. The calculated SD and PSO
contributions of 1J(C8,C9) change (decrease of SD and
increase of PSO) as compared to theGmGm and GmAt
conformers, reflecting the change in bond multiplicity. Since
the variation of the SD and PSO contribution of1J(C8,C9)
compensate each other and the FC contribution change
remains subtle,1J(C8,C9) is only weakly different among the
three conformers.

3.2.3. Topological Analysis of the Electronic Density.
To characterize the formation of intramolecular hydrogen
bonds in 5-HT conformers, the topological analysis of the

electron density using the “atoms in molecules” (AIM) theory
was applied.38 We used this method to detect bond paths
inside the 5-HT molecule and critical points associated with
them. Two main kinds of parameters are provided by AIM
analysis: the charge densities (F) and the corresponding
density laplacians (∇2F) at the bond critical points (BCPs).
The value of the electronic density at the BCP for a given
bond,F(rc), can be correlated to the concept of bond order38

with higher values ofF(rc) corresponding to stronger bonds.
The positive sign of the Laplacian of the charge density at
the BCP,∇2F(rc), corresponds to a closed shell interaction
that is responsible for the bonding38 where the electronic
charge is concentrated around each nucleus. This is the
typical case for ionic or hydrogen bonds. For 5-HT conform-
ers, the existence of a hydrogen bond between the N-Ha

bond and theπ orbital of the indole ring was confirmed by
the presence of BCPs linking amine Ha and indole C9
(F(rc) ) 0.011564,∇2F(rc) ) 0.05566) or C3 (F(rc) )
0.019181,∇2F(rc) ) 0.06119) atom respectively in conform-
ers GmGp and GmGm. Our results are in reasonable
agreement with the Popolier et al.38b criteria used to char-
acterize a D-H‚‚‚A type hydrogen bond, where D and A
are hydrogen bond donor and acceptor atoms, respectively,
even if the values of charge density at BCPF(rc) for the
GmGp andGmGm conformers are relatively low compared
to the values obtained with strong hydrogen bonded systems
with canonical hydrogen bonds. The Popelier et al. criteria
also include an increasing charge of the hydrogen atom
involved in the hydrogen bond. In our results, the charge of
Ha atom of gauche conformers increases as compared to the
GmAt conformer. We note also for theGmGm conformers
a higher electron density at the bond critical point as
compared toGmGp. This is in good agreement with the
above observations that suggest the presence of a stronger
hydrogen bond inGmGm, shown by a more red-shifted and
more intense band of N-Ha stretch vibration. Hence, the
interatomic distances between Ha and C9 or C3 show that
the hydrogen bond is weaker for theGmGp (Ha‚‚‚C9 ) 2.36
Å) conformer than for theGmGm (Ha‚‚‚C3 ) 2.26 Å) one.
All of the above observations confirm the existence of an
intramolecular hydrogen bond particularly in theGmGm
conformer but also in theGmGp conformer. The geometrical
constraints imposed on the internal coordinates of the
ethylamine side chain in theGmGm andGmGp conformers
prevent the formation of an ideal hydrogen bond that is
known to have strong anisotropic characteristics. Indeed, it
has been shown that the position of the ammonium cation
in interaction with the benzene ring in the most stable
cation-π complex is bidendate, with two hydrogen atoms
pointing toward the benzene ring to form an ideal hydrogen
bond.39 In theGmGp andGmGm conformers, the position
of the cationic head are largely shifted from the centroid of
the six- and five-membered rings for theGmGp andGmGm
conformers, respectively. However, in theGmGm conformer
the cationic head seems to be in a better spatial configuration
for the formation of a hydrogen bond than in theGmGp
one, with a more important overlap of theπindole andσ*N-H

orbitals. We also observed the existence, for theGmGm
conformer, of a ring critical point between theπindole orbital

Table 2. Spin-Spin Coupling Constants 1J(A,B) in Hz of
Atoms in 5-Hydroxyindole Ring Using GIAO Method at the
B3LYP/6-311+G(2d,2p) Level and Bond Distance in Å
(Differ from Bonds in At)

1J(A,B) bond distance

bond Gp Gm At Gp Gm At

N1-C2 10.3 10.4 10.6 -0.0001 -0.0014 1.3713
C2-C3 75.1 72.7 77.4 0.0018 0.0059 1.3805
C3-C9 53.8 54.6 57.3 0.0041 0.0055 1.4425
C8-C9 57.5 57.8 58.0 0.0024 0.0008 1.4192
N1-C8 11.0 10.6 10.8 -0.0027 0.0005 1.3870
C4-C9 65.8 67.4 68.2 0.0058 0.0012 1.4068
C4-C5 77.4 77.1 77.8 0.0016 0.0006 1.3909
C5-C6 66.4 66.2 67.0 0.0006 0.0011 1.4140
C6-C7 65.8 65.9 66.1 -0.0004 -0.0010 1.3900
C7-C8 70.5 70.4 71.0 0.0005 0.0005 1.3980
C5-O 24.3 24.4 24.2 -0.0032 -0.0034 1.3696
N-Ha 50.47 49.43 50.55 0.0097 0.0130 1.0258
N-Hb 50.17 51.45 50.09 -0.0007 -0.0017 1.0254
N-Hc 50.39 50.17 50.46 -0.0017 -0.0012 1.0256
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and the N-Ha bond, confirming a strong through-space
cation-π interaction.

3.2.4. Analysis of Electron Distribution in the Ground
and Excited States of 5-HT. Since we suspected the
presence of a charge transfer between the N-Ha bond and
π orbitals of the indole ring, we further studied electron
delocalization and their strength by performing the Natural
Bond Orbital (NBO) analysis on the ground state of 5-HT.
Electron delocalizations were assessed by the estimation of
the occupation number and their magnitude determined from
an analysis of the off-diagonal elements in the Fock matrix
in the NBO basis, taking into account all of the possible
donor-acceptor interactions and then calculating the strength
of all of them according to second-order perturbation theory,
(E(2)) (Table 3). The schematic representation of energy levels
and contour plots of important molecular orbitals (MOs) in
the electronic structures are presented in Figure 5. The results
of NBO analysis for the three most stable 5-HT conformers
clearly show that theσ*N-Ha antibonding orbital occupation
number in the amine group of theGmGp and GmGm
conformers is strong, suggesting that this orbital is involved
in the GmGp andGmGm conformers in a charge-transfer
process, thereby leading to the elongation of the N-Ha bond
length, followed by a downshift of stretching vibrational
frequency. The two other antibonding orbitalsσ*N-Hb and
σ*N-Hc of theGmGp andGmGm conformers and the three
σ* Ν-Η orbitals of the GmAt conformer have a lower
occupation number indicating that they are not involved in
any charge transfer. A very strong charge transfer from the
πC2-C3 orbital to theσ*N-Ha antibonding orbital is found for
theGmGm conformer with a stabilization energyE(2) of 2.80
kcal/mol. Hence, a backward direction charge transfer was
also found from the donorσN-Ha orbital to the acceptor
π*C2-C3 with a stabilization energyE(2) of 0.56 kcal/mol. A
less important, but non-negligible, charge transfer from the
πC8-C9 orbital to theσ*N-Ha antibonding orbital was shown
for theGmGp conformer with a stabilization energyE(2) of
0.56 kcal/mol. Second-order properties, such as the NMR
spin-spin coupling constant, can be used together with
HOMO-n and LUMO+n gap (HLG) energy to interpret
simply the electronic redistribution. The inverse of the energy
gap directly enters into the general expression for the
coupling constant.40 The smaller the HLG energy, the larger
the spin-spin coupling constants are expected to be. If
HLG is taken as a rough estimate of these trends, we
can see in Table 2 that the trend for1J in the three con-
formers follow the inverse of HLG. The increase of HLG

found for the GmGp and GmGm conformers as com-
pared to theGmAt conformer is due to stabilization of the
highest occupied orbitals labeled 46 and 47 (HOMO-1 and
HOMO) which are mainly indole ringπ orbitals. The
increase of the average C-C distances of the indole ring
weakens the antibonding character, increases the electronic
density at the atomic centers, and thus stabilizes the orbitals.
The value of1J(C4,C9) and1J(C2,C3) for theGmGp and
GmGm conformers respectively are smaller than for the
GmAt conformer and inversely correlated with HLG. For
1J(C8,C9) the inverse correlation with HLG is less marked
since, as mentioned above, this bond undergoes many
electron rearrangements, where SD and PSO contribution
compensate and where the density of HOMO and HOMO-1
orbital electrons is high, those orbitals mixing together under
perturbations from the nuclear spins.

To further study the electronic structure of 5-HT conform-
ers and rationalize spectroscopic properties of 5-HT, we
analyzed the vertical excitation energies of the six low-lying
singlet excited states calculated at the optimized geometry
of the ground state by using the TDDFT.

The major composition of MOs, the ground states orbital
HLG, vertical excitation energies (∆E) are listed in Table
4. We also reported calculated wavelengths (λ) and oscillator
strengths for each state of the three conformers in order to
fit with the available experimental spectra. The experimental
fluorescence spectra of 5-HT have shown a maximum emis-
sion at 336 nm in a wide pH range from 2 to 10 in aqueous
solution.41 This band shifts to 350 nm at pH 12.5 and to 380
nm with a very low quantum yield upon laser excitation at
higher pH. The 336, 350, and 380 nm emissions have been
assigned to protonated and singly and doubly deprotonated
5-HT, respectively. As shown in Table 4, the first singlet
excited state (11A) of the GmGp conformer corresponds to
a calculated wavelength of 336.77 nm, which fits almost
perfectly to the emission spectra of 336 nm. Thus, our result
strongly confirms this assignment to the cationic form of
5-HT. It is interesting to note that the maximum peak of
5-HT at neutral pH (336 nm) is blue-shifted as compared to
that of tryptophan (350 nm) and tryptamine (356 nm), which
could be attributed to the hydroxyl group in 5-HT. Those
longer wavelength emissions (around 350 nm) have been
assigned to the indole-NH3+ group interaction.41 The red-
shift of emission at high pH of these molecules has been
previously proposed to be due to reduced electrostatic
repulsion between the NH3+ group and the indole ring.42

These experimental results provide a satisfactory explanation
for the electronic excitation of theGmGp conformer. The
11A excited state of theGmGm conformer presents a
calculated wavelength of 357.58 nm (Table 4 and Table S9
in the Supporting Information), which is close to that of
tryptamine and to a lesser extent to that of tryptophan. This
indicates that the indole-NH3+ group interaction is stronger
in the GmGm conformer than that in theGmGp one. Our
results can be used to confirm the presence of a charge-
transfer between the cationic head of 5-HT and indoleπ
orbitals, shown by the NBO analysis a stronger stabilization
energy forGmGm than that forGmGp. No band could be
observed forGmAt using the TDDFT calculation, indicating

Table 3. NBO Analysis of NH-π Indole Remote Contacts
in the 5-HT Conformers Calculated Using the B3LYP/
6-311+G(2d,2p) Level of Theory

charge-transfer orbital

donor(i)/occupancy (e) acceptor(j)/occupancy (e) E(2) (kcal/mol)

GmGp
π(C8-C9)/1.60344 σ*(N-Ha)/0.02012 0.56

GmGm
π(C2-C3)/1.84178 σ*(N-Ha)/0.02797 2.80
σ(N-Ha)/1.99267 π*(C2-C3)/0.36524 0.56
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no excited indole-NH3+ interaction. Moreover, the oscillator
strength ( f) shows the highest value at the 31A state for the
three conformers. This 31A state corresponds to a wavelength
in the range of 288-293 nm, which is in a good agreement
with the 296 nm band obtained from magnetic circular
dichroism (MCD) of 5-HT stabilized by hydrogen oxalate
in 0.1 N HCl.43

The major MOs contributions involved in donor/acceptor
exchanges concern the 11A and the 21A excited states for
the three conformers and correspond respectively to HOMO/
LUMO and HOMO-1/LUMO transfers. Figure 5 shows the

electron cloud of these MOs distributed in each conformer
and the different electron densities between two correspond-
ing MOs. The electrons of HOMO and HOMO-1 orbitals
are mainly localized withinπ indole ring orbitals. For
LUMO, electrons are distributed to the NH3

+ group, within
a σ* antibonding orbital. The analysis of MOs after subtrac-
tion of electron density between HOMO and LUMO, and
HOMO-1 and LUMO, clearly shows that the excitation from
the ground state allowed the 11A and 21A states respectively
for both theGmGp andGmGm conformers. This confirms
the existence of an indole/NH3+ through-space charge

Figure 5. Energy levels (eV) of the 5-HT conformers (GmGp , GmGm , and GmAt ) at ground-state calculated using population
analysis in gas phase at the B3LYP/6-311+G(2d,2p) level of theory. The HOMO, HOMO-1, LUMO, and the density difference
between HOMO vs LUMO and HOMO-1 vs LUMO molecular orbitals were plotted with contour values from 0.05 to -0.05. Red
and blue indicate positive and negative contributions to molecular orbitals.
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transfer with a majorπfs* contribution. This is also
observed by the partial electron density loss of the indole
ring and their delocalization to one of the N-H bonds in
the cationic head. This result again confirms the previous
assignment of maximum fluorescence spectra for 5-HT at
the 11A state. Oscillator strength of the 31A state of the three
conformers is higher than that of the 11A and 21A states,
which indicates that the low-energy absorption band in MCD
of 5-HT is mainly derived from HOMO to LUMO+1 with
πfp* transfer (the plot is not shown), while this excited
state is absent in the fluorescence spectra of 5-HT.

3.3. Cation-π Interactions in NH4
+/5-Hydroxyindole

Complexes.To characterize the nature and strength of the
nonbonded intramolecular interactions in the 5-HT conform-
ers, the cationic head and the 5-hydroxy indole ring of the
three stable conformersGmGm, GmGp, andGmAt were
extracted from the whole 5-HT molecule optimized geom-
etries, and a hydrogen atom was added to the cationic head
and the 5-hydroxy indole ring to fill the unsatisfied valency
resulting in the suppression of the Csp3-Csp3ethyl side chain.
The resulting three complexes of NH4

+/5-hydroxyindole
named Gp-complex, Gm-complex, andAt -complex are
shown in Figure 6. For each complex we evaluated the total
binding energy and its different energy term contributions.
Since the results of this analysis were obtained from single
point calculations, they are useful for understanding, by

extrapolation, the amplitude and the nature of the intramo-
lecular nonbonded interactions acting in the whole 5-HT
molecule.

3.3.1. Intermolecular Interaction Potentials of NH4
+/

5-Hydroxyindole Complexes. Intermolecular interaction
energies were calculated for the three NH4

+/5-hydroxyindole
complexes using HF and MP2 methods and the 6-311+G-
(d,p) basis set. The total interaction energy and BSSE
correction for the three complexes at all levels of theory are
listed in Table 5. The actual interaction energies were not
corrected for either zero point energy or for the thermal
contribution in order to directly appreciate the correlation
effect acting on the electronic energy of the nonopti-
mized complexes. As we can see, the binding energy is
important for the three complexes and is the greatest for the
Gp-complex, regardless of the theory level, with or without
correction by the BSSE (by 3.3 and 9.6 kcal/mol with BSSE
correction as compared withGm- and At-complexes re-
spectively). The large difference between HF and MP2
calculations for the two gauche conformers can be ex-
plained because MP2 calculations take into account the
electron transitions between the occupied and the unoccupied
orbitals that affect the stability of the whole 5-HT molecule.
The fact that the electronic correlation effect is major for
the Gm- and Gp-complexes emphasizes the important

Figure 6. Structures of three NH4
+/5-hydroxyindole complexes.

Table 4. Major Orbital Contribution, Calculated Wavelength (λ in nm), Oscillator Strength ( f), and Electronic Excitation
Energies (∆E in eV) of Six Singlet-Excited States of the GmGp , GmGm , and GmAt Conformers of 5-HT Calculated Using
the TDDFT Method at the B3LYP/6-311+G(2d,2p) Level of Theory, Together with Corresponding Ground-State Gap
Energies between HOMO-n and LUMO+n (HLG in eV)

major orbital contribution

excited state character coefficients λ (nm) f ∆E (eV) HLG (eV)

GmGp
11A HOMOfLUMO 0.69821 336.77 0.0002 3.6816 0.1590
21A HOMO-1fLUMO 0.69706 309.89 0.0025 4.0009 0.1701
31A HOMOfLUMO+1 0.63991 287.66 0.0725 4.3101 0.1781

GmGm
11A HOMOfLUMO 0.70296 357.58 0.0015 3.4674 0.1485
21A HOMO-1fLUMO 0.70081 318.36 0.0179 3.8945 0.1658
31A HOMOfLUMO+1 0.64599 290.68 0.0874 4.2654 0.1759

GmAt
11A HOMOfLUMO 0.70189 454.78 0.0004 2.7262 0.1183
21A HOMO-1fLUMO 0.70167 402.00 0.0006 3.0842 0.1321
31A HOMOfLUMO+1 0.66497 292.91 0.0777 4.2328 0.1746

756 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Pratuangdejkul et al.



electronic redistribution occurring in the gauche conformer
through a transfer of charge.

However, the relative binding energies remain quite similar
when we use either the HF or the MP2 method, with or
without counterpoise correction. We also observe the same
tendency when we compare the relative binding energies
obtained with MP2 and DFT methods. The difference
between the MP2 and B3LYP results may be due to the
missing long-range (1/r6) dispersion in B3LYP calculations.
For each conformer, the effect of the dispersion energy is
smaller than the electron correlation effects. Hence, electron
correlation and dispersion energy contributions to the HF
and B3LYP binding energy respectively are greater for the
Gp- (30% and 10%) andGm-complexes (40% and 10%)
than for theAt one (30% and negligible). This suggests that
the position of the ammonium group of 5-HT, relative to
the 5-hydroxyindole ring, is not driven by dispersion energy
but rather by other energy terms. This observation was
confirmed by the energy decomposition analysis.

The geometry deformation energy (Edef) represents the
constraints imposed on the internal coordinates of the two
fragments of the complexes and is calculated by the
summation over the two monomers of a complex, of the
energy difference between a monomer taken in the confor-
mation it adopts inside 5-HT and after full optimization in
the gas phase. As we can see in Table 5,Edef is negligible
for the three complexes, suggesting that the deformation of
the monomer geometries is modest and does not alter the
relative stability of the three conformers of 5-HT brought
about by nonbonded interactions. This observation suggests
that, besides repulsive and attractive interactions, a strong
constraint applied on the internal coordinates of the ethyl
side chain of 5-HT (dihedral anglesφ1 andφ2, opening of
anglesθ1 and θ2) could also participate in the decrease of
the relative energy gap to around 1 kcal/mol between the
two gauche 5-HT conformers.

Several recent studies have pointed out that the dispersion,
quantified in terms of dynamical electronic correlation,
provides a crucial contribution to the interaction energy
between organic cations and aromatic groups and, in
particular, between ammonium ions and a benzene ring.39,44

A direct quantitative comparison of binding energies obtained
from three NH4

+/5-hydroxyindole complexes to those avail-
able for the NH4

+/benzene complex is not possible since the
indole ring of 5-HT and benzene molecule differ by their
numbers of atoms and the nature of their bonds. However,

we are able to compare qualitatively the geometries of the
two kinds of dimers which may allow us to appreciate the
importance of their dispersion energy. Lee et al. have shown
that the most stable conformer for the NH4

+/benzene complex
is the one with two hydrogen atoms directed toward the
benzene ring.39b This conformation allows an optimal
through-space interaction between the benzeneπ-HOMO
orbital and the ammoniumσ*N-H LUMO antibonding orbital.
If we compare theGp- and Gm-complexes to the NH4+/
benzene complex, only one N-H bond interacts with the
five-membered ringπ orbitals. Hence, theσ*N-Ha LUMO
antibonding orbital and theπ HOMO orbital are also tilted
and cannot lead to an optimal interaction through a maximum
overlap.

3.3.2. Energy Decomposition Analysis of NH4+/5-Hy-
droxyindole Complexes.To better understand the nature
and weight of forces involved in the intramolecular interac-
tions of the 5-HT conformers we analyzed the importance
of individual energy components (electrostatic, polarization,
charge transfer, repulsion) of the total interaction energy of
NH4+/5-hydroxyindole complexes corresponding to the
GmGp, GmGm, andGmAt conformers. The total interac-
tion energies along with the energetic components through
the KM and RVS methods using the HF theory and the
6-31G(d) and 6-311+G(d,p) basis sets are listed in Table
S10 in the Supporting Information. Whatever the method
used for energy decomposition, the total interaction energies
(∆ETOT) and the corresponding energetic components of the
Gp- andGm-complexes are higher than those obtained for
theAt -complex at the HF/6-31G(d) level, indicating a major
contribution of intermolecular interaction between the NH4

+

and 5-hydroxy indole in gauche complexes. The largest
∆ETOT is found for theGp-complex. It is greater than those
found for theGm- andAt -complexes by 3 and 6 kcal/mol,
respectively. In theAt -complex, the most important contri-
bution for∆ETOT comes from the polarization effects, since
∆EPOL accounts for 70-80% of the total interaction energy.
Clearly, there are no cation-π interactions in theAt -complex,
due to the very low charge transfer term, especially using
the RVS scheme. This observation confirms the results
obtained with NBO and the topological analysis of electron
density. Hence, the electrostatic (∆EES) and the exchange
repulsion (∆EEX) terms, combined in the∆ECEX, have a
minor contribution of around 0.5 kcal/mol.

The ∆EES and ∆EEX were found to be predominant for
the Gp- and Gm-complexes. The electrostatic attractive

Table 5. Absolute Binding Energies (BE) without Counterpoise Correction, Basis Set Superposition Error Correction
(BSSE), and Deformation Energy (Edef) in kcal/mol of Three Complexes Calculated Using the HF, B3LYP, and MP2 Methods
at the 6-311+(d,p) Basis Set

HF/6-311+G(d,p) B3LYP/6-311+G(d,p) MP2/6-311+G(d,p)

BE BSSE Edef BE BSSE Edef BE BSSE Edef

Gp
-11.34 0.34 0.95 -14.23 0.25 0.90 -16.53 1.62 0.75

Gm
-8.19 0.32 0.75 -11.41 0.23 0.70 -12.98 1.38 0.58

At
-5.17 0.13 0.28 -6.42 0.09 0.49 -6.80 0.51 0.44
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energy in theGp- andGm-complexes is similar (about 0.5
kcal/mol) while ∆EEX, the exchange repulsion energy, is
mostly marked for theGm-complex, 1.6 kcal/mol higher than
that of theGp-complex. The balance of these two compo-
nents can be simply evaluated using the∆ECEX term, which
is the summation of the∆EES and ∆EEX terms, indicating
the presence of a stronger repulsion between NH4

+ and
5-hydroxyindole in theGm-complex. The polarization term
(∆EPOL) provides an important contribution to the total energy
of the three complexes. It is important to note that the∆EPOL

obtained from the KM scheme appears to be overesti-
mated, particularly for theGp- (by -43.3 kcal/mol) and
Gm-complex (no convergence found for∆EPOL calculation)
when the increase of basis set sets up to 6-311+G(d,p). Thus,
the analysis of∆EPOL is strictly considered by using the more
physical RVS method. The energy decomposition analysis
also reinforces the importance of charge-transfer effects
(∆ECT). The stabilization due to charge transfer between the
5-hydroxyindole ring and the NH4+ group in theGp- and
Gm-complexes contributes for 30% and 40% (the KM
method) or 20% and 30% (the RVS method) of the total
interaction energy, respectively.

The above results are mainly based on the HF level with
a very moderate 6-31G(d) basis set. However, the basis set
dependence of the results was investigated by performing
KM and RVS decomposition analysis with the 6-311+G-
(d,p) basis set. As expected, the basis set superposition error
(BSSE) is reduced with an enlarged basis set, in particular
with the inclusion of polarization and diffusion functions.
The ∆EES and ∆EEX terms stay relatively constant for the
At -complex upon extension of the basis set, while those
terms change respectively by-0.35 and 1.83 kcal/mol for
the Gp-complex and by-1.27 and 2.72 kcal/mol for the
Gm-complex with respect to the 6-31G(d) basis set. For the
RVS method, the∆EPOL term increases by-1.26 and-1.16
kcal/mol for theGp- andGm-complexes, respectively, while
a slight change (-0.43 kcal/mol) occurs for theAt -complex.
The charge-transfer energy (∆ECT) of the Gp-, Gm-, and
At -complexes respectively decreases by 0.71, 0.65, and 0.35
kcal/mol. The total interaction energy (∆ETOT), which is the
summation of all energetic terms in the RVS method,
decreases by about 1 kcal/mol for gauche complexes but does
not change significantly for theAt -complex when the basis
set increases from 6-31G(d) to 6-311+G(d,p).

Our results confirm that the electrostatic component (∆EES)
is significant in stabilizing cation-π interactions within the
NH4

+/5-hydroxyindole complexes. The∆EES value is quan-
titatively dominant among the other components and is also
the only term undergoing the highest shift when the ethyl-
amine side chain is changed from the gauche to the anti
conformation. The largest contribution to the electrostatic
term is thought to be due to the interaction between the
positive charge of the ammonium nitrogen and the permanent
electric multipoles of the 5-hydroxyindole ring. A large
number of theoretical studies, performed on several different
complexes, have also shown that the cationic-π interactions
are strongly governed by electrostatic interactions between
a cation and the permanent quadrupole moment of an
aromatic ring.39a,45 Furthermore, the presence of an ion-

dipole interaction has been proposed for a series of tetra-
methylammonium-aromatic complexes.44a Recently, the en-
ergy decomposition analysis of ammonium-π complexes with
benzene, furan, pyrrole, and thiophene have shown that
electrostatic interactions drive the stability of a complex
formed between a positive charge centered on the ammonium
nitrogen and the permanent electric multipoles of aromatic
rings.12 The authors have reported both the ion-dipole and
the ion-quadrupole to significantly contribute to the elec-
trostatic term using the KM approach.

The exchange repulsion term (∆EEX) appears to be more
important in theGm- than in theGp-complex, both being
much larger than in theAt -complex. The increase of short-
range repulsion in gauche conformers comes from the frontier
orbitals overlap, which is smaller for theAt -complex since
the two monomers are far from each other. The∆EEX term
also increases when we add diffusion functions on hydrogen
atoms in the basis set. The polarization (∆EPL) and charge-
transfer (∆ECT) terms, which contribute to cation-π interac-
tions of the NH4

+/5-hydroxyindole complexes are evaluated
using the more accurate RVS method, which has been
claimed to allow a better control over the antisymmetrization
of the wave functions.12 After ∆EES, ∆EPL provides the next
important contribution to the NH4+-5-hydroxyindole total
interaction energies, which confirms the significance of the
polarization effect on cation-π interactions, as noted by
others.46 The∆EPL term is assumed to mainly account from
an ion-induced multipole interaction, its strength depending
on the amplitude of induced multipoles in the 5-hydroxy-
indole ring. The charge transfer (∆ECT) between theπ system
and the cation fragment contributes significantly to the total
interaction energy and stabilizes the NH4

+/5-hydroxyindole
complexes. This confirms the postulate of the existence of a
stabilizing charge transfer in 5-HT proposed in the 1970s
by Kang and Cho.5b This charge transfer has been precisely
analyzed using the frontier orbitals theory for some am-
monium-benzene complexes and indicated the existence of
a through-spaceπ-σ* charge-transfer.39b,44g

4. Conclusion
The present work provides a clear view on the intramolecular
energy components that are driving the conformational
properties of 5-HT. Our calculations show a very good
agreement with experimental IR and CD spectra and also
NMR data. We confirm the existence of three local minima
conformers of 5-HT with OH in the anti position (GmGp,
GmGm, and GmAt ) in the gas phase, theGmGp and
GmGm conformers being 5 kcal/mol more stable than the
GmAt conformer. This higher stability for theGmGp and
GmGm conformers arises from strong nonbonded interac-
tions established between the cationic head of 5-HT and the
indole ring. The previously suspected charge transfer oc-
curring in 5-HT is confirmed by the analysis of the IR
spectra. Indeed, analysis of stretch frequencies and intensities
have confirmed the presence of the red-shift of the amine
N-Ha stretch frequencies and elongation of the N-Ha in
gauche conformers. The analysis of calculated carbon and
proton shifts along with experimental data shows modifica-
tions of the strength and length of indole ring bonds upon
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the influence of the cationic head. For theGmGp and
GmGm conformers C8-C9 and C2-C3 bonds are elongated
respectively and show a decrease in their double bond
character due to a loss of electronic density in the vicinity
of the bond promoted by the charge transfer. The topological
analysis of charge density and natural bond orbital analyses
confirms the existence of such charge transfer by revealing
a bond critical point in the gauche conformers between Ha

and C3 and Ha and C9 in theGmGm andGmGp conformers,
respectively. The direction and magnitude of those charge-
transfers derived from the Kohn-Sham analogue of the Fock
matrix within the NBO basis shows that the charge transfers
occur between theπ HOMO-1 and HOMO orbitals of indole
ring and theσ*N-Ha LUMO antibonding orbital. The analysis
of the binding energies and their energy components in the
NH4

+/5-hydroxyindole complexes, which were generated
from geometries of whole 5-HT conformers, shows that the
contribution of the charge-transfer energy, although not
negligible, is minor compared to other terms such as
electrostatic and polarization energies.

To summarize, the two gauche conformers are stabilized
by strong intramolecular nonbonded interactions. TheGmGp
andGmGm conformers are stabilized mainly by electrostatic
interactions with a similar charge-transfer contribution.
However, the higher stability of theGmGp over theGmGm
conformer comes from stronger polarization and weaker
exchange repulsion energy contributions. Internal coordinates
energy constraints imposed on ethylamine side chain bending
and dihedral angles appear to penalize the stability of the
GmGm conformer.

To date, our work is the first to provide in detail the
physical nature of the different energy contributions that
influence the conformational properties of 5-HT and gives
the means to interpret 5-HT experimental IR, CD, and NMR
spectra. Hence, this work can be used as a solid basis for
further studies such as, for example, the influence of implicit
or explicit water solvent on 5-HT conformation or the chem-
ical route leading to some physiologically active metabolites.
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(Figure S3) and their harmonic stretching frequencies (ν)
and intensities (I) (Table S4); absolute isotropic NMR
shielding tensors (σ in ppm) of C and H atoms calculated

using the GIAO method at the B3LYP/6-311+G(2d,2p) level
of theory (Table S5); electrostatic potential derived charges
of atoms in the 5-HT conformers calculated at the B3LYP/
6-311+G(2d,2p) using ChelpG Scheme (Table S6); the
shielding increment of amine hydrogen (∆δH) calculated
using the GIAO method at the B3LYP/6-311+G(2d,2p) level
of theory (Table S7); Fermi contact (FC), spin dipolar (SD),
(paramagnetic spin-orbit PSO) contributions using the
GIAO method at the B3LYP/6-311+G(2d,2p) level of
theory (Table S8); electronic information of six singlet-
excited states of three 5-HT conformers calculated using the
TDDFT method at the B3LYP/6-311+G(2d,2p) level of
theory (Table S9); and energy components of the three NH4
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Abstract: The nuclear magnetic shieldings and magnetically induced ring currents have been

calculated for the planar ring-shaped hydrogen fluoride trimer (HF)3 at correlated ab initio and

density functional theory levels. Calculations of the magnetically induced current densities using

the gauge-including magnetically induced current (GIMIC) method show that, contrary to a recent

suggestion, (HF)3 has, at the MP2/TZVPP level, a very small ring-current susceptibility of 0.37

nA/T. Thus, only a weak net current is passing across the H‚‚‚F hydrogen bond. An external

magnetic field perpendicular to the ring plane induces strong edge currents circling around each

HF molecule giving rise to a nonvanishing magnetic shielding at the center of the ring. The

GIMIC results are supported by calculations of the long-range magnetic shielding function; the

long-range magnetic shielding is very small, indicating that the magnetically induced ring-current

is very weak. The surprisingly large nucleus-independent chemical shift (NICS) value for (HF)3

was recently taken as an indication of “H-bonded aromaticity”. The NICS value calculated at

the CCSD/QZ2P level is 2.77 ppm. The present GIMIC and aromatic ring-current shielding study

shows that some care has to be taken when using NICS values as aromaticity indices.

I. Introduction
Aromatic molecules were originally defined as planar organic
molecules fulfilling the 4n + 2 rule for the electron count,
with benzene as the archetypal example.1 Aromatic molecules
were also found to sustain diamagnetic currents when
exposed to external magnetic fields, whereas antiaromaticity
was coined to describe molecules sustaining paramagnetic
ring currents; that is, the current circles in the opposite
direction as compared to the aromatic ones.2-4 The aroma-
ticity concept has lately been extended to comprise many
kinds of molecules with electron delocalization.5 Nowadays,
it is used not only in organic chemistry but also to describe
inorganic systems.6,7 Metal clusters are found to be both
aromatic and antiaromatic.8-10 Molecules sustaining ring
currents in theσ orbitals are denotedσ aromatic. Homo-

aromatic molecules are bent organic species that sustain
strong ring currents even though they have aliphatic bonds
in the ring, which at first sight seem to interrupt the electron
delocalization of the ring.11-13 Spherical aromatic molecules
consist of approximately spherical (e.g., icosahedral) mol-
ecules fulfilling a 2(N + 1)2 rule for the number of valence
electrons.14-18 These are the magic numbers of electrons for
closed-shell model systems with an indefinitely thin spheri-
cally symmetric shell potential. Simpler three-dimensional
cage-shaped molecules are found to possess 3D aromaticity.19

Chemists are very fond of the aromaticity concept, even
though, or because, it is not very well defined. Computational
chemists have invented new computational tools to predict
and define molecular aromaticity and the degree of aroma-
ticity. As a result, regularly, new aromaticity concepts are
born, some more successful than others. Recently, Datta et
al.20,21 proposed the termH-bonded aromaticityas a new* Corresponding author e-mail: sundholm@chem.helsinki.fi.
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kind of aromaticity. Computationally, they found a significant
diamagnetic shielding at the center of cyclic HX (X) F,
Cl, and Br) trimers and interpreted it as a result of ring
currents passing the hydrogen bonds between the monomers.
They have also reported similar results for water clusters
(H2O)n.21 In their studies, nucleus-independent chemical shifts
(NICSs) were used to determine the degree of aromaticity.22

The NICS value is an often-engaged tool to assess molecular
aromaticity.23

The discovery of “H-bonded aromaticity” involving strong
ring currents across hydrogen bonds would indeed be very
intriguing. In principle, the NICS index is supposed to be
linearly related to the strength of the induced ring current.
In practice, however, the magnetic shielding at the center of
the molecule can be strongly affected by the local electronic
structure. Thus, care must be taken in the interpretation of
calculated NICS values.13,24-27 In this work, we use the
aromatic ring-current shielding (ARCS) index28 and the
newly developed gauge-including magnetically induced
current (GIMIC) method29 to study the nature of the induced
currents and to assess the degree of aromaticity of the (HF)3

ring.

II. Computational Methods
The molecular structure was optimized at the second-order
Møller-Plesset perturbation level (MP2) using the TUR-
BOMOLE program package.30 In the structure optimization,
we employed the Karlsruhe standard triple-ú valence basis
sets augmented with double polarization functions (TZVPP)
as well as Dunning’s correlation consistent quadruple-ú (cc-
pVQZ) and quintuple-ú (cc-pV5Z) basis sets.31 The molec-
ular structure was also optimized at the density functional
theory level (DFT) employing Becke’s three-parameter
functional in combination with the Lee-Yang-Parr cor-
relation functional (B3LYP)32,33using the TZVPP basis sets.

The nuclear magnetic shieldings were calculated at the
coupled-cluster singles and doubles (CCSD) level using
Ahlrichs’ quadruple-ú (QZ) quality (11s7p/6s4p) basis sets
augmented with 2d1f polarization functions for F. For H,
Ahlrichs’ QZ basis set (7s/4s) was augmented with 2p1d
polarization functions.30 We denote these basis sets QZ2P.
Magnetic shielding calculations were also performed at the
MP2 and B3LYP levels. The magnetic shielding calculations
at the MP2 and CCSD levels were performed with the ACES
II program,34-37 whereas the B3LYP and some MP2 calcula-
tions of the magnetic shieldings were done with TURBO-
MOLE.38,39The magnetically induced current densities were
deduced from the one-particle density matrix and the
magnetically perturbed density matrices calculated at the
MP2 level using the GIMIC approach.29 The ring-current
susceptibility was obtained by numerical integration of the
current density passing cut planes perpendicular to the
molecular ring. The ring-current susceptibility was also
estimated from the long-range magnetic shielding along the
symmetry axis perpendicular to the molecular plane using
the ARCS approach. The ring-current susceptibility can be
obtained by fitting the ARCS function to Biot-Savart’s
expression for a circular and infinitely thin conducting wire.

NICS values were obtained as the negative magnetic shield-
ing in the center of the molecular ring.22,23

III. Molecular Structures
The molecular structure optimized at the MP2 and B3LYP
levels are given in Table 1. At the MP2 level, the length of
the hydrogen bond increases slightly with the size of the
basis set, because the basis-set superposition error causes
some overbinding, which decreases with increasing basis-
set size. The length of the hydrogen bond is found to be
slightly longer at the MP2 level than at the B3LYP level. In
their recent study, Rehaman et al.20 obtained 10-pm-longer
hydrogen bonds at the B3LYP/6-311G++(p,d) level.

IV. Magnetically Induced Currents and
Magnetic Shieldings
The calculation of the magnetic shielding function along the
symmetry axis (the ARCS function) shows that the long-
range magnetic shielding vanishes outside the electron charge
density, indicating that the molecular ring does not sustain
any strong ring current. The ARCS function calculated at
the CCSD/QZ2P level is shown in Figure 1. The ring-current
susceptibility deduced from the ARCS function is 0.9 nA/T
as compared to the benzene value of 8 ppm.28 The ARCS
fit is not very accurate because the long-range magnetic
shielding is small as a result of the weak ring current. In the
ARCS fit, the angular coefficient is 1.88 and not 1.5 as it
should be. For comparison, a ring-current susceptibility of
0.34 nA/T was obtained by performing a numerical integra-
tion of the current density passing a cut plane of the
molecular ring through the center of the HF bond. The
current density was calculated at the MP2/TZVPP level using

Table 1. Molecular Structure of (HF)3 Optimized at the
MP2 and B3LYP Levels Using Different Sizes of Basis
Setsa

level R(H-F) R(H‚‚‚F)

MP2/TZVPP 93.7 173.9
MP2/cc-pVQZ 93.5 174.2
MP2/cc-pV5Z 93.5 175.5
B3LYP/TZVPP 94.4 173.4
B3LYP/cc-pVQZ 94.3 173.0
B3LYP/6-311G++(d,p)b 94 183

a The HF hydrogen bond is denoted with H‚‚‚F. The bond lengths
are given in pm. b Ref 20.

Figure 1. Nuclear magnetic shielding function (in ppm)
calculated at the CCSD/QZ2P level. The shielding function is
calculated from the ring center along the symmetry axis
perpendicular to the ring.
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the GIMIC approach. At the B3LYP/TZVPP level, we
obtained, in the similar GIMIC calculation, a ring-current
susceptibility of 0.44 nA/T. The ring-current susceptibility
function calculated at the MP2/TZVPP level is shown in
Figure 2. The ring-current susceptibility for benzene calcu-
lated at the CCSD/TZP level is 11.8 nA/T.29 For comparison,
the ring-current susceptibility for the edge current circling
around the HF molecules calculated at the MP2/TZVPP and
B3LYP/TZVPP levels are 9.1 and 8.8 nA/T, respectively.
The magnetically induced current density in the molecular
plane is shown in Figure 3. The current is diamagnetic on
the outside of the molecule, whereas the return current on
the inside of the HF monomer becomes paramagnetic
(negative). At the MP2/TZVPP level, the integration of the
current passing the cut plane across the hydrogen bond yields
a ring-current susceptibility of 0.37 nA/T (0.46 nA/T at the
B3LYP/TZVPP level), which is very close to the sum of
the diamagnetic and paramagnetic currents circling the HF
molecules, as it should be. The ARCS and GIMIC calcula-

tions of the ring-current susceptibility show that (HF)3 should
not be considered aromatic according to the ring-current
criterion.

The NICS values obtained at different levels of theory are
2.89 ppm (MP2/QZ2P), 2.77 ppm (CCSD/QZ2P), 2.97 ppm
(B3LYP/cc-pVQZ), and 3.24 ppm (B3LYP/TZVPP). Thus,
according to the NICS values, the ring current circling the
ring should be about one-third of the benzene value. Thus,
the NICS calculation is not capable of providing the correct
degree of aromaticity for this system, showing that NICS
values as aromaticity indices cannot be used as a black-box
tool but require careful consideration. Lazzeretti has also
recently pointed out that the NICS value is not a very reliable
aromaticity index.40 This notion is supported by our study.

Conclusion
The magnetically induced current density and magnetic
shieldings of the planar (HF)3 trimer have been studied at
ab initio and DFT levels using large basis sets. The
calculation of the long-range magnetic shieldings and the
explicit integration of the magnetically induced ring-current
susceptibility yield ring-current susceptibilities of 0.37 nA/T
(MP2/TZVPP), showing that (HF)3 cannot be considered to
be aromatic, as recently proposed by Rehaman et al.20 The
obtained NICS values are 2.77-3.24 ppm, depending on the
computational level. The surprisingly large NICS value is
not due to a magnetically induced ring-current and is,
therefore, not an indication of molecular aromaticity but a
result of the strong edge currents circling around each HF
monomer in the ring. The ARCS and GIMIC calculations
clearly show that the (HF)3 ring is nonaromatic and that NICS
values as aromaticity indices should be used with care.
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Abstract: Recently, we have proposed an efficient method in the Kohn-Sham density functional

theory (DFT) to study systems with a constraint on their density (Phys. Rev. A 2005, 72, 24502).

In our approach, the constrained state is calculated directly by running a fast optimization of the

constraining potential at each iteration of the usual self-consistent-field procedure. Here, we

show that the same constrained DFT approach applies to systems with multiple constraints on

the density. To illustrate the utility of this approach, we focus on the study of long-range charge-

transfer (CT) states. We show that constrained DFT is size-consistent: one obtains the correct

long-range CT energy when the donor-acceptor separation distance goes to infinity. For large

finite distances, constrained DFT also correctly describes the 1/R dependence of the CT energy

on the donor-acceptor separation. We also study a model donor-(amidinium-carboxylate)-
acceptor complex, where experiments suggest a proton-coupled electron-transfer process.

Constrained DFT is used to explicitly calculate the potential-energy curves of both the donor

state and the acceptor state. With an appropriate model, we obtain qualitative agreement with

experiments and estimate the reaction barrier height to be 7 kcal/mol.

1. Introduction
Density functional theory (DFT) as in the framework of
Hohenberg, Kohn, and Sham1,2 is a ground-state theory
because there is a one-to-one mapping between the ground-
state density and the external potential. Time-dependent DFT
(TDDFT) is based on the analogous mapping between the
time-dependent density and external potential3 and is an
extremely useful tool for calculating excitation energies
through the linear response of the ground-state density.4,5

TDDFT, in principle, exactly produces the whole electronic
spectrum. In practice, even with the seemingly crude
adiabatic local density approximation (ALDA) where the
ground-state time-independent exchange correlation func-
tional is used in place of the time-dependent exchange
correlation action, TDDFT calculations give excitation
energies of low-lying states that agree well with experi-
ments.6,7 However, there are also a few well-known failures
of ALDA and the approximate ground-state functional
employed in TDDFT. For example, Rydberg states can only

be correctly described by TDDFT after an asymptotic
correction to the ground-state Kohn-Sham (KS) potential.8-10

Here, the exchange correlation potential is forced to decay
as -1/r asymptotically withr being the distance from the
nuclei. Recent studies also indicate the importance of the
intermediate part of the exchange correlation potential.11,12

Another failure of ALDA is that excitation energies of long-
range charge-transfer (CT) states are seriously in error
because of the local approximation in the exchange correla-
tion kernel.13-15 Long-range charge transfer is a key energy-
transfer step in biological photosynthetic complexes,16 dye-
sensitized solar cells,17 and organic light emitting diodes.18

The failure of TDDFT for CT states puts its application to
these systems in jeopardy. Therefore, much effort has been
spent to explore the origin of the failure, and corrections
have been proposed.19-24 The origin of the failure has been
linked to the derivative discontinuity of the exchange
correlation potential25 as well as self-interaction error. The
energy of a long-range CT excitation can be approximated
as the energy required to remove an electron from the
electron donor, that is, the ionization potential (IP) of the* Corresponding author fax: 617-253-7030; e-mail: qinwu@mit.edu.
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donor, minus the energy gain of putting the electron to the
acceptor, that is, the electron affinity (EA) of the acceptor,
plus a correction of the Coulomb interaction (cf. section 3.1
below). However, in DFT, though the highest occupied
molecular orbital (HOMO) energy is the IP, the energy of
the lowest unoccupied molecular orbital (LUMO) cannot be
associated with EA because of the derivative discontinuity.25

ALDA, on the other hand, gives a long-range CT excitation
energy that is simply the energy difference between the
HOMO of the donor and the LUMO of the acceptor because
the kernel is local and provides no correction for long-range
Coulomb interactions between the particle and hole. Thus,
the ALDA excitation energies of long-range CT states are
not reliable.

Recently, we have shown26 that long-range CT states can
be accurately captured through a constrained DFT method.27

Constrained DFT is based on time-independent ground-state
DFT. It focuses on a system whose ground-state density is
required to satisfy some specific constraint. With the
Lagrange multiplier approach, a constraining potential is
introduced to enforce the desired density constraint. The key
observation we make is that any excited state that has a
qualitatively different density from the ground state can be
obtained using constrained DFT. For instance, in a system
consisting of an electron donor (D) and an electron acceptor
(A), the ground state might have both the donor and acceptor
being neutral (DA). In many applications, one is interested
in the particular CT excited state that has a positive charge
on the donor and a negative charge on the acceptor (D+A-).
One can obtain this low-energy CT state by minimizing the
total energy under an explicit constraint that the electron
density has to correspond to D+A-. Because constrained DFT
calculates the CT state directly rather than as a time-
dependent response of the ground state, it avoids the
problems associated with the exchange correlation kernel in
ALDA. Therefore, constrained DFT gives good results for
long-range CT state energies.26

Constrained optimization is, of course, not new to DFT.
There is a basic constraint that has to be satisfied by all DFT
methods when they minimize the energy: the electron density
integrates to give the total number of electrons. The important
quantity associated with this constraint is chemical potential
(for a detailed discussion of chemical potential, see ref 28).
In the Kohn-Sham formalism of DFT, where the lowest-
energy orbitals of a noninteracting system are used to
construct the electron density, the chemical potential can be
chosen as any value between the energy levels of HOMO
and LUMO. However, the constraining potentials associated
with other constraints such as those for the CT states are
not so obvious to determine. Therefore, most applications
of constrained DFT rely on scanning over various potentials
to find the one that meets the target criterion.27,29-31 This is
equivalent to applying various perturbations to the ground
state and so is also referred to as the “perturbed ground state”
method.32 Recently, we have developed a direct optimization
method to calculate the constraining potential.26 Our method
starts from the usual Lagrange multiplier approach for
constrained optimization problems. However, instead of
treating the constraining potential and orbitals as independent

variables, we make use of the stationary equations for the
orbitals and the technique of optimized effective potential33,34

to transform the energy functional into a concave function
of the constraining potential only.35 The maximum then
exactly corresponds to the target state. Because both the first
and second derivatives are easily calculated, the optimization
is very efficient. Also, our method yields the target state with
one self-consistent field (SCF) calculation, which is com-
putationally much less intensive compared to the scanning
method. We have shown that constrained DFT gives very
good results for long-range CT states:26 the excitation energy
is accurate and displays a negative inverse dependence on
the donor-acceptor distance as it should. Recently, there
have been suggestions of doing constrained calculations with
wave-function-based methods.36,37We look forward to more
exciting results in that aspect also.

In this report, we present the direct optimization method
to handle systems with multiple constraints. Details of our
implementation are described, such as the direct inverse of
iterative subspace (DIIS) approach used in assisting SCF
convergence and a comparison of different electron popula-
tion schemes. We then test the method with calculations of
infinitely separated CT states as well as a model system for
proton-coupled electron transfer. Finally, we make a con-
nection between constrained DFT and the Marcus theory of
electron transfer38,39and briefly discuss possible applications.

2. Method
2.1. Constrained DFT with Multiple Constraints. Suppose
there arem constraints that one wants to impose on the
electron density, and thekth constraint can be written, in
general, as

where σ stands for eitherR or â spin, wk is the weight
function that defines the constrained property, andNk is the
constraint value.Fσ is calculated as∑i

Nσ|φiσ(r )|2 in the KS
scheme, withφiσ being theith lowest energy orbital and
Nσ the number ofσ electrons. The sum ofFR andFâ gives
the total electron densityF. Our goal is to minimize the
electronic energy, a functional ofF, under all constraints
in eq 1. Creating a Lagrange multiplier,Vk, for each con-
straint and adding every product of the corresponding
multiplier and constraint to the energy functional forms a
new functional:

E[F] in the KS scheme is calculated by

whereJ is the classical Coulomb energy,Exc is the exchange
correlation energy, andVn is the external potential. The

∑
σ
∫ wk

σ(r ) Fσ(r ) dr - Nk ) 0 (1)

W[F,{Vk}] ) E[F] + ∑
k

m

Vk[∑
σ
∫ wk

σ(r ) Fσ(r ) dr - Nk] (2)

E[F] ) ∑
σ
∑

i

Nσ 〈φiσ| -
1

2
∇2|φiσ〉 + ∫ dr Vn(r ) F(r ) + J[F] +

Exc[F
R,Fâ] (3)
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stationary equations ofW with respect to the orbitals, which
are required to be normalized, then are

with a similar one forφiσ
/ . These are the standard KS

equations except for the addition of constraining potentials,
∑k

mVk wk
σ(r), in the effective Hamiltonian. Equation 4 is

solved together with eq 1 to yieldVk andφi. In the following,
when there is no confusion, we simply useVc to represent
the set of{Vk}, wherek ) 1, ...,m, and the same applies to
Nc andwc.

Because, for any givenVc, eq 4 uniquely determines a set
of orbitals, if only the orbitals from eq 4 are to be explored,
W becomes a function ofVc only. Furthermore,W(Vc) is a
concave function ofVc as we now show. Following ref 35,
the first derivatives ofW(Vc) are

Here, the fact thatδW/δφiσ
/ ) 0, that is, eq 4, has been used.

The stationary point ofW(Vc), which means∂W/∂Vk ) 0,
then restores the constraints of eq 1 automatically. It remains
to show that the second derivative matrix (Hessian) ofW(Vc)
is nonpositive definite to prove thatW(Vc) is concave.
Starting from eq 5,

Here, the first-order perturbation theory is used to evaluate
δφiσ(r)/δ[Vl wl

σ(r′)]. In the final expression, the indexi goes
over occupied orbitals, whilea only has to go over the
unoccupied orbitals because the summand is antisymmetric
with the exchange ofi and a. The Hessian is nonpositive
definite because, for anyVc,

This is true because in the KS scheme the occupied orbitals
are chosen as the lowest eigenstates; hence,εiσ - εaσ < 0,

while the numerator is non-negative. This implies that there
is only one stationary point ofW(Vc) and that it is a
maximum. Thus, by optimizingW through varyingVc, one
can find the constraining potential that exactly yields the
ground state of the constrained system. Because both the
first and second derivatives are easily calculated, the
optimization can be done efficiently.

To study charge-transfer states, which are the focus of this
work, one can put two separate constraints simultaneously
on the donor and acceptor charges. Alternatively, one can
impose just one constraint on the charge difference between
the donor and the acceptor; that is,Nc ) (ND - NA)/2, where
ND andNA are the net charges on D and A.26 This can be
done by defining the weight function in eq 1 to be positive
on the donor and negative on the acceptor, which effectively
constrains both the donor and the acceptor, and should give
the same result for the charge-separated state as that using
two constraints. Therefore, in what follows, we choose to
use one constraint for simplicity.

2.2. Convergence.We have implemented the direct
optimization approach in NWChem.40 Our method is for-
mulated as an outer loop and an inner loop. First, to solve
the KS equations, a SCF procedure is employed, wherein
orbitals are iteratively improved. This constitutes the outer
loop. Second, at each SCF iteration, an optimization is carried
out to find the optimalVc, which is the inner loop. For the
optimization, the availability of both the first and second
derivatives recommends the use of Newton’s method (see,
for example, ref 41), which can reduce the number of inner
iterations. This is important because every trialVc demands
a matrix diagonalization to obtain the corresponding orbitals.
However, because onlyVc is updated and the Fock matrix
is not rebuilt at each inner iteration, the inner loop is still
relatively cheap, at least for atom-centered basis sets where
the number of basis functions per atom is small.

DIIS is a powerful tool to assist the convergence of SCF
procedures. With DIIS, the current Fock matrix at thenth
iteration is replaced by a linear combination of previous Fock
matrices. A detailed description of how to determine the
linear coefficients is provided by Pulay.42,43 Now that there
is an extra inner loop, constrained DFT can still make use
of DIIS to accelerate the outer-loop convergence. But because
of changes to the KS equations in eq 4, the Fock matrix
needs to be handled carefully. The way we use DIIS in our
calculations can be summarized as follows: (1) Construct
the current Fock matrixF from the current density matrix
P. (2) Use the optimalVc from the last iteration to build the
constrained Fock matrixFc ) F + Vcwc. (3) Determine the
DIIS linear coefficientsdi, and replace the current Fock
matrix with F* ) ∑i

ndiFc
i . (4) Fix F*, and optimizeVc again

until the constraints are satisfied. (5) Obtain the new density
matrix from F* and the optimizedVc. The newP and the
optimizedVc are then fed into the next iteration, and the
above steps are repeated until convergence. We find that the
modified SCF procedure is as robust as that in normal DFT
calculations.

2.3. Electron Population in a Molecule.For CT, the
density constraints are generally expressed as constraints on
the number of electrons associated with an atom (or a group

[-
1

2
∇2 + Vn(r ) + ∫ F(r ′)

|r - r ′|
dr ′ + Vxcσ(r ) +

∑
k

m

Vk wk
σ(r )]φiσ ) εiσφiσ (4)

∂W

∂Vk

) ∑
σ
∑

i

Nσ ( δW

δφiσ
/

∂φiσ
/

∂Vk

+ cc) +
∂W

∂Vk

) ∑
σ
∫ wk

σ(r ) Fσ(r ) dr - Nk (5)

∂
2W

∂Vk∂Vl

) ∑
σ
∑

i

Nσ ∫ wk
σ(r ) φiσ

/ (r )
δφiσ(r )

δ[Vl wl
σ(r ′)]

wl
σ(r ′) dr dr ′+ cc

) ∑
σ
∑

i

Nσ ∫ wk
σ(r ) φiσ

/ (r )∑
a*i

φaσ
/ (r ′) φiσ(r ′′)

εiσ - εaσ

φaσ(r )

wl
σ(r ′) dr dr ′ + cc

) 2∑
σ

∑
i

Nσ

∑
a>Nσ

〈φiσ|wk
σ|φaσ〉〈φiσ|wl

σ|φaσ〉

εiσ - εaσ

(6)

∑
k,l

m

Vk

∂
2W

∂Vk∂Vl

Vl ) 2∑
σ

∑
i

Nσ

∑
a>Nσ

〈φiσ|∑
k

m

Vk wk
σ|φaσ〉2

εiσ - εaσ

e 0 (7)
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of atoms) in the molecule, that is, the electron population.
There is no unambiguous way of defining an atom in a
molecule; nevertheless, this concept must be defined for
chemists.44 When we calculate the electron population, we
first consider the easiness of its implementation in existing
DFT codes. We will further explore the optimal definition
in our future work.

It is preferable to have the electron number of the
constrained area calculated byNc ) Tr(Pwc), where Tr stands
for the matrix trace,P is the density matrix, andwc is a
weight matrix in the basis set space defining both the
constrained area, that is, the donor and acceptor groups, and
the constrained property, that is, the charge difference
between the donor and the acceptor.wc should be formed at
the beginning of a calculation and remain unchanged
throughout the calculation. Below, we show how the Mul-
liken population, the Lo¨wdin population, and Becke’s
multicenter integration scheme, all of which are readily
available in most DFT codes, can be easily turned into a
weight matrix.

For Mulliken populations,45 the electron population of a
group, for example,C, of atoms in a molecule is calculated
as

whereS is the overlap matrix and the Mulliken weight matrix
wc

M is

For Löwdin populations,46 the population of the same
group of atoms is given by

where wcλν
L ) ∑µ∈C Sλµ

1/2Sµν
1/2, defining the Löwdin weight

matrix.
Becke’s multicenter integration scheme47 is widely used

in DFT calculations. Here, the integration of the whole
molecule is decomposed into single-center integrations by
assigning a relative weight functionwn(r ) to each nucleus
n. wn(r ) is equal to 1 around its own nucleus and drops to 0
rapidly but continuously when in a region closer to another
nucleus. Hence, these weight functions partition the molecule
into fuzzy cells, and each cell can be viewed as an atom.
Projecting the weight functionswn(r ) of the atoms inC from
real space to the basis set space then forms the Becke weight
matrix wc

B with wcλν
B ) ∑n∈C ∫ dr øλ(r ) wn(r ) øν(r ).

First, we compare the results of the above three population
schemes. In Figure 1, the constraining potential and the
increase of total energy are plotted against the amount of
charge separation between the two N atoms in the N2

molecule with a bond length of 1.12 Å. The Mulliken
population apparently gives very different results from the
Löwdin population and the Becke weights population. The
unusually small changes in the potential and energy indicate
that the results of the Mulliken population are qualitatively
wrong. The reason is that the Mulliken population is not
defined by a projection operator50sfor example, a Mulliken
population can be negativestherefore, Mulliken populations
do not give well-defined constraints. The difference between
the Löwdin population and the Becke weights population,
though not small for N2 where the two atoms are very close
to each other, becomes insignificant when the donor and the
acceptor are far apart. This point is well-illustrated in Figure
2, where the constraining potentials and energies of the CT
states for the zincbacteriochlorin-bacteriochlorin (ZnBC-
BC) complex21 are shown. Here,Nc ) 1 is the ZnBC+-
BC- state andNc ) - 1 is the ZnBC--BC+ state. Only
results of the Lo¨wdin population (black triangles) and the
Becke weights population (lines) are presented, and they are
nearly indistinguishable. Because the Lo¨wdin population is
easier to compute and more commonly used, it will be our
first choice in all calculations. We have also tested a variant
of the Löwdin population, namely, the atomic-orthogonalized
Löwdin population,51 and found the same qualitative results
as those for the Lo¨wdin population.

3. Calculations and Results
3.1. Charge-Separated States at an Infinite Distance.A
good test of our method is to calculate the energy of a charge-
separated (CS) state at an infinite distance,ECS(∞). Consider
a system of an electron donor and an acceptor that are both
neutral initially. The CS state is formed by transferring one
electron from the donor to the acceptor. When the donor
and the acceptor are far apart and there is nothing between
them, one can make the valid approximation to treat both
parts as point charges and obtain the relationship between

Nc ) ∑
µ∈C

(PS)µµ ) Tr(Pwc
M)

wcµν
M ) {Sµν if µ ∈C andν ∈ C

1
2
Sµν if µ ∈C or ν ∈ C

0 if µ 3 C andν 3 C

Nc ) ∑
µ∈C

(S1/2PS1/2)µµ

) ∑
µ∈C

∑
νλ

Sµν
1/2PνλSλµ

1/2

) ∑
νλ

Pνλ∑
µ∈C

Sλµ
1/2Sµν

1/2

) Tr(Pwc
L)

Figure 1. Energy and constraining potential as against the
charge separation in N2 with different population schemes.
Squares: Becke weights population. Triangles: Löwdin popu-
lation. Dots: Mulliken population. Calculations are done using
Becke’s three-parameter hybrid functional48 with Lee-Yang-
Parr correlation49 and a 6-31G* basis set.
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the energy of the CS state and the separation distance (R) as
In our previous report,26 we have shown the excellent linear

dependence ofECS(R) on 1/R given by constrained DFT.
Here, we study the valueECS(∞). It is evident thatECS(∞)
should equal the sum of individually calculated energies of
D+ and A-. Therefore, by fittingECS(R) and 1/R data to a
straight line, the intersection parameter, which isECS(∞),
should have the same value asED

+ + EA
-.

We have tested CS state energies of three donor and
acceptor molecular pairs as listed in Table 1. All calculations
are done with the B3LYP functional48,49,52and 6-31G* basis
set. Molecules are placed in two parallel planes that are
perpendicular to the axis connecting their centers. The
distance between the planes is defined asR, and five different
R values are used, starting fromR ) 8 Å and increasing by
0.5 Å at each point. The differences betweenECS(∞) and
ED

+ + EA
- in all three cases are less than 1 millihartree,

which are attributable to the point charge approximation and
fitting errors. Thus, constrained DFT has the correct limit
for a CS state. Together with the linear relationship shown
in our previous work,26 these tests demonstrate that con-

strained DFT is very appropriate to study long-range charge-
separated states.

In the CS state calculations, it is important to use the
unrestricted Kohn-Sham (UKS) method to break the spin
symmetry because the ions are both spin-polarized and
calculated with UKS. Though restricted KS (RKS) energies
display a linear dependence on 1/R too, RKS approaches a
different asymptotic value. For instance, the RKSECS(∞)
for the H2O-F2 pair is -275.273 965 hartree, significantly
higher than the unrestricted value-275.392 850 hartree.

Before we present more results, we want to explore the
reason constrained DFT works for long-range CT states while
TDDFT fails. Here, we follow the argument of Dreuw and
Head-Gordon.21 Figure 3 is a sketch of the frontier orbitals
of the donor and acceptor molecules for the ground and CT
states. Zero overlap between the orbitals of D and A is
assumed. Because TDDFT uses the ground state as the
reference to calculate the CT state (through linear response),
it requires exact exchange to correctly account for the
electron-hole Coulomb attraction, which is missing in
existing pure density functionals. It also suffers from the fact
that the LUMO energy in DFT cannot be connected with
the electron affinity when it uses orbitala of the ground state
for such a purpose. Constrained DFT builds the CT state
directly, so the reference is not the ground state anymore,
but the real CT state. Therefore, the electron-hole Coulomb
interaction is calculated classically. Moreover, orbitala′ of
A- is now the HOMO, which can be used as an approxima-
tion to EA of A.53 The excitation energy of the CT state
then is approximately

which is the same formula as that used in ref 22.

Figure 2. Energy and constraining potential as against the
charge separation in the ZnBC-BC complex (shown above).
Results of the Becke weights population form the line, and
the black triangles are data of the Löwdin population. Calcula-
tions are done with Becke’s exchange functional52 and LYP
correlation functional49 using a 6-31G* basis set.

Table 1. Comparison of Charge-Separated State
Energies with the Electron Donor (D) and Acceptor (A)
Infinitely Apart and the Sum of Ionic Energies of D and Aa

D A ED
+ + EA

- ECS(∞)

N2 N2 -218.360 411 -218.361 386
H2O F2 -275.391 972 -275.392 850
C2F4 C2H4 -553.595 853 -553.595 591
a All numbers are in hartrees.

ECS(R) ≈ - 1
R

+ ECS(∞) (8)

Figure 3. Illustrative picture of the frontier orbitals of the
ground and CT states. The donor and acceptor molecules are
far apart, so an orbital from D does not overlap with that from
A. Note that orbitals i and a are different from i′ and a′.

ωCT ≈ - (i′i′|a′a′) - εi + εa′

≈ -1/R + IPD - EAA (9)
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3.2. Electron Transfer through Hydrogen-Bonded
Interfaces.Next, we study the electron transfer in a donor-
(amidinium-carboxylate)-acceptor complex. Amidinium
and carboxylate form a hydrogen-bonded interface that
models the aspartate-arginine salt bridges in many important
biological structures54-59 and is a well-defined model for
studying proton-coupled electron-transfer (PCET) reactions.
Extensive studies on the kinetics of this complex have been
reported experimentally and theoretically.60-63 To predict the
kinetics theoretically, it is very important to obtain the
potential-energy surface for proton transfer, which can be
calculated with constrained DFT.

Here, we pick the system1, as shown in Figure 4, for our
study,61 where tmbpy) 3,3′,4,4′-tetramethyl-2,2′-bipyridine.
In this system, the electron donor is (tmbpy)2RuII(Mebpy),
where Mebpy) 4-methyl-2,2′-bipyridine, and the acceptor
is 3,5-dinitrobenzene. As a first attempt, we optimized the
geometry of1 with the B3LYP functional and 6-31G* basis
set, which is done with the Gaussian 03 program.64 Unfor-
tunately, one of the bridge protons moves away from the
nitrogen and forms a bond with the oxygen. Thus, the
structure of1 in Figure 4 is not the most stable configuration
in the gas phase, probably because the positive charge on
RuII repels the bridge protons so that one of them is pushed
away. What makes1 stable in solution is solvent molecules,
which are difficult to include in our calculations. Therefore,
we adopt the model system2 shown in Figure 4. The model
system has an overall negative charge because an electron
transfers from ruthenium to Mebpy upon excitation. How-
ever, during the excitation process, the nuclear framework
should not change significantly (i.e., we make the Franck-
Condon approximation). Thus, we optimize the geometry of
2 at zero charge, that is, before the electron is injected. The
optimized structure agrees qualitatively with the picture in
Figure 4, with both bridge protons on the nitrogen side. The
N-H bond length and the N-O distance are 1.0817 and
2.6181 Å, respectively, for the upper bridge and 1.0788 and
2.6261 Å, respectively, for the lower bridge. In both bridges,
the N-O distance equals the sum of N-H and O-H
distances, indicating that N, H, and O can be connected by
a straight line. We then fix all nuclear positions except for
the upper bridge proton, which we take as the one coupled
with the electron transfer. This proton is moved manually
from N to O at several points along the bridge, and the energy
at each point is calculated. According to B3LYP calculations,
the charge is almost evenly distributed over the donor and

the acceptor at all proton positions. This is because of DFT
methods’ artificial stabilization of systems with fractional
numbers of electrons.65,66Hence, normal unconstrained DFT
calculations cannot predict the correct electronic configura-
tion of this molecule. Instead, energies of the states that have
the charge constrained on the donor (Mebpy) or the acceptor
(dinitrobenzene) are calculated at each point. With the
potential-energy curves of these two states, one can then tell
the preferred electronic state as the proton transfers.

We use D-NOA and DNOA- to denote the donor state
and the acceptor state, respectively. Experimental evidence
suggests that a bridge proton moves from the nitrogen side
to the oxygen side as an electron transfers from the donor
to the acceptor.61 Thus, one expects the energetic picture to
be that D-NOA has a lower energy when the proton stays
with the nitrogen and DNOA- has a lower energy after the
proton transfers to bond with the oxygen. Figure 5a shows
the constrained B3LYP results using the 6-31G* basis set
and Löwdin population. In this graph as well as in Figures
5b and 6, the (0,0) coordinate represents the state with the
charge constrained on the acceptor and the proton at the
equilibrium position for the neutral complex. As the position
coordinate increases, the proton moves closer to the oxygen.
It is clear from this graph that DNOA- is a more stable state
at all proton positions. This is contradictory to the experi-
mental results. The calculation results do not change
qualitatively when the Becke weights population is used
(lines in Figure 5b). We also tested a different functional:
B97-2,67 which is reported to be better in predicting reaction
barriers,68 but the same picture is obtained (pluses in Figure
5b). Finally, we used a much larger basis set of 6-311++G**,
but the DNOA- is still much lower in energy than D-NOA
(squares in Figure 5b).

To test the reliability of DFT methods in this case, we
calculated the EA of Mebpy and dinitrobenzene. We took
the geometry of Mebpy and dinitrobenzene as they are in
the model system, used a hydrogen to terminate each group,
and then calculated the vertical EA asE(neutral)- E(anion)
at the same geometry. With B3LYP and 6-31G*, the vertical
EA of Mebpy is -7.9 kcal/mol, which means its anion is
not stable. This result is consistent with the fact that there
have been no experimental observations of the EA for this
molecule. The vertical EA ofm-dinitrobenzene is 30.2 kcal/
mol, in good agreement with the experimental value 38.05
kcal/mol.69 This result concurs with other findings that DFT
generally gives a good approximation to EA.70-72 With such

Figure 4. Real (1) and model systems (2) in studying electron transfer through hydrogen-bonded interfaces.
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a big difference in EA, it is then not strange that the electron
prefers to be with dinitrobenzenesthe electron acceptor in
the model complexswhich means DNOA- should be lower
in energy than D-NOA as found by constrained DFT.

Realizing that the discrepancy between our calculation
results and the experimental results is probably not a
weakness of DFT, we go back to check the model system
that we chose. When we use the model system2 to replace
the real system1 and put a negative charge on the model

system, we neglect the positive hole on RuII(tmbpy)2. While
the actual charge distribution is hard to determine without a
full scale calculation, its effect on the relative energy of the
two locally charged states of the model system can be
analyzed: with the positive fragment much closer to the
donor than to the acceptor, it will bring down the energy of
D-NOA more than that of DNOA-. To illustrate the effect,
we simulate the positive fragment simply by putting a point
charge at the location of Ru in the real system. The point
charge is in the same plane as Mebpy and has a distance of
2.10 Å from both nitrogens in Mebpy. This choice is
determined from the optimized geometry of (tmbpy)2RuII-
(Mebpy)-amH+. Placing a whole charge of+1 would
exaggerate the effect of the positive fragment and make
D-NOA lower in energy than DNOA- at all proton positions.
A partial charge of+0.3 is found to give results in qualitative
agreement with experiments (Figure 6). The point charge
approach is no doubt a very crude simulation. Using a partial
charge further makes the charge an ad hoc parameter.
However, our purpose here is merely to demonstrate that,
with an appropriate model system, constrained DFT generates
qualitatively correct results.

From the results in Figure 6, the potential-energy differ-
ence (∆G) between the D-NOA state before proton transfer
and the DNOA- state after proton transfer is about 5 kcal/
mol, and the reaction barrier height is about 7 kcal/mol.
Comparing Figure 6 with Figure 5a, one can see that the
effect of the point charge is to vertically shift the two curves.
Hence, the maximum possible barrier height and∆G is about
13 kcal/mol (the minimum after proton transfer of the
DNOA- curve has to be below the D-NOA curve to make
the reaction happen). It is known that DFT generally
underestimates barrier heights68,73-77 because DFT methods
overstabilize the transition state because of greater self-
interaction errors for systems of fractional charges than for
systems of integer charges66 (or, from an alternative point
of view, because of the spurious buildup of nondynamical
correlation78). In our calculations, however, we have largely
reduced this effect by constraining the donor and the acceptor
to have integer charges. Though some error still remains
because the bridge charges are not constrained, we expect it
to be small. Further, even without constraints, the B3LYP
and B97-2 functionals have typical errors of about 5 and 3
kcal/mol, respectively, for barrier heights.68 ∆G is calculated
at equilibrium structures and has no known systematic errors
for this type of system. Thus, we feel that the results in Figure
6 should be fairly accurate. Previous work63 used multicon-
figuration SCF (MCSCF) to study the same model system
and found a much larger barrier height of 25 kcal/mol.
However, the MCSCF calculation has only one electron in
the active space, so it is effectively a Hartree-Fock (HF)
calculation and does not include correlations. Hence, the
lowering of the barrier height is probably due to the
correlation effects that DFT methods account for. It is known
that HF tends to overestimate barrier heights and needs
correlations to lower them.68 In this particular study, we note
that this correlation-induced barrier lowering issignificant
and could potentially change our understanding of how PCET
happens in this system.

Figure 5. Constrained state energies of D-NOA (D) and
DNOA- (A) as a function of the proton position. (a) B3LYP/
6-31G* and the Löwdin population. (b) Lines: B3LYP/6-31G*
and Becke weights population. Crosses: B97-2/6-31G* and
Becke weights population. Squares: B97-2/6-311++G** and
Becke weights population.

Figure 6. Constrained state energies of D-NOA (D) and
DNOA- (A) as a function of the proton position. A point charge
of +0.3 is in place of Ru in the real system, and B3LYP/6-
31G* and the Löwdin population are used.
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Conclusions
It has been shown that the direct optimization approach to
constrained DFT can be generalized to include multiple
constraints, where the constraint potentials are obtained
efficiently within an expanded SCF calculation. When the
proper Fock matrix is chosen, DIIS can be used to accelerate
SCF convergence in a manner similar to that of usual DFT
calculations, making constrained DFT truly efficient. Com-
paring different choices in defining the electron population
of a molecule, we have found that the Lo¨wdin population
and the Becke weights population behave similarly and give
nearly identical results for long-range charge-separated states.
Generally, when the electron donor and acceptor have little
density overlap, the constrained DFT results are well-defined.
Hence, constrained DFT is naturally suited to long-range ET
reactions. At short distances, the population scheme will be
critical to the reliability of constrained DFT, and we will
address this issue in future work.

To demonstrate the application of constrained DFT, we
have done calculations on donor and acceptor molecular pairs
that are separated far from each other and have shown that
the energy of an infinitely separated CT state is equal to the
energy sum of the donor and acceptor ionic states, as it
should be. We have also studied a model system for the
proton-coupled electron transfer in the donor-(amidinium-
carboxylate)-acceptor complex. The potential-energy curves
of the donor and acceptor states are generated using
constrained DFT. With a partial point charge to simulate the
positive fragment left out from the model system, we have
obtained qualitative agreement with experimental results: the
donor state is more stable before proton transfer, and the
acceptor state is more stable after proton transfer. The barrier
height is estimated to be 7 kcal/mol, which is significantly
lower than the 25 kcal/mol barrier obtained with an uncor-
related MCSCF approach.

Before we close this report, we make the observation that
the constrained potential-energy curves in the PCET case
are actuallydiabaticcurves, which implies that constrained
DFT can fit well into Marcus theory38,39to describe electron-

transfer reactions (Figure 7). Diabatic statesa andb, which
correspond to states before and after ET, are just two different
constrained states. To make use of Marcus theory, however,
requires locating the minimum energy point on each diabatic
curve first. This means that one needs to be able to calculate
the forces in constrained DFT and, therefore, perform
geometry optimizations. Because of the variational nature
of our method, it is not difficult to calculate the forces
analytically in constrained DFT. We shall present an efficient
computational scheme and its applications to electron-transfer
systems in a future work.

As a final note, constrained DFT is not limited to electron-
transfer calculations. By constraining the spin density instead
of the total density, one can calculate exchange coupling
constants in magnetic molecules.79 There are other studies
using constrained DFT on charge29 and magnetization30

fluctuations in solids, spin-dependent sticking of molecules
on surfaces,80 and parametrization of model Hamiltonians
based on DFT calculations.81 We expect our method to be
useful for future applications in all of these areas.
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Abstract: In a previous report, the approximate crystalline structure and electronic structure of

a novel, hypothetical hexagonal carbon allotrope has been disclosed. Employing the approximate

extended Hückel method, this C structure was determined to be a semiconducting structure. In

contrast, a state-of-the-art density functional theory (DFT) optimization reveals the hexagonal

structure to be metallic in band profile. It is built upon a bicyclo[2.2.2]-2,5,7-octatriene (barrelene)

generating fragment molecule and is a Catalan network, with the Wells point symbol (66)2(63)3

and the corresponding Schläfli symbol (6, 3.4). As the network is entirely composed of hexagons

and, in addition, possesses hexagonal symmetry, lying in space group P6/mmm (space group

#191), it has been given the name hexagonite. The present report describes a density functional

theory (DFT) optimization of the lattice parameters of the parent hexagonite structure, with the

result giving the optimized lattice parameters of a ) 0.477 nm and c ) 0.412 nm. A calculation

is then reported of a simple diffraction pattern of hexagonite from these optimized lattice

parameters, with Bragg spacings enumerated for the lattice out to fourth order. Results of a

synchrotron diffraction study of carbon nanotubes which underwent cold compression in a

diamond anvil cell (DAC) to 100 GPa, in which the carbon nanotubes have evidently collapsed

into a hitherto unknown hexagonal C polymorph, are then compared to the calculated diffraction

pattern for the DFT optimized hexagonite structure. It is seen that a close fit is obtained to the

experimental data, with a standard deviation over the 5 matched reflections being given by σx

) 0.003107 nm/reflection.

1. Introduction
As a potential allotropic structure of C, the crystalline and
electronic structure of the so-called, 3-dimensional (3D)
hexagonite lattice1 and some of its expanded 3D derivatives
were first reported by Karfunkel et al. in 1992.2 The
description of the parent structure of hexagonite in their
report2 was substantially refined and clarified later on by
Bucknum et al. in a preprint published in 2001, where an
identification of the space group symmetry (P6/mmm, space
group #191) and a complete set of crystallographic coordi-
nates for the hexagonite unit cell were given.3 Such a
3-dimensional (3D) hexagonite structure can be expanded
into an indefinitely large number of derivative 3D structures,

by the insertion of 1,4-dimethylene-2,5-cyclohexadieneoid
organic spacers into the parent hexagonite structure.2-3

Expanded hexagonites include 3D crystalline materials with
arbitrarily large pores directed along the crystallographic
c-axis; they occur in infinite families possessing orthorhom-
bic (Pmmm), trigonal (P3m1), and hexagonal (P6/mmm)
space group symmetries.2-3

It was reported in this paper,3 that hexagonite could be
realized from the elaboration of a bicyclo[2.2.2]-2,5,7-
octatriene (barrelene) generating fragment molecule4-6 in 3D,
as is shown in Figure 1.

Thus the full elaboration of the 3D hexagonite network,
from the barrelene generating fragment, can be seen in Figure
2 from a perspective normal to theab-plane of the lattice.* Corresponding author e-mail: castro@quimica.unlp.edu.ar.
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Yet another perspective of this hexagonite lattice is shown
in Figure 3, where there is a view of it parallel to theab-
plane.3

One can see in these various views of the hexagonite
lattice, given in Figures 2 and 3, the omnipresence of 6-ness
in the structure. The organic tunnels apparent in Figure 2
are indeed hexagonal macrocyclic tunnels which are further

built upon component hexagons. Thus in Figure 3, which is
in the crystallographicab-plane, we see illustrated the
hexagon nature of these rings that are components of the
larger rings directed along thec-axis and apparent in the
view of Figure 2.

In the 2001 report by Bucknum et al. on hexagonite’s
structure,3 the C-C single bonds were assumed to be 0.1500
nm, and the CdC double bonds were assumed to be 0.1350
nm, and all bond angles were assumed to be tetrahedral at
109.5°, except the trigonal C-C-C angles lying along the
c-axis, which were constrained to 141°. This resulted in a
crudely defined unit cell, with the lattice parameters given
by a ) b ) 0.4890 nm andc ) 0.3880 nm, and the set of
fractional hexagonal coordinates, as listed in Table 1 .

Some of the topological character of the hexagonite lattice
has been described previously.3 An introduction to the
topological characterization of crystalline networks is given
by us elsewhere.7 From a perspective entirely normal to the
ab-plane, as shown in Figure 2, the lattice reveals itself in
this aspect to be reminiscent of the familiar hexagonal tiling
of the plane, represented by the Schla¨fli symbol (6, 3) (or
the Wells point symbol 63) called the honeycomb tessellation.
Remarkably, a view perpendicular to thec-axis, inclined by
30° from the a-axis of the unit cell, reveals yet a second
perspective from which a perfect honeycomb tessellation
emerges from the pattern of bonds within the hexagonite
lattice. There are thus 2 views of this hexagonite pattern that
reveal its high hexagonal symmetry, in space groupP6/mmm,
as manifested in 2 independent honeycomb motifs that are
patterned in directions entirely perpendicular to each other
from the perspective of the unit cell.

As hexagonite is a 3-,4-connected network it contains an
admixture of 3-connected and 4-connected vertices in the
unit cell. The overall connectivity of the lattice,7 a weighted
average of the 3- and 4-connected points taken from the
stoichiometry of the network, is given byp ) 32/5. While
the other key topological parameter, called the polygonality,7

is indeed simplyn ) 6, as inspection of Figure 2 and 3 will
reveal. One can thus represent the topology of hexagonite
by the Wells point symbol (66)2(63)3, and this, then, has the
corresponding Schla¨fli symbol (n, p) ) (6, 3.4).7 It is a
Catalan C-network that can be expanded infinitely by
insertion of 1,4-dimethylene-2,5-cyclohexadieneoid organic
spacers between, and within, the barrelene moieties that make

Figure 1. Structure of bicyclo[2.2.2]-2,5,7-octatriene.

Figure 2. Extended drawing of the hexagonite lattice, viewed
approximately normal to the ab-plane of the lattice.

Figure 3. View of the hexagonite lattice from the perspective
of the crystallographic ab-plane.

Table 1. Fractional Hexagonal Crystallographic
Coordinates of Hexagonite from the Original Report3

atom no. x/a y/b z/c a (Å) c (Å)

1 2/3 1/3 0.1935 4.89 3.88
2 2/3 1/3 0.8065 4.89 3.88
3 1/3 2/3 0.1935 4.89 3.88
4 1/3 2/3 0.8065 4.89 3.88
5 1/2 1/2 0.3265 4.89 3.88
6 1/2 1/2 0.6735 4.89 3.88
7 1/12 2/3 0.3265 4.89 3.88
8 1/12 2/3 0.6735 4.89 3.88
9 5/12 5/6 0.3265 4.89 3.88
10 5/12 5/6 0.6735 4.89 3.88
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up the parent hexagonite lattice. This has been described
already by Karfunkel et al. in their 1992 paper.2-3

It is interesting here, in this regard, to see that hexagonite
and the expanded hexagonites are represented by the col-
lective Schla¨fli symbol given by (n, p) ) (6, 3x/x+y), where
“x” represents the number of 4-connected points in the unit
of pattern (which will always be 4) and “x + y” represents
the sum of the numbers of 3- and 4-connected points in the
unit of pattern (which will increase in increments, as the 1,4-
dimethylene-2,5-cyclohexadieneoid organic spacers are added
to the unit cell in the expanded hexagonites). Hexagonite
and its expanded realizations, therefore, represent a related
family of Catalan 3D C-based networks that provide an
interesting contrast to the Archimedean family of C-based
fullerenes.8 In contrast to the Catalan hexagonites, the
fullerenes collectively have the Schla¨fli index (n, p) ) (5x/x+y,
3), where “x” is the number of hexagons in the polyhedron
and “x + y” is the sum of the number of pentagons and
hexagons in the polyhedron. It should be noted in this context
that a Schla¨fli relation exists for the polyhedra, shown as eq
1 below, that is entirely rigorous for the innumerable
fullereneic structures which collectively possess the Schla¨fli
index (n, p) ) (5x/x+y, 3). In eq 1, the parameterE is the
number of edges in the fullereneic polyhedron (or polyhe-
dron), n is the weighted average polygon size over the
polygons in the polyhedron (for fullereneic structures it will
always be an admixture of pentagons and hexagons) andp
is the weighted average connectivity over the vertices in the
polyhedron (for fullereneic structures, this will always be
3). The number of edgesE is related to the number of
vertices,V, and the number of faces,F, by the Euler identity,7

given asV - E + F ) 2.

In section 2 that follows, we report on the electronic
structural characteristics of the C-based hexagonite structure
from the point of view of the extended Hu¨ckel molecular
orbital method (EHMO), which is an approximate solid-state
electronic structure algorithm based upon the tight binding
methodology.9-12 Next, in section 3, we report on the details
of a density functional theory (DFT) geometry optimization
of the parent hexagonite structure and provide a calculation
of a simple diffraction pattern of hexagonite,13 out to fourth
order in Bragg spacings of the crystalline structure. We then
compare this theoretically calculated data to experimental
data, reported in 2004, for a hexagonal polymorph of carbon
produced by cold compression of C nanotubes to 100 GPa
pressure in a diamond anvil cell (DAC) by Wang et al.14

2. Electronic Structure of Hexagonite
Using the approximate electronic structure algorithm called
the extended Hu¨ckel method (EHMO),9-12 a calculation of
the approximate band structure and density of states (DOS)
of hexagonite, as an allotrope of C, were carried out.3 Figure
4 shows a representation of the approximate band structure
of the C-based hexagonite. Figure 5 shows the corresponding
density of states (DOS); this is derived from the band
structure shown in Figure 4.

Thus Figures 4 and 5 indicate that the hexagonite structure
should be a C-based semiconductor,3 in this approximation,
where 3 unoccupiedπ* bands are relatively low lying and
separated from theσ* manifold by several eV of energy.3,15

One could therefore envision the doping of the pores of
hexagonite with univalent alkali metals, divalent alkaline
earth metals, or trivalent rare earth metals to form conducting
or indeed, with the corresponding stoichiometry, insulating
metal-organic composite structures, in which the metals
readily ionize in the parent C-lattice and donate their valence
shell electrons to the higher-lying, unoccupiedπ* bands of
the host hexagonite lattice.3 The electronic features of such
doped hexagonites and their potential applications in high
technology remain an unexplored vista of both theory and,
potentially some day, experiment.16-18

3. DFT Optimization of Hexagonite Structure
The C-based hexagonite structure, as described in previously
in section 1, has been optimized with the DFT algorithm
named CASTEP, and the details of the optimization calcula-
tions are reported herein.19 The CASTEP code has been
adequately described elsewhere.20 The results indicate a much
different optimized geometry for hexagonite than was

1
n

- 1
2

+ 1
p

) 1
E

(1)

Figure 4. Electronic band structure of the hexagonite crystal
structure.

Figure 5. Density of states (DOS) of the hexagonite crystal
structure.
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assumed to pertain in the initial report by Bucknum et al. of
the structure.3 The C-C single bonds in the structure are
found to be fairly closely related to each other with a uniform
length of about 0.1521 nm. The CdC double bonds in
hexagonite are 0.1326 nm in length. The CdC-C trigonal
angles are about 115°, while the C-C-C trigonal angles
are 130°, and the tetrahedral angles within the cage of the
barrelene substructures are 103°, while outside this cage the
tetrahedral angles are 115°. Finally, and most importantly,
the lattice parameters optimized for the hexagonite structure
by CASTEP are given asa ) 0.4772 nm andc ) 0.4129
nm. Therefore, the optimized coordinates of the 10 C atoms
in the hexagonite unit cell are given in Table 2. The density21

of hexagonite is calculated to be 2.449 g/cm3; it lies between
the density of the 3-connected carbon form, graphite, at 2.27
g/cm3, and the density of the 4-connected carbon form,
diamond, at 3.56 g/cm3, but is closer to graphite’s density
than to diamond’s density.

From the CASTEP optimized lattice parameters we can
calculate a simple diffraction pattern for the C-based hexa-
gonite structure,13 and such a powder pattern is shown with
Bragg spacings enumerated out to fourth order for the lattice
in Table 3. For comparison in Table 3, we report a set of 5
Bragg reflections recorded from a sample of C nanotubes
which have been cold compressed in a diamond anvil cell
and have transformed into what is believed to be a novel
hexagonal polymorph of C, which nonetheless possesses an
unknown structure.14 This latter C polymorph is able to be
quenched at room pressure, as well. The Bragg spacings in
this cold-compressed sample of C nanotubes were monitored
using the specialized technique of energy-dispersive-X-ray-
diffraction (EDXRD) on a specially constructed high-pressure
DAC synchrotron beamline at the Cornell High Energy
Synchrotron Source (CHESS) in Ithaca, NY.14

One can see in Table 3 that the 5 reflections in the EDXRD
data set of the C nanotube sample, as cold-compressed in
the DAC to over 100 GPa, readily match the set of Bragg
spacings calculated theoretically from the optimized set of
lattice parameters provided for the hexagonite lattice from
the CASTEP algorithm.19,20 The average deviation over the
5 reflections in the experimental data set matched to the
calculated Bragg spacings of the optimized hexagonite
structure is given by∆x ) 0.003040 nm/reflection, while
the standard deviation over the 5 matched reflections in the

experimental data set is given byσx ) 0.003107 nm/
reflection. Clearly all the data, over the 5 matched reflections
in the experimental data set, have deviations that fit to within
less than 3σx ) 0.009321 nm of the standard deviation of
the data set, as is reflected in Table 3. In a parallel
comparison of the experimental data set given here of the
hexagonal C polymorph, with the commonly observed Bragg
reflections from cubic diamond, it is important to point out
that only the cubic diamond reflections (111), with a Bragg
spacing of 0.2060 nm, and (220), with a Bragg spacing of
0.1261 nm, matched to the experimental set of reflections
for the hexagonal C polymorph.22

A caution should be made here with regard to the size of
the data set, with only 5 reflections to fit; clearly the model
proposed here of the hexagonite lattice as an explanation of
the experimentally derived EDXRD synchrotron data set for

Table 2. CASTEP Optimized Fractional Hexagonal
Crystallographic Coordinates and Lattice Parameters of
Hexagonite

atom no. x/a y/b z/c a (Å) c (Å)

1 2/3 1/3 0.1840 4.772 4.129
2 2/3 1/3 0.8160 4.772 4.129
3 1/3 2/3 0.1840 4.772 4.129
4 1/3 2/3 0.8160 4.772 4.129
5 1/2 1/2 0.3400 4.772 4.129
6 1/2 1/2 0.6600 4.772 4.129
7 0 1/2 0.3400 4.772 4.129
8 0 1/2 0.6600 4.772 4.129
9 1/2 0 0.3400 4.772 4.129
10 1/2 0 0.6600 4.772 4.129

Table 3. Observed Diffraction Data of Proposed
Hexagonal C Polymorph Compared to Calculated
Hexagonite Pattern from CASTEP Optimization

calculated hexagonite reflections
a ) 0.4772 nm, c ) 0.4129 nm

(hkl) d-spacing, nm

C polymorph
reflectionsa

d spacing, nm

absolute deviation
per reflectionb

∆d-spacing, nm

100 0.4133
001 0.4129
110 0.2386
101 0.2921
111 0.2066 0.2155 0.0089
200 0.2066 0.2155 0.0089
002 0.2065 0.2053 0.0012
102 0.1847
120 0.1562
201 0.1848
211 0.1461 0.1495 0.0034
221 0.1146 0.1161 0.0015
212 0.1246 0.1248 0.0002
222 0.1033
300 0.1378
003 0.1376
103 0.1306
130 0.1146 0.1161 0.0015
301 0.1307
311 0.1104
331 0.07810
313 0.08808
333 0.06886
203 0.1146 0.1161 0.0015
302 0.1146 0.1161 0.0015
320 0.09481
223 0.09015
232 0.08616
332 0.07422
323 0.07808
321 0.09241
312 0.1002
213 0.1033
104 0.1002
401 0.1002

a Wang, Z.; Zhao, Y.; Tait, K.; Liao, X.; Schiferl, D.; Zha, C.; Downs,
R. T.; Qian, J.; Zhu, Y.; Shen, T. Proc. Natl. Acad. Sci. (PNAS) 2004,
101 (38), 13699-13702. b Average deviation over the 5 reflections
compared is 0.003040 nm/reflection.
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a proposed hexagonal polymorph of C is not constrained as
much by observation as one would like it to be. With only
5 observations to work with, such a fit between experimental
and theoretical diffraction data is little more than an educated
guess.

Still, the authors of the report14 state that their fit to the
data can be interpreted (from the reflections that they have
indexed to the data set of 5 Bragg spacings from a hexagonal
model with lattice parametersa ) 0.249 nm andc ) 0.412
nm) from rules of systematic absences among the hexagonal
space groups to a structure that lies in the hexagonal space
groupP6m2 (#190).14 We offer here in response to this point
that the hexagonite lattice lies in the very closely related
hexagonal symmetry space groupP6/mmm(#191). It would
therefore appear that the 2 sets of data, while only consisting
of 5 matches, are closely connected together by consider-
ations of the potential symmetry of the unknown C phase.
These considerations thus include such a proposed model
as the hexagonite lattice.

4. Discussion of Densities of Carbon Phases
One area of disagreement in the current comparison of
theoretical and experimental data is in the density reported
by Wang et al.14,21 in their compression study of the C
nanotubes and that reported for the candidate hexagonite
structure from first principles theory. Experimentally, the
density14 of the hexagonal C polymorph of an unknown
structure is given as 3.6( 0.2 g/cm3; while the theoretically
calculated value for the density of hexagonite21 is some 32%
lower than this experimental value, at 2.449 g/cm3, it is thus
important here to note that the density of the starting
nanotube powder material in this compression synthesis can
be estimated to be lower than the known density of fullerite
at 1.75 g/cm3.

Wang et al. proposed that the C material of unknown
structure should have a density in excess of the density of
diamond, at 3.56 g/cm3, based upon thermodynamic argu-
ments. They reasoned that a polymorph of C would have
collapsed to a denser structure than diamond given the high
pressures involved in the study to well over 100 GPa.14 It is
believed by the authors of the present study, however, that
the inhomogeneous nature of the C material produced in the
synchrotron study,14 in which amorphous C was present in
the quenched DAC sample, along with the novel crystalline
phase, suggests that possibly kinetically stabilized products,
such as the low-density C material hexagonite,21,23may have
been formed. The current study does not rule out such a
kinetically favored crystalline C product from forming at such
high pressures exceeding 100 GPa.23 Indeed it is physically
reasonable to expect that the starting nanotube powder
material, at a density of less than that of fullerite at 1.75
g/cm3, could quite possibly have collapsed to the hexagonite
lattice at a density of 2.449 g/cm3, in their study, if such a
lattice was thermodynamically a stable phase up to 100 GPa,
otherwise.

It was reported in their study14 that the hexagonal C
polymorph produced under pressure partially indented the
diamond anvils in the high-pressure cell used. It was
conjectured by Wang et al. that the hexagonal, crystalline C

phase, which was quenched from high pressure, was a
superhard phase of C. They estimated a bulk modulus of at
least 447 GPa for the C form in the study. In this instance,
it is worth pointing out that a semiempirical estimate24,25 of
the bulk modulus of hexagonite, despite its low density of
2.449 g/cm3, puts it at a value ofB0 ) 445 GPa. This comes
from a semiempirical formula for bulk modulus in materials,
developed by Cohen et al.,24,25 and is

Here in formula 2, the parameterI represents the degree of
ionicity of the bonding in the unit cell of a given material.
For the C form of hexagonite this parameter is just 0, because
the hexagonite structure is assumed to be a C polymorph in
this instance. The parameterNc is the averaged coordination
number in the unit cell; this is just the connectivity in the
lattice, p, which has a value of 3.4 for hexagonite, as was
discussed above. Finally, the parameterd is the weighted
average bond distance in the unit cell. The C-C single bonds
have a length of 0.1521 nm, while the CdC double bonds
are 0.1326 nm in length, in the CASTEP hexagonite
optimization. They average out to a distance of about 0.1460
nm over the unit cell. These unit cell parameters thus lead
to a semiempirical estimation ofB0 for hexagonite that is
listed above. One can see that the bulk moduli from
experiment and from theory are in good agreement with each
other.

5. Conclusions
In this communication, a geometry optimization of the novel,
hypothetical form of C called hexagonite2,3 has been per-
formed using a state-of-the-art DFT-based program called
CASTEP.20 The lattice parameters for the hexagonal unit cell
are given asa ) 0.4772 nm andc ) 0.4129 nm. The density
of the C polymorph has been optimized to be 2.449 g/cm3.
The coordinates for the 10 C atoms in the hexagonite unit
cell are thus listed in Tables 1 and 2.3

From the optimized lattice parameters of hexagonite, a
simple diffraction pattern has been calculated13 of the Bragg
spacings in the crystalline material out to fourth order. From
this optimized diffraction pattern, a comparison has been
carried out over a set of 5 Bragg reflections obtained from
an experimental study in which C nanotubes have been cold
compressed in a diamond anvil cell (DAC), on a specially
designed high-pressure beam line.14 Comparison of the 2 data
sets yields a close fit over the 5 experimentally determined
X-ray reflections, with an average deviation given by∆x )
0.003040 nm/reflection and a standard deviation ofσx )
0.003107 nm/reflection. It therefore appears possible that the
cold compressed nanotubes in the high pressure study have
collapsed under compressive forces into the hexagonite
structure, which was first proposed as a likely structure for
C to adopt by Karfunkel et al.2 in 1992 and Bucknum et al.3

in 2001.
It should be emphasized here that the parent structure,

called hexagonite, that represents the first member of a
possibly infinite family of related Catalan C polymorphs has

B0 ) 1972- 220I

〈d〉3.5

〈Nc〉
4

(2)
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possibly been synthesized in the experimental study cited
here by Wang et al.14 This infinite family of 3D network C
structures, that are collectively described as Catalan networks,
represent an interesting contrast to the infinity of Archimedean
fullerene structures first identified in 1985 by Kroto et al.26

Collectively, the hexagonites and the fullerenes, being
semiregular structures, can be contrasted, on one hand, with
the graphite and diamond polytypes, which are regular
(Platonic) structures of C, given by the Wells point symbols
63 and 66, respectively.7 Speculatively, on the other hand,
these semiregular structures can be contrasted, as well, with
the Wellsean (or topologically irregular) tetragonal glitter
network, which has been previously optimized and shown
to have a stability close to that of hexagonite22,23 and with
the Wells point symbol given by27,28 (6284)(628)2 and other
such irregular networks enumerated by Merz et al.,29 A. F.
Wells,30,31 and others27-29 and the references therein. And
finally, of course, the hexagonites can be speculatively
compared directly to the infinite family of graphite-diamond
hybrids proposed in 1993 by Balaban et al.32 which share
the same Catalan Wells point symbol given by (n, p) ) (6,
3x/x+y), as described above. A couple of varieties of the
graphite-diamond hybrids are shown in Figures 6 and 7.32 It
is important to note that the graphite-diamond hybrids
collectively circumscribe several infinities of potential C
structures, all of which possess orthorhombic symmetry, and
which, to date, have not been structurally optimized in any
of their various forms.
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Abstract: The recently suggested MPWB1K functional is tested on H2@C60, Ne@C60, and

N2@C60 as a tool for evaluations of stabilization energies upon encapsulation of nonmetallic

species into fullerenes. It is found that the MPWB1K (modified Perdew-Wang and Becke

functionals) values can be within a few kilocalories per mole from the MP2 or SCS-MP2 (spin-

component scaled MP2) values so that further applications of the functional are clearly

encouraged. The best estimates of the encapsulation-energy gains found for H2@C60, Ne@C60,

and N2@C60 are at least 4 kcal/mol, slightly less than 4 kcal/mol, and about 9 kcal/mol,

respectively.

1. Introduction
The suitability of density-functional theory (DFT) for evalu-
ations of weak molecular interactions and especially of
dispersion energies has been an important computational
issue.1-10 Very recently, Zhao et al.11-15 performed a series
of test DFT calculations with a conclusion15 that the
MPWB1K functional (the modified Perdew and Wang
exchange functional MPW16 and Becke’s meta correlation
functional17 optimized against a kinetics database) is the best
combination for evaluations of nonbonded interactions with
a relative averaged mean unsigned error of only 11%.

Fullerene encapsulations of nonmetal atoms and small
molecules represent an interesting case18-22 for this type of
computation because there are also some related observations.
A well-known example is represented by complexes of
fullerenes with encapsulated rare gas atoms23-27 prepared by
heating under high pressure. Ion bombardment can produce
N@C60

28,29and P@C60
30 (and also Li@C60

31), though in very
low yields. N@C60 and its derivatives have been studied
vigorously,32-36 inter alia as a candidate for the implementa-
tion of qubits in an electron-spin-based quantum computer.37

N2@C60 was prepared by pressure heating38 and was also
reported39,40 in the chromatographic separation after the
nitrogen-ion implantation into C60. Recently, molecular
hydrogen41-43 (and also water molecule21) was placed inside
an open-cage fullerene, and the cage with H2 was subse-
quently closed.44

Previous DFT calculations on nonmetallic fullerene en-
capsulates used mostly45-52 the B3LYP functional. The
present paper reports calculations of H2@C60, Ne@C60, and
N2@C60 with the newly suggested MPWB1K functional in
order to judge its performance for such encapsulation
energetics.

2. Calculations
Three systems known from observations were selected for
the present calculations: H2@C60, Ne@C60, and N2@C60.
The computations are carried out at fixed experimental
geometries. The C60 geometry is taken from the gas-phase
electron diffraction53 where the 5/6 (i.e., between a pentagon
and a hexagon) and 6/6 bonds (between two hexagons) were
determined as 1.458 and 1.401 Å, respectively. The bond
lengths of H2 and N2 are also from observed data.54,55 The
diatomic molecules in the cage are oriented toward a pair of
its parallel pentagons so that the complexes exhibitD5d

symmetry. This arrangement is known from previous cal-
culations52 as the lowest energy structure, though energy
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differences relative to other orientations are less than 0.1
kcal/mol. In the case of Ne@C60, the Ne atom is placed in
the cage center so that the system still exhibits icosahedral
symmetry.

Single-point energy calculations were carried out with the
MPWB1K functional in three well-known basis sets: 6-31G*
(6-31G** for H atoms), 6-311G(2d,2p), and the augmented
(d,p)-6-311G** basis set.56 For comparison, some computa-
tions were also performed with Becke’s57 three-parameter
exchange functional combined with the nonlocal Lee-
Yang-Parr58 correlation functional (B3LYP). The ultrafine
grid in numerical integrations of the DFT functional and the
tight self-consistent field convergency criterion were used.
However, the comparisons are primarily related to the
second-order Møller-Plesset (MP2) perturbation treat-
ment59,60with the frozen core option carried out in the above
three basis sets. Moreover, the conventional MP2 method is
also complemented with the spin-component-scaled (SCS)
MP2 calculations.61 Finally, the basis set superposition error
(BSSE) was estimated by the Boys-Bernardi counterpoise
method.62 The selected basis sets represent a practical
computational limit for calculations of systems comparable
to C60 at DFT and especially MP2 levels.

The Gaussian63 and PQS64 program packages were used
for all calculations.

3. Results and Discussion
Table 1 reports the zero-point-exclusive encapsulation ener-
gies (also called the energies of interaction or stabilization)
corresponding to the change in potential energy for the
process:

where X is H2, Ne, or N2. To compare this to an experimental
term, one would have to add the changes in zero-point energy
and heat content function. Let us note that the quantity
computed here is a thermodynamic one, although the kinetics
of reaction 1 are also of interest.65-67

As already known from previous computations,21,52 the
B3LYP functional does not produce reliable values for
nonbonding fullerene encapsulations. In the cases of H2@C60

and N2@C60, their stabilization energies become positive at
the B3LYP/6-31G** and B3LYP/6-311G(2d,2p) levels,
which does not agree well with the very fact that the
endohedrals can be observed. Only for Ne@C60 is the
B3LYP/6-31G* encapsulation energy negative (binding),
though the stabilization energy is too low compared to other
calculations in Table 1 and also to previous evaluations.20,68

All of the MPWB1K and MP2 calculations in Table 1
show for H2@C60 a substantial stabilization energy. Obvi-
ously, the BSSE-corrected energies should be preferred,
though it is not necessarily assured69 that the true energy is
closer to the BSSE-corrected term rather than to the
uncorrected term. The MPWB1K and MP2 treatments with
the 6-31G** basis set differ by some 4 kcal/mol before the
BSSE correction. With respect to the remaining computations
of H2@C60 in Table 1, it seems however likely that the MP2/
6-31G** term underestimates the stabilization for the species.
Upon moving to the 6-311G(2d,2p) and (d,p)-6-311G** basis
sets, the MPWB1K and MP2 values differ only by about 1
kcal/mol. Application of the SCS approach tested for the
6-311G(2d,2p) basis set suggests, however, a reduction of
the stabilization by about 2 kcal/mol compared to the
conventional MP2 method. Overall, it can be stated that the
encapsulation of H2 into C60 brings a potential energy gain
of at least 4 kcal/mol.

The effect of geometry optimizations was also checked
with H2@C60. It turns out that, if the full geometry optimiza-
tion is carried out at the MPWB1K/6-31G** level, the
encapsulation energy is changed only by some 0.44 kcal/
mol. The perturbation of the cage upon encapsulation changes
the C-C bonds only on the fourth digit. The 5/6 C-C bonds
in the cage optimized at the MPWB1K/6-31G** level vary
between 1.4377 and 1.4388 Å, while for the 6/6 bonds, it is
from 1.3792 to 1.3798 Å. It should also be noted that rotating
the H2 molecule toward two hexagons (instead of toward
two pentagons) changes the energy by less than 0.1 kcal/
mol so that the molecule can indeed nearly freely rotate
inside the cage.70

Let us move now to the Ne@C60 system. With the
6-31G** basis set, the MPWB1K and MP2 terms differ by
some 2 kcal/mol both before and after the BSSE correction,
Ne@C60 showing up as more stable in the MP2/6-31G*
treatment. However, with the 6-311G(2d,2p) basis set, the
MPWB1K functional produces greater stabilization compared
to the conventional MP2 value, which is further reduced by
about 1 kcal/mol upon application of the SCS approach.
Although the BSSE computations could not be finished in
this case owing to computational difficulties, Ne@C60 is
likely stabilized by slightly less than 4 kcal/mol.

The differences between the conventional MP2 and SCS-
MP2 treatments are more significant in the N2@C60 system,
amounting to some 7 kcal/mol. However, if the MPWB1K/
6-311G(2d,2p) and SCS-MP2/6-311G(2d,2p) values are
compared, they are still within 3 kcal/mol before the BSSE
correction and within 1 kcal/mol after correcting for BSSE.
The best estimate gives about a 9 kcal/mol gain in the

Table 1. Encapsulation Energies Computed in the
Observed Geometries (kcal/mol)

level H2@C60 Ne@C60 N2@C60

B3LYP/6-31G** 1.56 -2.52 7.70
B3LYP/6-311G(2d, 2p) 1.34 -2.95 7.94
MPWB1K/6-31G** -7.93a -3.08 -14.93
MPWB1K/6-31G** & BSSE -7.29 -0.22 -11.34
MP2/6-31G** -3.99 -5.05 -17.05
MP2/6-31G** & BSSE -2.36 -1.85 -8.90
MPWB1K/6-311G(2d, 2p) -8.09 -7.20 -13.18
MPWB1K/6-311G(2d, 2p) & BSSE -7.17 -3.83 -9.54
MP2/6-311G(2d, 2p) -8.63 -5.39 -23.44
MP2/6-311G(2d, 2p) & BSSE -6.07 -15.54
SCS-MP2/6-311G(2d, 2p) -6.71 -4.35 -16.35
SCS-MP2/6-311G(2d, 2p) & BSSE -4.20 -8.57
MPWB1K/(d, p)-6-311G** -9.44
MPWB1K/(d, p)-6-311G** & BSSE -7.81
MP2/(d, p)-6-311G** -10.62
MP2/(d, p)-6-311G** & BSSE -6.94

a The value after the full geometry optimization is -8.37 kcal/mol.

X(g) + C60(g) ) X@C60(g) (1)
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potential energy upon N2@C60 formation. Interestingly
enough, the MP2/6-31G* encapsulation energy without the
BSSE correction for N@C60 was computed50 to be-7.3 kcal/
mol, that is, roughly one-half of the value found here at the
same level for N2@C60.

While the performance of the MPWB1K exchange-
correlation potential is reasonably good for the inclusion
compounds considered here, it does not perform well forπ
stacking. For instance, the binding energy predicted for the
prototype benzene dimer, in the parallel displaced configu-
ration, is only 0.11 kcal/mol after counterpoise correction,
using the 6-311+G(2df,2pd) basis set. The best current
estimate is71,72 2.78 kcal/mol. For the sandwich conformer,
the counterpoise corrected MPWB1K potential is repulsive,
although the best estimate of this quantity is 1.81 kcal/mol.
Zhao and Truhlar have successfully used13a an empirical
combination of density-functional and wave-function-based
correlation methods to calculate this quantity accurately at
a reasonable cost, and they also suggested13b an improved
version of MPWB1K called PWB6K, with a good perfor-
mance for stacking interactions. Although the benzene dimer
issue is not directly related to the fullerene encapsulation
energies, it indicates the fundamental limitations of local or
semi-local DFT to describe the dispersion interaction.

It can be concluded that the values for nonmetallic
encapsulations into C60 evaluated with the MPWB1K func-
tional closely follow the results from the MP2 and SCS-
MP2 treatments with the same basis set. This finding suggests
the MPWB1K functional as a practical tool for the evaluation
of encapsulations of small molecules into fullerenes and
model nanotubes, though larger basis sets73,74and also other
functionals74,75 are to be still tested, especially for specific
cases76,77 like interactions with metals.
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Abstract: It has been demonstrated that the high-spin stability of benzyl radical oligomers can

be predicted without any quantum chemical calculations. This method is composed of three

steps: (1) predicting the shapes of nonbonding molecular orbitals (NBMOs), (2) counting up

the mixings of NBMOs, and (3) formulating the mixings for the number of radical centers (N).

This treatment enables us to predict the high-spin stability evaluated by ab initio MO calculations

involving the post-Hartree-Fock method or the density functional theory (DFT) method.

1. Introduction

Recently, experimental interests in organic magnets have
been roughly classified into two types: the synthesis of
crystalline solids composed of small radical molecules or
charge-transfer salts1,2 and that of organicπ-conjugated
systems.3-8 In particular, high-spinπ-conjugated systems
have received growing interest as new organic magnets. This
is because high transition temperature is theoretically pre-
dicted for theπ-conjugated systems due to a strong exchange
interaction between radicals throughπ-conjugated net-
works.3,9 In 2001, Rajca et al. actually succeeded in the
synthesis of ultrahigh-spinπ-conjugated polymers with spin
quantum numbers (S) > 5000.6 Numerous attempts have
been made to explain the ferromagnetism inπ-conjugated
systems both experimentally3-8,10-13 and theoretically.14-17

Borden et al. conducted a molecular orbital (MO) approach
to clarify the relationship between exchange interactions
and ferromagnetic properties in organic conjugated
systems.18-20

As another MO approach to predict ferromagnetism, one
of the authors, Aoki et al., proposed a simple method to
estimate the ferromagnetic properties ofπ-conjugated sys-

tems based on theLij
min value, which corresponds to the

mixing between nonbonding molecular orbitals (NBMOs).21

In the NBMOs of alternant hydrocarbon systems, the
carbon atoms with MO coefficients can be defined as active
atoms (denoted by “/”), and the other carbon atoms with no
coefficients can be defined as inactive atoms (denoted by
“0”). When an allyl radical molecule is considered as a
NBMO unit, there are two types of linkages between two
NBMO units (see Figure 1 in ref 21). One is a (0-0) linkage
that connects two inactive carbons. The other is a (0-/)
linkage that connects an inactive carbon to an active carbon.
In both types of linkages, two degenerated levels of NBMOs
are obtained. In the (0-0) linkage, the NBMO level of each
unit is preserved in the entire system because there is no
interaction between the inactive carbon atoms. Thus, the (0-
0) linkage corresponds to a “disjoint” type linkage. In
contrast, in the (0-/) linkage, the energy levels of the NBMOs
are preserved because of the interaction between the inactive
and active carbon atoms (see Figure 3 in ref 21). The (0-/)
linkage corresponds to a “nondisjoint” type linkage. That is
to say, the two types of interactions that correspond to the
stabilization and destabilization of the orbitals are canceled
out by each other according to the pairing theorem22 within
the framework of the simple Hu¨ckel method. Our previous
paper21 used algebraic equations to prove that these two types
of linkages, (0-0) and (0-/), do not change the eigenvalues
of the NBMOs.
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A new value

was proposed by Aoki et al. to estimate the mixing between
NBMOs for the prediction of the high-spin stability in
“nondisjoint” type systems,21 whereCir is the coefficient of
AO ør in the ith NBMO. In general, we can change the MO
coefficients of degenerated NBMOs by using a unitary
transformation (see Figure 2 in ref 21). Therefore, the
stability of the high-spin ground state can be predicted by
the smallestLij value, i.e., theLij

min value, after the unitary
transformation. WhenLij has the smallest value, NBMO
coefficients are selected to minimize the mixing betweenith
and jth NBMOs.

The total energy difference between excited singlet and
triplet states at the Hartree-Fock MO level is expressed as

whereE(S) andE(T) denote total energies in excited singlet
and triplet states, respectively. TheKij is the exchange integral
betweenith andjth NBMOs, that is

wherer, s, t, andu indicate atomic orbitals (AOs).Cir is the
coefficient of AO ør in the ith NBMO in the linear
combination of AO (LCAO) approximation. The two-
electron integral (rs|tu) in eq 3 is expanded by

When the 2-electron integrals part ofKij is approximated
by a one-center two-electron integral, e.g., (rr |rr ),
∑r(CirCjr)2(rr |rr ) can be obtained from eq 3. Therefore, the
Lij value in eq 1 corresponds to the MO coefficients part of
the one-center two-electron terms in eq 3 and corresponds
to the exchange integral (Kij) as well as the high-spin stability
expressed by eq 2. Because theLij is composed of only MO
coefficients, we can efficiently examine the stability of high-
spin ground state by calculating theLij

min value using
various methods from a simple Hu¨ckel method to an ab initio
MO method after unitary transformation.

Although the Lij
min value is useful for evaluating the

ferromagnetic properties of NBMO systems, there are some
problems with huge systems in which we cannot obtain
coefficients of the whole MO. The purpose of this article is
to predict theLij

min value analytically without performing
any quantum chemical calculations and unitary transforma-
tions. Our new treatment enables us to predict the shapes of
the NBMOs corresponding to theLij

min value by using a
“zero sum rule” in the NBMO theory. In the present article,
we focused on benzyl radical type systems as a first step of
the analysis, because the benzyl radical unit is involved in
typical organic ferromagnetic materials. It was found that
we were able to predict theLij

min values of various types of
benzyl radical type oligomers without using direct calcula-
tions.

2. Method
2.1. Benzyl Radical Dimer Model.The benzyl radical dimer
model in Figure 1 is composed of two benzyl radical (BR)
units, BR-1 and BR-2. It should be noted that the structure
of the benzyl radical oligomer in the present article is
assumed to have a planar structure. According to the
classification mentioned above, we can divide benzyl radical
dimer models into two types: (A) nondisjoint type with a
(0-/) linkage and (B) disjoint type with a (0-0) linkage.
Furthermore, the former type is divided into “(A-1) closed-
type” and “(A-2) open-type.” The nondisjoint closed-type
model, (A-1), is defined as a model in which two BR units
are connected at the sites of the inactive carbon atom (0) in
the meta position of BR-1 and the radical center of BR-2.
Here, the radical center is defined as the active carbon atom
(/) having the largest NBMO coefficient in the BR unit
marked by a dot. In contrast, the nondisjoint open-type
model, (A-2), is defined as the model that includes the
connection between the inactive atom (0) in the meta position
of BR-1 and the active atom (/) in the ortho position of BR-
2. In the present work, only the nondisjoint closed-type
model, (A-1), is focused on, because we have not yet
succeeded in predicting the ferromagnetic properties for the
open-type model.

Figure 2 shows a method for predicting the shapes of
NBMOs that provide theLij

min value for a benzyl radical
dimer model. This procedure is the first step of the analytical
prediction (AP) method to evaluate the high-spin stability
of nondisjoint closed-type benzyl radical oligomers. Because
the benzyl radical dimer model in Figure 2 has a (0-/)
linkage, the system keeps two degenerated NBMOs un-
changed as a result of the interaction between the inactive
and active carbon atoms. The procedures are summarized
as follows:

(i) In the first step (see step 0 in Figure 2), the whole
system is divided into two radical units, BR-1 and BR-2.

(ii) Next, we focus on the upper BR unit (BR-1) and
consider assigning its NBMO coefficients using the letter
“a” according to the conventional NBMO rule23,24(step 1a).
Furthermore, another unit (BR-2) should be assigned based
on the NBMO coefficients of BR-1 (step 2a). According to
the “zero sum rule” in the NBMO theory, the NBMO

Figure 1. 0-/ and 0-0 linkages between benzyl radical (BR)
units in the benzyl radical dimer model. The broken line
denotes the C-C bond connecting the BR units.

Lij ) ∑
r

(CirCjr)
2 (1)

2Kij ) E(S) - E(T) (2)

Kij ) ∑
r
∑

s
∑

t
∑

u

CirCjsCitCju(rs|tu) (3)

(rs|tu) ) ∫∫ør(1)øs(1)
1

r12
øt(2)øu(2)dτ1dτ2 (4)
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coefficients of all the carbon atoms in BR-2 become zero.
This implies that the NBMO coefficients of BR-1 cannot be
delocalized over the region of BR-2.

(iii) Conversely, we focus on the lower BR unit (BR-2)
and consider assigning the NBMO coefficients by using the
letter “b” (step 1b), followed by assigning the NBMO
coefficients of the BR-1 region (step 2b). In this case, one
can assign the BR-1 region with nonzero NBMO coefficients
except for the site of the radical center in BR-1. Thus, the
NBMO coefficients of BR-2 can be delocalized over the
region of BR-1 through a C-C bond connecting two BR
units (broken line), and the NBMO spreads over two benzene
rings.

(iv) The “a” and “b” are normalized for each NBMO by
∑rCir

2 ) 1

(v) Finally, we obtained NBMO1 and NBMO2 (see steps
4a and 4b). Here, we assigned the types of radical centers
(RCs) according to the NBMO shape. In NBMO1, MO

coefficients spread over one benzene ring (step 5a). In
NBMO2, MO coefficients spread over two benzene rings
(step 5b). The radical centers that belong to NBMO1 and
NBMO2 are called RC1 and RC2, respectively.

(vi) The stability of the high-spin ground state is predicted
by calculating the mixing between the two NBMOs (see step
6), i.e.,Lij

AP ) ∑r(CirCjr)2, by

whereLij
AP[NBMO1(RC1)-NBMO2(RC2)] represents the mixing be-

tween NBMO1(RC1) and NBMO2(RC2).

Figure 2 also shows the calculation of NBMO coefficients
by the simple Hu¨ckel method (HMO) and theLij

min value
after unitary transformation (Lij

min(HMO) ) 0.04302). It was
found that the difference in the NBMO coefficients between
the AP and HMO methods is very small. Therefore, theLij

AP

value agreed well with theLij
min(HMO) value and provides an

even better minimum value inLij. In the present case, it was
found that theLij

min(HMO) value is slightly larger than theLij
AP

value. This is because the NBMO coefficients calculated by
the HMO method are not suitable for the benzyl radical dimer
model as the initial coefficients for unitary rotation, and thus
NBMO coefficients do not lead to the minimumLij value

Figure 2. Procedures for predicting the shapes of NBMOs and the Lij values by the analytical prediction (AP) method. The
benzyl radical units under consideration are indicated by bold lines. The results by the simple Hückel method (HMO) are shown
in the rectangular box.

Lij
AP ) Lij

AP[NBMO1(RC1)-NBMO2(RC2)] ) (ab)2 + (ab)2 + (ab)2 )

3a2b2 ) 3( 1

x7)2( 1

x10)
2

) 3
70

≈ 0.04286 (6)

Step 3a: (2a)2 + 2(-a)2 + a2 ) 7a2 ) 1;

a ) 1

x7
≈ 0.37796 (5a)

Step 3b: (2b)2 + 4(-b)2 + 2b2 ) 10b2 ) 1;

b ) 1

x10
≈ 0.31623 (5b)
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after unitary transformation. This means that theLij
AP value

estimated by the AP method provides us with the minimum
value ofLij regardless of the systems.

2.2. Benzyl Radical Trimer Model. The benzyl radical
trimer model in Figure 3 is composed of three BR units (BR-
1, BR-2, and BR-3). For the “nondisjoint closed-type” trimer
model, we consider three types of structures A, B, and C
with three NBMOs. We can predict the shapes of the
NBMOs in the same way that we can predict the benzyl
radical dimer model mentioned above.

Structure A is considered first (see Figure 3(a)). NBMO
coefficients are assigned for each BR unit under consideration
(steps 1a-c). Next, we consider the coefficients of each
NBMO for the whole system (steps 2a-c), followed by
normalization of the NBMO coefficients. The letters “a”,
“b”, and “c” are used for the MO coefficients of NBMO1,
NBMO2, and NBMO3, respectively. According to subsection
2.1, one can assign NBMO1, NBMO2, and NBMO3 as RC1,
RC2, and RC2, respectively. In a manner similar to the
procedure (iv) in subsection 2.1, these NBMO coefficients
are calculated witha ) 1/x7 (for RC1) andb ) c ) 1/x10
(for RC2). Therefore, theLij

AP value for structure A can be
evaluated by

There is no mixing between NBMO1(RC1) and
NBMO3(RC2) in structure A.

In structure B, NBMO1, NBMO2, and NBMO3
belong to RC1, RC2, and RC2, respectively (see Figure
3(b)). Thus, we obtaineda ) 1/x7 (for RC1) andb ) c )
1/x10 (for RC2). TheLij

AP value for B structure is calcu-
lated by

Finally, we consider structure C (see Figure 3(c)). Both
NBMO1 and NBMO3 are assigned as RC1, and we obtained
a ) c ) 1/x7 (for RC1). The NBMO2 in which the
coefficients spread over three benzene rings is assigned as

Figure 3. Analytical prediction of the Lij value for three different structures, A-C in the benzyl radical trimer model. The benzyl
radical units under consideration are indicated by bold lines.

Structure A: Lij
AP ) Lij

AP[NBMO1(RC1)-NBMO2(RC2)] +

Lij
AP[NBMO2(RC2)-NBMO3(RC2)]) 3 × (ab)2 + 3 × (bc)2 )

3
70

+ 3
100

≈ 0.07286 (7)

Structure B:Lij
AP ) Lij

AP[NBMO1(RC1)-NBMO2(RC2)] +

Lij
AP[NBMO1(RC1)-NBMO3(RC2)] + Lij

AP[NBMO2(RC2)-NBMO3(RC2)])

3 × (ab)2 + 3 × (ac)2 + 3 × (bc)2 ) 3
70

+ 3
70

+ 3
100

≈
0.11571 (8)
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RC3. The NBMO coefficients corresponding to RC3 are
calculated by the normalization of value “b” in Figure 3(c),
i.e.

Therefore, theLij
AP value for structure C is calculated by

There is no mixing between NBMO1(RC1) and
NBMO3(RC1) in structure C.

2.3. Benzyl Radical Pentamer Model.Figure 4 shows a
benzyl radical pentamer model with five benzyl radical units,
BR-1-BR-5. This model includes five NBMOs, NBMO1-
NBMO5. NBMO1 and NBMO2 belong to RC1. NBMO3
corresponds to RC2, and both NBMO4 and NBMO5
correspond to RC3. Therefore, the NBMO coefficients are
calculated witha ) b ) 1/x7 (for RC1),c ) 1/x10 (for
RC2), andd ) e ) 1/x13 (for RC3). TheLij

AP value can be
estimated by

All the other combinations between the NBMOs in eq 11,
for example, between NBMO1 and NBMO2, have no
mixing.

2.4. Treatment of Methylene or Methylidyne Radical
Units. Figure 5 shows a nondisjoint closed-type system
including methylene (:CH2) or methylidyne (:CH‚) radical
(MR) units, MR-1 and MR-2, in addition to benzyl radical
units, BR-1 and BR-2. We can predict the shapes of the
NBMOs and theLij

AP value for such a system in the
following manner.

NBMO coefficients were assigned for each radical unit
under consideration (see step 1). Note that the NBMO
coefficient in the MR unit is initially assigned by “2a” for
MR-1 and “2c” for MR-2. Next, we considered the coef-
ficients of each NBMO in other radical units (see step 2)
and obtained four NBMOs 1-4. NBMO1, 2, 3, and 4 can
be assigned as RC1, RC1, RC2, and RC1, respectively (see
step 3). After normalization of the NBMO coefficients,a )

Figure 4. Analytical prediction of the Lij value for a benzyl radical pentamer model. The benzyl radical units under consideration
are indicated by bold lines.

(2b)2 + 6(-b)2 + 3b2 ) 13b2 ) 1; b ) 1

x13
≈ 0.27735

(for RC3) (9)

Structure C:Lij
AP ) Lij

AP[NBMO1(RC1)-NBMO2(RC3)] +

Lij
AP[NBMO2(RC3)-NBMO3(RC1)]) 3 × (ab)2 + 3 × (bc)2 )

3
91

+ 3
91

≈ 0.06593 (10)

Lij
AP ) Lij

AP[NBMO1(RC1)-NBMO3(RC2)] +

Lij
AP[NBMO1(RC1)-NBMO4(RC3)] + Lij

AP[NBMO2(RC1)-NBMO4(RC3)] +

Lij
AP[NBMO3(RC2)-NBMO4(RC3)] + Lij

AP[NBMO3(RC2)-NBMO5(RC3)] +

Lij
AP[NBMO4(RC3)-NBMO5(RC3)] ) 3 × (ac)2 + 3 × (ad)2 + 3 ×

(bd)2 + 3 × (cd)2 + 3 × (ce)2 + 3 × (de)2 )
3
70

+ 3
91

+ 3
91

+ 3
130

+ 3
130

+ 3
169

≈ 0.17270 (11)
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b ) d ) 1/x7 (for RC1) andc ) 1/x10 (for RC2) can be
calculated. TheLij

AP value is estimated (see step 4) by

Therefore, we can treat methylene or methylidyne radical
units in a manner similar to the benzyl radical units except
for the initial assignment for the NBMO coefficients as
shown in step 1 of Figure 5.

2.5. Generalization of the Estimation of the Lij
AP

Value. In the above subsections, we defined three types of
radical centers according to the shape of their NBMOs. That
is to say, RC1, RC2, and RC3 represent the NBMOs
spreading over one benzene ring, two benzene rings, and
three benzene rings, respectively. It should be noted that for
a huge benzyl radical oligomer, only the three types of radical
centers, RC1, RC2, and RC3, can be considered for a
nondisjoint closed type system. Thus, only six types of
mixings between the different shapes ofith andjth NBMOs
are considered as

whereRi
RC1 indicates the NBMO coefficient ofith NBMO

with an RC1-type radical center. A series of NBMO
coefficients is provided in subsections 2.1 and 2.2 asRi

RC1

) Rj
RC1 ) 1/x7, Ri

RC2 ) Rj
RC2 ) 1/x10, andRi

RC3 ) Rj
RC3 )

1/x13. Therefore, theLij
AP value for the whole system

can be calculated by counting all the NBMO mixings (eq
13a-f) over the whole system as

whereNAP(RC1-RC1), NAP(RC1-RC2), etc. indicate the number of
mixings,Lij

AP(RC1-RC1), Lij
AP(RC1-RC2), etc., respectively.

The process for counting the NBMO mixings can be
conducted by judging whether the two NBMOs under
consideration make mixings or not. For instance, for the
benzyl radical pentamer model (see Figure 4) we can count
the components of NBMO mixings using eqs 13 and 14 as

Therefore, finally, we obtained the same results as eq 11.
Similarly, one can count the NBMO mixings and calculate
the Lij

AP value for the system including methylene or
methylidyne radical units.

3. Results and Discussion
Figure 6 shows model systems for a quasi-one-dimensional
benzyl radical oligomer that are combined by the “nondisjoint
closed-type”, as shown in Figure 1(A-1). Models 1-3 in

Lij
AP ) Lij

AP[NBMO1(RC1)-NBMO2(RC1)] +

Lij
AP[NBMO1(RC1)-NBMO3(RC2)]+ Lij

AP[NBMO2(RC1)-NBMO3(RC2)] +

Lij
AP[NBMO3(RC2)-NBMO4(RC1)]) 3 × (ab)2 + 3 × (ac)2 + 3 ×
(bc)2 + 3 × (cd)2 ) 3

49
+ 3

70
+ 3

70
+ 3

70
≈ 0.18980 (12)

RC1-RC1: Lij
AP(RC1-RC1) ) 3 × (Ri

RC1 Rj
RC1)2 )

3 × ( 1

x7
× 1

x7)2
) 3

49
≈ 0.06122 (13a)

RC1-RC2: Lij
AP(RC1-RC2) ) 3 × (Ri

RC1 Rj
RC2)2 )

3 × ( 1

x7
× 1

x10)
2

) 3
70

≈ 0.04286 (13b)

RC1-RC3: Lij
AP(RC1-RC3) ) 3 × (Ri

RC1 Rj
RC3)2 )

3 × ( 1

x7
× 1

x13)
2

) 3
91

≈ 0.03297 (13c)

RC2-RC2: Lij
AP(RC2-RC2) ) 3 × (Ri

RC2 Rj
RC2)2 )

3 × ( 1

x10
× 1

x10)
2

) 3
100

) 0.03 (13d)

RC2-RC3: Lij
AP(RC2-RC3) ) 3 × (Ri

RC2 Rj
RC3)2 )

3 × ( 1

x10
× 1

x13)
2

) 3
130

≈ 0.02308 (13e)

RC3-RC3: Lij
AP(RC3-RC3) ) 3 × (Ri

RC3 Rj
RC3)2 )

3 × ( 1

x13
× 1

x13)
2

) 3
169

≈ 0.01775 (13f)

Figure 5. Analytical prediction of the Lij value for a system
including methylene (:CH2) or methylidyne (:CH•) radical units.
The benzyl radical units under consideration are indicated by
bold lines.

Lij
AP ) NAP(RC1-RC1)Lij

AP(RC1-RC1) +

NAP(RC1-RC2)Lij
AP(RC1-RC2) + NAP(RC1-RC3)Lij

AP(RC1-RC3)+

NAP(RC2-RC2)Lij
AP(RC2-RC2) + NAP(RC2-RC3)Lij

AP(RC2-RC3) +

NAP(RC3-RC3)Lij
AP(RC3-RC3) (14)

Lij
AP ) 0 × Lij

AP(RC1-RC1) + 1 × Lij
AP(RC1-RC2) +

2 × Lij
AP(RC1-RC3)+ 0 × Lij

AP(RC2-RC2) + 2 × Lij
AP(RC2-RC3) +

1 × Lij
AP(RC3-RC3)) 1 × ( 3

70) + 2 × ( 3
91) + 2 × ( 3

130) +

1 × ( 3
169) ≈ 0.17270 (15)
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Figure 6(a) correspond to “two-line systems” in which radical
centers are arranged in two lines as shown by the arrows
indicating the directions of alignment. In contrast, models
4-6 in Figure 6(b) correspond to “three-line systems” in
which radical centers are arranged in three lines. Note that
models 2, 3, 5, and 6 include methylene (:CH2) or methyl-
idyne (:CH•) radical units as indicated by the red open
squares in the figure.

3.1. Analytical Predictions for Two-Line Systems.In
this subsection, we formulate theLij

AP value for the nondis-
joint closed-type models 1-3 in the two-line system. When
the number of radical centers is defined as “N”, we can
count the number of mixings between NBMOs according to
the right figure of each model (see Figure 6(a)). Table 1 (a)
and Figure 6(c) show the formulation of theLij

AP value
for model 1. The number ofLij

AP’s components, that is,
Lij

AP(RC1-RC2), Lij
AP(RC2-RC2), etc., are counted for some sizes

of periodic structures step by step (N ) 4, 6, 8...). Eventually,
we can estimate the number of each component for an
arbitrary size of oligomer, that is,N ) n. Therefore, for
model 1 theLij

AP value is formulated as

where small “n” is replaced with capital “N”. The increase
of the Lij

AP value per radical center is calculated by consid-
ering theN limits (N f ∞) of Lij

AP/N as

In a similar way, we can estimate theLij
AP values (see also

Table 1(b) and (c)) and the increases per radical center for
models 2 and 3 as follows:

Figure 6. Nondisjoint closed-type models for quasi-one-dimensional benzyl radical oligomers with (a) two- and (b) three-line
alignment of radical centers. The red open square indicates a methylene (:CH2) or methylidyne (:CH•) radical unit. The periodic
structure for each system is shown in a parallelogram. The arrows indicate the directions of the alignment of the radical centers.
The mixings between NBMOs are illustrated in the right-hand figure of each model. (c) Model 1 with N ) 4, 6, and 8 for the
formulation of the Lij

AP value in Table 1.

Model 1: Lij
AP ) 2Lij

AP(RC1-RC2) + (N2 - 1)Lij
AP(RC2-RC2) +

(N - 2)Lij
AP(RC2-RC3) + (N2 - 2)Lij

AP(RC3-RC3))

6
70

+ (N2 - 1) 3
100

+ (N - 2)
3

130
+ (N2 - 2) 3

169
(16a)

lim
Nf∞

Lij
AP

N
) lim

Nf∞{ 6
70N

+ (12 - 1
N) 3

100
+ (1 - 2

N) 3
130

+

(12 - 2
N) 3

169} ) (12) 3
100

+ 3
130

+ (12) 3
169

≈ 0.04695 (16b)

Model 2: Lij
AP ) 2Lij

AP(RC1-RC2) +

(74N - 4)Lij
AP(RC2-RC2) ) 6

70
+ (74N - 4) 3

100
(17a)
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Figure 7(a) shows the relationship between theLij
AP value

and the number of radical centers (N) for models 1-3. Our
AP method predicts the order of high-spin stability as “model
3 > model 2> model 1” regardless ofN. This order directly
reflects the order of the increase of theLij

AP value per radical
center, that is, limNf∞(Lij

AP/N).
To confirm the validity of theLij

AP value, we compared
theLij

AP value in this work with theLij
min(HMO) value obtained

by the HMO method in Figure 7(b) as the number of radical
centers,N ) 8 and 16, are selected here. It was found that
the absolute value of theLij

AP value is underestimated
compared with theLij

min(HMO) value. However, the order of
the Lij value for the three models exhibits a very similar

tendency toward each other in bothN ) 8 andN ) 16. The
only difference is the order of models 2 and 3 inN ) 8.
Such differences in theLij value between the AP and HMO
methods result from the fact that in these models, after
unitary rotation, theLij

min(HMO) values do not correspond to
the minimumLij value correctly, as mentioned in subsection
2.1.

Next, we examined the relationship between theLij
AP

values and the energetic stability of the high-spin ground
states (∆E(L-H)) estimated by single-point calculations
using ab initio MO methods by the Gaussian03 program
package.25 High-spin stability∆E(L-H) is defined as the
difference in total energy between the lowest spin state (E(L))
and the highest spin state (E(H)), that is,∆E(L-H) ) E(L)
- E(H). All the single-point calculations adopt the standard
geometric parameters, as follows: [benzene ring] C-C )
1.395 Å, C-H ) 1.100 Å; [CH or CH2 group] C-C ) 1.54
Å, C-H ) 1.070 Å. All bond angles are fixed at 120°, and
dihedral angles are fixed to keep a planar structure.

We calculated the∆E(L-H) values for models 1-3 atN
) 8 using various methods and basis sets within ab initio
MO calculations (see Figure 8). The methods selected were
the Hartree-Fock (HF) method, second-order Mφller-
Plesset perturbation theory (MP2) including frozen core (FC)
approximation, and the density functional theory (DFT)
method using the Becke-3-Lee-Yang-Parr (B3LYP)
functional.26-28 For calculating open-shell systems, we
adopted the restricted open-shell Hartree-Fock (ROHF)
method for each theory. The basis sets are selected as 3-21G

lim
Nf∞

Lij
AP

N
) lim

Nf∞{ 6
70N

+ (74 - 4
N) 3

100} ) (74) 3
100

) 0.0525
(17b)

Model 3: Lij
AP ) Lij

AP(RC1-RC1) + (N - 1)Lij
AP(RC1-RC2) +

(N2 - 2)Lij
AP(RC2-RC2)) 3

49
+ (N - 1)

3
70

+ (N2 - 2) 3
100

(18a)

lim
Nf∞

Lij
AP

N
) lim

Nf∞{ 3
49N

+ (1 - 1
N) 3

70
+ (12 - 2

N) 3
100} )

3
70

+ (12) 3
100

≈ 0.05786 (18b)

Table 1. Formulation of Lij
AP Value for Models 1-3

(Two-Line System)a

(a) Model 1b

components of Lij
AP value

N Lij
AP(RC1-RC2) Lij

AP(RC2-RC2) Lij
AP(RC2-RC3) Lij

AP(RC3-RC3)

4 2 1 2 0
6 2 2 4 1
8 2 3 6 2
10 2 4 8 3
12 2 5 10 4
n 2 (n/2)-1 n-2 (n/2)-2

(b) Model 2

components of Lij
AP value

N Lij
AP(RC1-RC2) Lij

AP(RC2-RC2)

4 2 3
8 2 10
12 2 17
n 2 (7/4)n-4

(c) Model 3

components of Lij
AP value

N Lij
AP(RC1-RC1) Lij

AP(RC1-RC2) Lij
AP(RC2-RC2)

2 1 0
4 1 3 0
6 1 5 1
8 1 7 2
10 1 9 3
n 1 n-1 (n/2)-2
a N represents the number of radical centers in the system.

b Systems with N ) 4, 6, and 8 in model 1 are shown in Figure 6(c).

Figure 7. (a) Relationship between the Lij
AP value and

the number of radical centers (N) in two-line systems
(models 1-3). (b) Comparison of the Lij value between
the analytical prediction (AP) method (Lij

AP) and the HMO
method (Lij

min(HMO)). N ) 8 and 16 are selected as the number
of radical centers.
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(in panel (a)), 6-31G (in panel (b)), and 6-31G(d) (in panel
(c)). Figure 8(a)-(c) shows the order of high-spin stability
as “model 3> model 2> model 1” regardless of the method
and the size of the basis set. This order of high-spin stability,
∆E(L-H), agrees well with the order ofLij

AP that is
predicted by our AP method. It was found from Figure 8
that the ROMP2(FC) and ROB3LYP results exhibit smaller
values of ∆E(L-H) than do the ROHF results. This is
because the effects of electron correlations primarily stabilize
the low-spin state. In other words, the HF calculation
overestimates the stability of the high-spin state.

Furthermore, we examined the dependence of the order
of ∆E(L-H) on the number of radical centers (N) (see
Figure 9). We calculated the∆E(L-H) value of models 1-3
for N ) 8, 16, 24, and 32 at the levels of ROB3LYP/3-21G.
The order of high-spin stability of∆E(L-H) is “model 3>
model 2> model 1” regardless ofN. It was found that both
the Lij

AP value (by the AP method) and∆E(L-H) (by
ROB3LYP/3-21G calculation) show a similar tendency in
the high-spin stability of systems with even larger values of
N.

3.2. Analytical Predictions for Three-Line Systems.In
this subsection, we formulate theLij

AP value for the “non-
disjoint closed-type” models 4-6 in three-line systems (see
Figure 6(b) and Table 2). We can count the number of
mixings between NBMOs in a way similar to that of the

two-line system. TheLij
AP values and the increase per

radical center (limNf∞(Lij
AP/N)) for models 4-6 were esti-

mated as

Figure 10 (a) shows the relationship between theLij
AP

value and the number of radical centers (N) for models 4-6.

Figure 8. Ab initio MO calculations of high-spin stability
∆E(L-H) for two-line systems, models 1-3 ((a) 3-21G, (b)
6-31G, and (c) 6-31G(d) basis sets). ∆E(L-H) indicates the
difference in total energy between the lowest and highest spin
states, that is, ∆E(L-H) ) E(L) - E(H). N ) 8 is selected as
the number of radical centers.

Figure 9. Dependence of high-spin stability∆E(L-H) on the
number of radical centers (N) for two-line systems (models
1-3) at the ROB3LYP/3-21G level. ∆E(L-H) indicates the
difference in total energy between the lowest and highest spin
states.

Model 4: Lij
AP ) 2Lij

AP(RC1-RC2) + (N3)Lij
AP(RC2-RC2) +

(23N)Lij
AP(RC2-RC3) + (43N - 7)Lij

AP(RC3-RC3))

6
70

+ N
100

+ 2N
130

+ (43N - 7) 3
169

(19a)

lim
Nf∞

Lij
AP

N
) lim

Nf∞{ 6
70N

+ 1
100

+ 2
130

+ (43 - 7
N) 3

169} )

1
100

+ 2
130

+ 4
169

≈ 0.04905 (19b)

Model 5: Lij
AP ) 3Lij

AP(RC1-RC2) + (N3 - 1)(2Lij
AP(RC1-RC3) +

Lij
AP(RC2-RC2) + 2Lij

AP(RC2-RC3)) + (N3 - 2)Lij
AP(RC3-RC3))

9
70

+ (N3 - 1)( 6
91

+ 3
100

+ 6
130) + (N3 - 2) 3

169
(20a)

lim
Nf∞

Lij
AP

N
) lim

Nf∞{ 9
70N

+ (13 - 1
N)( 6

91
+ 3

100
+ 6

130) +

(13 - 2
N) 3

169} ) 2
91

+ 1
100

+ 2
130

+ 1
169

≈ 0.05328 (20b)

Model 6: Lij
AP ) 2Lij

AP(RC1-RC2) + (N2)Lij
AP(RC2-RC2) +

(54N - 3)Lij
AP(RC2-RC3) + (38N - 2)Lij

AP(RC3-RC3))

6
70

+ (N2) 3
100

+ (54N - 3) 3
130

+ (38N - 2) 3
169

(21a)

lim
Nf∞

Lij
AP

N
) lim

Nf∞{ 6
70N

+ (12) 3
100

+ (54 - 3
N) 3

130
+

(38 - 2
N) 3

169} ) (12) 3
100

+ (54) 3
130

+ (38) 3
169

≈ 0.05050 (21b)
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From the results, our AP method predicts the order of high-
spin stability as “model 5> model 6> model 4” regardless
of N.

We calculated the∆E(L-H) values for models 4-6 atN
) 24 at the level of ROHF/3-21G and ROB3LYP/3-21G
(see Figure 10(b)). Both the ROHF and ROB3LYP results
predict the order of high-spin stability as “model 5> model
6 > model 4”, although the ROB3LYP results show a
smaller value for∆E(L-H) than do the ROHF results due
to the stabilization of the low-spin state by the effects of
electron correlation. Even for the three-line system, it was
found that theLij

AP value in Figure 10(a) agrees well with
the order of∆E(L-H) by ab initio MO calculations.

As we have seen above, it is clear that the mixing between
NBMOs controls the order of theLij

AP value and high-spin
stability. Therefore, ferromagnetic systems with largeLij

AP

values can be designed by considering the following factors.
(1) A system with strong ferromagnetic properties

should inVolVe large mixings between NBMOs such as
Lij

AP(RC1-RC1), Lij
AP(RC1-RC2), Lij

AP(RC1-RC3), and so on. Accord-
ing to subsection 2.5, the order of magnitudes of the NBMO
mixings is

(2) In a system with strong ferromagnetic properties, each
NBMO should mix with many other NBMOs.For example,

in structure A of the trimer model (see Figure 3(a)), NBMO1
mixes only with NBMO2, whereas in structure B of the
trimer model (Figure 3(b)), NBMO1 mixes with both
NBMO2 and NBMO3. The latter case has an advantage in
the Lij

AP value compared with the former case.

In particular, factor (1) plays a dominant role for deter-
mining theLij

AP value as long as we compare a similar size
of oligomers. Therefore, model 3 with manyLij

AP(RC1-RC2)

and model 5 with manyLij
AP(RC1-RC3)show the largestLij

AP

value within the two- and three-line systems. Generally
speaking, these results provide us with a few guidelines on
the structure of radical units to design ferromagnetic systems
with a largeLij

AP value. First, each benzene ring should be
connected to many radical centers to enlarge theLij

AP value.
In such cases, large mixings of NBMOs are expected to
generate on the benzene rings, leading to exchange interac-
tions. Second, each radical center should not be connected
to many benzene rings, because delocalized NBMOs gener-
ally provide a smallLij

AP value due to their small NBMO
coefficients.

In the present article, perfectly planar systems with no
environment molecules were assumed for the simplicity.
However, a deviation from the planar structure do not have
primary importance for designing new materials, because it
is obvious that such an effect always weakens the ferromag-
netic properties due to a weakenedπ-conjugation. Indeed,
the deviation effects can be easily estimated by considering
overlaps between adjacentp-orbitals perpendicular to the
molecular plane. Furthermore, exchange interactions through-
space between environment and a target molecule is expected
to be secondary effects inπ-conjugated systems, because
such through-space interactions generally show smaller
effects than through-bond exchange interactions.

Table 2. Formulation of Lij
AP Value for Models 4-6

(Three-Line System)a

(a) Model 4

components of Lij
AP value

N Lij
AP(RC1-RC2) Lij

AP(RC2-RC2) Lij
AP(RC2-RC3) Lij

AP(RC3-RC3)

6 2 2 4 1
9 2 3 6 5
12 2 4 8 9
15 2 5 10 13
n 2 n/3 (2/3)n (4/3)n-7

(b) Model 5

components of Lij
AP value

N Lij
AP(RC1-RC2) Lij

AP(RC1-RC3) Lij
AP(RC2-RC2) Lij

AP(RC2-RC3) Lij
AP(RC3-RC3)

6 3 2 1 2 0
9 3 4 2 4 1
12 3 6 3 6 2
15 3 8 4 8 3
n 3 2(n/3-1) n/3-1 2(n/3-1) n/3-2

(c) Model 6

components of Lij
AP value

N Lij
AP(RC1-RC2) Lij

AP(RC2-RC2) Lij
AP(RC2-RC3) Lij

AP(RC3-RC3)

8 2 4 7 1
16 2 8 17 4
24 2 12 27 7
32 2 16 37 10
n 2 n/2 (5/4)n-3 (3/8)n-2

a N represents the number of radical centers in the system.

Lij
AP(RC1-RC1) > Lij

AP(RC1-RC2) > Lij
AP(RC1-RC3) >

Lij
AP(RC2-RC2) > Lij

AP(RC2-RC3) > Lij
AP(RC3-RC3) (22)

Figure 10. (a) Relationship between the Lij
AP value and the

number of radical centers (N) in three-line systems (models
4-6). (b) Ab initio MO calculations of high-spin stability ∆E(L-
H) for three-line systems. N ) 24 is selected as the number
of radical centers. ∆E(L-H) indicates the difference in total
energy between the lowest and highest spin states.
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Although our new method was applied only to the periodic
system, the method is also effective for predicting the
ferromagnetism in aperiodic systems. In such cases, theLij

AP

value is easily estimated by counting up the number of the
NBMO mixings in the system.

4. Conclusion
The analytical prediction (AP) method can predict the high-
spin stability∆E(L-H) of nondisjoint closed-type benzyl
radical oligomers without any direct quantum calculations.
This method is composed of three procedures: (1) predicting
the shape of NBMOs, (2) counting the mixings between
NBMOs, and (3) formulating the relationship between the
NBMO mixings and the number of radical centers (N).
Although our AP method is based on the Hu¨ckel NBMO
concept for simplicity, it was confirmed that the AP method
well predicts the high-spin stability evaluated by ab initio
MO calculations including the post-HF method or DFT
method. That is to say, our new treatment simulates higher
level calculations when considering the electron correlation
effects.

The AP method has the potential for predicting ferromag-
netic properties in large systems. For example, formulating
the NBMO mixings for periodic polymers enables qualitative
prediction of the ferromagnetic properties of polymers
including those involving considerably large radical units.
Furthermore, the AP method can also be applied to the
prediction of the ferromagnetic properties of periodic and
aperiodic polymers by directly counting all the mixings
between NBMOs over the whole system.
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Abstract: We have used density functional calculations to examine the (101) surfaces of KDP,

under vacuum, nitrogen, and aqueous conditions, and these simulations are found to agree

well with nanoscale experimental studies demonstrating that the density functional calculations

are providing a good description of the surfaces of this complex inorganic salt.

Wolfgang Pauli is famously quoted as suggesting “God made
solids ... but surfaces were the work of the Devil”.1 This
statement reflects the immense difficulties faced by experi-
mentalists when characterizing surfaces. As a result of this
paucity of experimental data, computer simulations have been
at the forefront of surface research. In the field of inorganic
salts, one of the major triumphs was the prediction of
extensive surface relaxation on the basal plane of alumina
first by interatomic potential based calculations2 and then
by quantum mechanical simulations.3-5 These predictions
were confirmed by experiment very much later.6,7 Similarly,
good agreement has been obtained on the (001) surface of
MgO. However, attention of the modeling community has
turned to surfaces of complex salts, and yet to our knowledge
there has been almost no direct validation of quantum
mechanical simulations with experimental data for complex
inorganic surfaces. This has been caused by both the lack
of experimental data available, due to their nonconducting
nature, and the complexity of the calculations. Recent
advances in parallel efficiency and linear scaling algorithms
now make it possible to simulate larger and more complex
systems using quantum mechanics.8 KDP is an example of
a complex inorganic solid, and the structure of the (101)

surface has been well characterized in a number of recent
experimental studies.9-12

There has only been a small number of ab initio molecular
modeling studies reported for KDP. The bulk structure of
KDP has been examined in several recent studies13-15 using
density functional theory (DFT). The only reported theoreti-
cal study of the surfaces of KDP has been by Stack et al.16

They used DFT to study the (100) surface of KDP, in
particular relating to the adsorbing/detaching of growth units.
Surface X-ray diffraction (SXRD) studies have examined the
relaxation of atoms on the (101) surfaces of KDP, under
aqueous conditions.9,10 Recent SXRD studies on KDP
surfaces in aqueous solution11,12suggest that there are several
icelike ordered water layers on the surface. Thus we have
used DFT calculations to examine relaxations of the (101)
surface of KDP and compared our results to these recent
experimental studies.

At room temperature, KDP forms a paraelectric phase in
the tetragonalI4h2d space group.17 KDP undergoes a phase
transition at 122 K to a ferroelectric (FE) phase in the
orthorhombicFdd2 space group.17 For easier comparison to
the paraelectric phase, we used the body-centeredC2V

19

I-setting space group as described by Baur.18

Density functional calculations on KDP were carried out
using the SIESTA code.19,20 The generalized gradient ap-
proximation has been employed for all calculations, using
the functional of Perdew, Burke, and Ernzerhof.21 Core
electrons have been represented by norm-conserving pseudo-
potentials of the form proposed by Troullier and Martins.22
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The valence electron configurations used were 1s1, 2s22p3,
2s22p4, 3s23p3, and 3p64s1 for H, N, O, P, and K, respectively.
A double-ú basis set with polarization functions was used
for all atoms except oxygen, which had a triple-ú basis set
with polarization functions. The Brillouin zone was sampled
using a 3× 3 × 3 Monkhorst-Packk-grid. The localized
basis set in SIESTA consists of numerical atomic orbitals,
which are radially confined to an extent that induces an
energy shift in each orbital of 0.01 Ry. Hartree and exchange-
correlation energies were evaluated on a uniform real space
grid of points with a defined maximum kinetic energy of
200 Ry.

The bulk structure of KDP was relaxed at zero Kelvin,
and then the (101) surface was generated using the GDIS
program.23 There are two possible ways to cut the (101)
surface: one produces a cation (K+) terminated surface and
the other produces a dihydrogenphosphate (H2PO4

-) termi-
nated surface. Surface slabs were created using a 1× 1 ×
4 supercell, with a vacuum gap of approximately 26 Å.
Relaxed surface configurations were generated by keeping
the cell vectors fixed and only allowing the atom positions
to relax, with calculations being run for both possible surface
terminations. These calculations were then repeated using
no vacuum gap. Surface energies were calculated for each
surface termination using the following expression

whereEsurf is the surface energy,Eslab is the energy of the
surface slab with a vacuum gap,Eequiv bulk is the energy of
the surface slab with no vacuum gap, andA is the surface
area.Esurf is divided by two because each slab has two
equivalent surfaces.

The use ofEequiv bulk, rather than an integer number ofEbulk,
allows for maximum cancellation of errors relating to
sampling and convergence for the different sized simulation
cells. Two nitrogen molecules were added to the relaxed
surface, and the system was relaxed to generate the nitro-
genated surface configuration. A similar approach was taken
to generate the hydrated surface configuration, by adding
12 water molecules onto the relaxed vacuum surfaces, and
the system was then relaxed again.

The relaxed bulk structure for KDP matched closely to
that from previous calculations, with the cell volume within
1.5% of the experimental value. Surface energies were
calculated for each surface termination of the (101) surface,
and the results are reported in Table 1. From the surface
energy calculations, the cation (K+) terminated (101) surface
appears significantly more stable than the H2PO4

- terminated
surface. SXRD studies9,10 of KDP have experimentally
determined that the (101) surface is indeed cation terminated.

The reason the cation terminated surface is the most stable
can be rationalized in terms of the relative surface area of

the two surface terminations. In a crystal with isotropic
interactions, the surface energy is proportional to the surface
area of the exposed surface. The greater the surface area,
the more energy that is required to create it. Using the GDIS
program,23 we calculated the molecular surface (the surface
defined by the van der Waals spheres of the surface atoms)
of the two surface terminations. The reported areas were 114
Å2 for the cation terminated surface and 157 Å2 for the anion
terminated surface. Thus if the interactions within the KDP
crystal were isotropic, we expect the anion terminated surface
to have a surface energy 1.37 times higher than the cation
terminated surface. The calculated surface energy of the
anion terminated face is actually 1.48 times higher, suggest-
ing that this simple model is a good approximation. In short,
the cation terminated surface is more stable because it is
much less corrugated than the anion terminated surface.

The surface relaxations of the cation terminated surface
of KDP was then measured. We used the approach taken in
the experimental studies of de Vries et al.,9-10 where a
H2PO4

- ion was treated essentially as a fixed group, and
movements of the central atom in this group (phosphorus)
were measured. The displacements of atoms (in thez
direction) have been measured by comparing the positions
in the relaxed and unrelaxed surfaces. These are reported in
Table 2, with a negative (-) displacement referring to inward
relaxation and a positive (+) displacement referring to an
outward relaxation. Two relaxation values are reported for
each particular surface species. This is because there are two
symmetry independent H2PO4

- and K+ species on each
surface, because of the hydrogen ordering in the orthorhom-
bic phase at zero Kelvin. As the differences in interatomic
distances between the orthorhombic and tetragonal phases
are small, we believe that the average of our values should
match closely with the experimental value, without recourse
to the exceedingly compute expensive density functional
molecular dynamics calculations that would be required to
include the effect of temperature. The relaxed vacuum,
nitrogenated, and hydrated (101) surfaces are illustrated in
Figures 1-3, respectively.

The calculated vacuum and nitrogenated surface trends
match the experimental trend found under nitrogen condi-
tions, with the K+ ion displacing toward the surface and the
H2PO4

- displacing away from it. De Vries et al.10 have
examined the surfaces of KDP under high vacuum, but the

Table 1. Surface Energies for the Two Surface
Terminations of the (101) Surface of KDP

surface termination surface energy (J/m2)

H2PO4
- 0.80

K+ 0.54

Table 2. Translational Relaxations of Species at the (101)
Surface of KDP

translational relaxations (Å)

K+ H2PO4
-

Experimental Studies
nitrogenateda -0.13 ( 0.03 +0.12 ( 0.04
aqueous solutionb +0.10 ( 0.05 +0.04 ( 0.05

Theoretical Calculationsc

vacuum -0.25 (-0.27,-0.23) +0.12 (+0.18,+0.06)
nitrogenated -0.27 (-0.29,-0.25) +0.14 (+0.06,+0.22)
hydrated +0.14 (+0.17,+0.11) +0.08 (0.00,+0.16)

a Reference 12. b References 9 and 10. c The average relaxation
is reported for the theoretical calculations, with actual relaxations
reported in parentheses.

Esurf ) (Eslab-Eequiv bulk)/2A
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surface quality was found to change over time making it
impossible to accurately determine the surface relaxation.

Comparing the experimental and nitrogenated surface
relaxations, the magnitudes of relaxation compare favorably
although vary slightly for K+, with calculations producing
an relaxation of-0.27 Å, while experiments reported a value
of -0.13 Å.

We then performed calculations on a hydrated surface of
KDP, using explicit water molecules, to produce a surface
that would closely match the aqueous conditions reported
in experiments. For the hydrated surface, the calculated
surface trend matches that found experimentally under
aqueous conditions, with both the K+ and H2PO4

- ions
having an outward relaxation. The magnitudes of relaxation
are also quite similar, although slightly larger in the
calculations. When we examined the hydrated surface, we
found that there were a number of strong hydrogen bonds
formed between the H2PO4

- ions and the surface water
molecules, with typical hydrogen bond lengths of 1.5-1.9
Å. Density functional calculations are known to overestimate

the strength of hydrogen bonds,24 so this could explain why
the H2PO4

- ions have a slighly larger outward relaxation in
our calculations. There is potentially a range of configurations
for water on the surface, and ideally molecular dynamics
calculations should be run. However, for the present paper,
we have examined two configurations and taken the lowest
in energy (the energy differnce was small). These calculations
were carried out at zero Kelvin, while the experimental
values are measured at room temperature. This could also
account for some of the differences in magnitudes.

Overall, the good match between calculated and experi-
mental results suggests that density functional calculations
can provide accurate simulations of the structures of complex
inorganic surfaces.
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Abstract: Density functional calculations were performed at the B3LYP level using combined

basis sets for the NO and bromine interactions with the Pt(111) surface mimicked by the two-

layer Pt10 cluster model. It explains well an attractive bonding interaction not only for bromine

and Pt(111) but also for all three adsorption modes of NO on the Pt(111) surface. In accordance

with the experimental observations, the calculations predict that the first peak in the IR spectra

appears at around 1515 cm-1 at the initial stage of low NO coverage, while it would shift to

1707 cm-1 at high NO coverage. The bonding of NO on the 3-fold hollow fcc and hcp sites of

Pt(111) proceeds via predominant back-donation interactions, while for the on-top adsorption,

both the donation and back-donation interactions become equally important. Energetic criteria

show also that the STM tip (made from Pt and Ir alloys) immersed into a bromine solution may

contain only dissociated bromine atoms that bind strongly with the surface Pt atoms. As a result,

the νBrBr stretching vibration mode for the bromine molecule may not be seen in the IR spectra

because of its dissociation into adsorbed atoms. This leads to an appearance of a blue shifted

band centered at ca. 202 cm-1.

Introduction
Interaction of NO with metal surfaces and, in particular, with
Pt and Pd has been the subject of many experimental and
theoretical investigations because of considerable interest in
the field of heterogeneous catalysis and various catalytic
processes.1-12 One of the important examples is a reduction
of toxic NOx from flue gases emitted by stationary and
mobile sources, automobiles, coal-fired power plants, electric
power generators, nitric acid factories, etc.6,13,14Since NOx

are the most toxic environmental pollutants, the control of
NO emissions is a major challenge and the most highly
desirable goal. Despite general agreement on a molecularly
adsorption feature of NO on a Pt surface at low temperatures,
there are still controversial discussions on the nature of target
interactions and stable adsorption sites on the Pt(111) surface.
Recently, Nakatsuji et al.6 have shown that only the dipped
admolecule model (DAM) can properly describe both the
energetics and the vibrational modes for the NO adsorbed

on the Pt(111) surface, while they have ruled out the
adequacy in applying the so-called cluster model approach
to mimic such kinds of interactions. At the same time, Trout
et al.7 have claimed that the periodic slab calculations can
be also well suited in describing these interactions including
such features as the order of stability for the adsorption
complexes and their adsorption energies when considering
the different adsorption modes realized on Pt(111). However,
these latter two quantities, i.e., the relative stability order
and adsorption energies, differ strongly from those predicted
by Nakatsuji et al.6

Another aspect related to the Pt surface is studies on the
adsorption of bromine or iodine species at different Pt facets
that has been widely investigated under ultrahigh vacuum,
at normal atmospheric pressure conditions as well as from
aqueous solutions.15-18 At temperatures as low as 25 K,
bromine is dissociatively adsorbed on Pt(111). The strong
interaction between bromine radicals and the Pt surface
accounts for Br2 dissociative adsorption. These adsorbed
bromine atoms are supposed to be only transiently mobile,

* Corresponding author phone: 81-22-795-6568; e-mail:
nurbosyn@orgphys.chem.tohoku.ac.jp.

801J. Chem. Theory Comput.2006,2, 801-807

10.1021/ct050308m CCC: $33.50 © 2006 American Chemical Society
Published on Web 04/07/2006



while weakly bound Br2 molecules would be adsorbed near
or preexisting Br atoms that would act as preferential sites
for Br2 dissociation. Under atmospheric pressure conditions,
the exposure of clean Pt(111) surface to bromine vapors
results in the formation of about half of the monolayer
coverage of bromine atoms while being neutral in character
for the adsorbed bromine atoms. Earlier Solomon et al.19

studied iodine molecule adsorption on steps of the Pt surface
under vacuum and atmospheric pressure conditions using
experimental LEED, AES, and thermal desorption spec-
troscopies. In contrast to smooth Pt(111), they found multiple
phase domains of (3× 3) or (x3×x3)×R30° and no special
preferences for iodine adsorption on these step positions. Ertl
and co-workers20 have also shown that bromine adlayers
formed by flame annealing of platinum single-crystal surfaces
and quenching in bromine vapor, studied by STM and
cyclovoltammetry, form protective layers which, similar to
iodine, prevent contamination of the surface and lead to well-
defined surfaces. On Pt(111), a (4× 4) structure is observed,
while on Pt(100), a disordered structure is observed. Both
structures are compatible with densely packed adlayers of
bromine, while all three low index surfaces including Pt-
(110) yield air-stable bromine adlayers.

Since the discovery of powerful STM techniques in 1982,21

to attain their main goals, scientists are driven not only to
understand how atoms locate at surface interfaces and how
they behave with the surface electrons but also to understand
deeply the STM tip enhanced spectroscopic properties of
adsorbed molecules and highly ordered structures as well as
polymerization processes on different substrates.22-24 Using
this technique one may effectively initiate chemical reactions
of interest, manipulate the oxidation or reduction processes
at distinct active surface sites, etc. This methodology is also
important in creating new microchips for optoelectronic
devices, computers, etc. Also, because of considerable
interest in the modification of STM tips through contacts
with bromine or iodine solutions, theoretical considerations
may further supplement a deep understanding of those unique
properties at target surfaces and their interfaces. Moreover,
they can be expected to be equally complimentary for the
experimental investigations. The question that arises as to
what extent this halogen modification of the STM tip can
lead is of primary interest because the tip enhanced IR or
Raman spectra is the origin to obtain additional information
not only on surface structures but also on the quality of
surfaces as well as on their environment.

In this paper, we report on the theoretical results obtained
for the interaction of the NO and bromine with Pt(111) using
the cluster approach. In contrast to the cited above most
recent publications,6,7 we will show that the cluster approach
can be equally applied to describe reasonably the nature of
the target interactions as well as to predict theoretical
spectroscopic properties of adsorbed molecules. In particular,
the IR spectra of NO acted as a probe molecule, and bromine
on Pt(111) can be well explained.

Method and Models
Density functional theory (DFT) calculations were performed
using the Gaussian03 program packages.25 Geometry opti-

mizations were carried out with the use of Becke’s three-
parameter hybrid method with the Lee, Yang, and Parr
(B3LYP) gradient-corrected correlation functional26 and the
combined standard basis sets. The latter basis sets include
the standard 6-31G* ones for the N and O atoms and Lanl2dz
basis sets for all the Pt as well as Br atoms. As a result, they
would be denoted as the B3LYP/(Lanl2dz+ 6-31G*) level
for the NO on the Pt(111) and B3LYP/Lanl2dz level for
bromine on Pt(111), respectively. The Pt(111) surface was
modeled by the two-layer Pt10 cluster model shown in Figure
1. The geometry optimizations were carried out taking into
account symmetry restrictions and followed by estimation
of vibration fundamentals via performing harmonic frequency
calculations.

Results and Discussion
The ground electronic state of the isolated Pt atom is3D3

with the electronic configuration of [Xe]: 4f145d96s1. Because
of this triplet ground state, it is not evident how the overall
spin state would be for the cluster consisting of 10 Pt atoms.
Trout et al.7 have excluded in their calculations magnetic
states and have performed only nonmagnetic slab calculations
for the combined systems of the NO adsorbed on Pt because
the chemisorbed NO is found to be nonspin-polarized
according to previous studies.2 However, this is not neces-
sarily true either for the isolated Pt cluster with a finite size
or for the combined adsorption complexes of NO considered
here. To clarify this issue, we have first determined the
optimal spin state for the isolated two-layer Pt10 cluster
model. Table 1 lists the results of these calculations. Note
that for each spin state the three independent structural
parameters shown in Figure 1 were optimized. As is clear
the closed-shell singlet spin state is highly unfavorable for
the Pt10 cluster by energy (about 30 kcal/mol) than the
optimal spin state one containing eight unpaired electrons
with a multiplicity equal to 9. The spin densities for these 8
electrons are distributed over all the Pt atoms while being
less localized on the central Pt site. Its spin equals only to
0.276. In addition, this state is free from spin contaminants
because its /S2/ value after spin annihilation matches exactly
with the theoretical value of 20.

Moreover, the central Pt atom is the only site with a
positive charge of 0.274e- after conventional Mulliken
population analysis, while the rest of the other Pt atoms in

Figure 1. The two-layer Pt10 cluster model mimicking the Pt-
(111) surface and the definition of the three independent
variables.

802 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Zhanpeisov and Fukumura



the cluster are all slightly negatively charged. Evidently, the
obtained high-spin state for the Pt10 cluster should be taken
into account when considering the adsorption complexes of
NO and bromine because they would strongly affect their
adsorption energetics.

Thus, we have first examined the adsorption complexes
of the NO molecule on the Pt10 cluster. Because the isolated
NO molecule has one unpaired electron in itsπ*-MO and
radical in nature, the interaction with the high-spin Pt10 cluster
leads to effectively coupling of these electrons. Therefore,
the bonding between the NO and the Pt10 cluster can be
governed by the donation and/or back-donation interactions.
Nakatsuji et al.6 have pointed out that for this target
interaction the back-donation is more important and dominant
and that the interaction can be only explained within the
DAM model, while the cluster approach will fail to explain
this bonding phenomenon. However, here we have some
doubt about this conclusion. Below we will show that both
donation and back-donation interactions are equally important
and depend on the distinct adsorption modes. Moreover, the
cluster model can be also considered as a complementary
tool to reliably explain both the energetics of the NO
adsorption and spectroscopic properties of the adsorbed NO
on Pt(111).

Table 2 lists the adsorption energies, molecular properties,
and main geometric parameters for the NO adsorption at the
most common three active sites of Pt(111) mimicked by the
Pt10 cluster model, while the stick and ball optimized
geometries of adsorption complexes are shown in Figure 2.
These adsorption modes correspond to the bonding of NO
on the top site as well as on both the 3-fold hollow fcc and
hcp sites. The latter two sites differ only by the absence or
presence of the Pt atom of the second layer just below the
center of the top 3-fold hollow site. Note that this applied
Pt10 cluster model is the minimal one that contains all the
sets of active sites on Pt(111). However, one should keep in
mind that the use of such a kind of finite cluster model has
well-documented disadvantages in describing extended sur-
faces.10 Nevertheless, the applied Pt10 cluster model is well
suited to the broad survey undertaken here, being compu-
tationally much less demanding than those based on the
periodic slab approach.

As in the case of the isolated cluster model, for each
adsorption mode considered here we have selectively deter-
mined the optimal spin state for the combined system.
Accordingly, the optimal spin state for each adsorption

complex together with their /S2/ values are shown in Table
2. An analysis of these data shows the following peculiarities:

(i) The applied cluster model can explain the attractive
bonding interaction between the NO and the Pt(111) surface

Table 1. Multiplicity (M), Relative Energy (Erel, kcal/mol),
Value of /S2/ before (after) Spin Annihilation, and Geometry
(R1, R2, R3, All in Å) of the Bare Pt10 Cluster

M Erel
a /S2/ R1 R2 R3

1 29.7 2.707 2.201 1.621
3 7.3 4.03 (5.44) 2.709 2.218 1.645
5 5.0 7.03 (6.35) 2.712 2.218 1.641
7 1.7 12.51 (12.04) 2.725 2.187 1.623
9 0 20.10 (20.00) 2.720 2.203 1.682

11 14.7 30.10 (30.00) 2.723 2.205 1.688
a Total energy of the bare cluster with multiplicity equal to nine is

taken as an internal reference. The positive sign corresponds to lower
stability.

Table 2. Adsorption Energy (Eads, kcal/mol), Multiplicity
(M), Value of /S2/ before (after) Spin Annihilation, Charges
(QNO and QPt, e-) on NO and the Central Pt Atom, Spin
Density (FNO, e-) on NO, Bond Lengths (RPt-N and RN-O,
Å), NO Stretching Frequency (ν, cm-1), and HOMO and
HOMO-LUMO Gap (∆, au) for the Adsorption Complexes
of NO on Pt(111) Mimicked by the Two-Layer Pt10 Cluster
Model as Calculated at the B3LYP/(Lanl2dz + 6-31G*)
Level

on-top fcc hcp

Eads
a 19.1 14.8 14.1

18.2 14.2 13.6
19.3 16.8 16.1

M 8 6 6
/S2/ 15.82 (15.75) 8.92 (8.76) 8.86 (8.75)
QNO +0.03 -0.46 -0.44
QPt -0.14 +0.16 +0.18
FNO +0.07 -0.06 -0.07
RPt-N 2.052 2.104 (1.999)b 2.104 (2.001)b

RN-O
c 1.167 1.205 1.204

νNO
d 1707 1515 1530

HOMO -0.2073 -0.2059 -0.2049
∆ 0.0654 0.0530 0.0585

a The values of adsorption energies at the second and third rows
were estimated at the B3LYP/(Lanl2dz + 6-311++G**)//B3LYP/
(Lanl2dz + 6-31G*) and B3LYP/(Lanl2dz + cc-pVTZ)//B3LYP/
(Lanl2dz + 6-31G*) levels of theory, respectively. b The other two
equal Pt-N bond distances formed by the N atom and the two nearest
edge Pt atoms are shown in parentheses. c The N-O bond distance
in the gas phase is calculated to be equal to 1.159 Å. d The νNO

stretching frequency is scaled down by using a scale factor of 0.97.30

Figure 2. The optimized adsorption complexes of NO on the
Pt(111) surface presented in stick and ball structures: (a) on-
top, (b) 3-fold hollow fcc, and (c) 3-fold hollow hcp adsorption
complexes.
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for all three adsorption modes. This finding is in contrast
with the conclusions of ref 6, where highly repulsive
interactions have been observed for all the adsorption modes
of NO on a similar Pt10 cluster model. For example, the
adsorption of NO on the on-top, 3-fold hollow fcc and hcp
sites was found to be highly unstable for 32.5, 35.3, and
36.9 kcal/mol, respectively.6 Two factors, i.e., basis set
inconsistency and low spin state for the Pt10 cluster applied,
might be the reason for the latter repulsive interactions found
in ref 6. Moreover, we have also found that the bonding
mechanism is not one and the same for all three adsorption
modes. For the on-top adsorption mode, both the donation
and back-donation is equally important, with a slight
preference only for the donation of the electron density from
the NO molecule to the Pt(111) surface. The net electron
density transfer amounts to 0.03e-. For the other two 3-fold
hollow fcc and hcp sites, the back-donation is strictly
predominant as can be seen from the Mulliken population
analysis (see Table 2). As a result, the latter back-donation
lowers the overall spin state for these adsorption modes.
However, in accordance with the results of other previous
studies,2,7 the adsorbed NO molecule is nonspin-polarized
because of negligibly small spin density on the N and O
atoms for all three adsorption complexes.

We have also performed additional calculations for
population analysis and atomic charge assignments that are
based on natural bond orbital (NBO) analysis and charges
determined by the fit to the electrostatic potential at points
selected according to the CHelpG scheme.25 The latter
CHelpG charges support qualitatively the above findings;
however, they are highly dependent on the radii of the centers
used in fitting those potentials. NBO analysis shows that the
d-population on the central Pt atom is smaller for ca. 0.10
e-, while its 6p-AO earns ca. 0.13e- as compared to other
Pt sites in the case of the on-top adsorption mode of NO.
The electronic configurations for the N and O atoms become
[He]2s1.642p3.16and [He]2s1.722p4.43, respectively. Conversely,
the adsorption of NO on the 3-fold hollow fcc site decreases
the d-population on the three Pt atoms of interest by 0.17,
0.14, and 0.14 e-, while electronic configurations of the N
and O atoms look like [He]2s1.442p3.59 and [He]2s1.722p4.50,
respectively. As is clear, a strong population of 2p-AO of
the N site of NO is observed. A similar picture has been
also observed for the adsorption of NO on the 3-fold hollow
hcp site. Thus, the back-donation interaction favors the NO
binding at high-coordination fcc and hcp sites, while the
donation term is consistently more favorable for the on-top
coordination.

(ii) The adsorption energies estimated in a conventional
way lie in close proximity to each other with a slight
preference (about 5 kcal/mol) for the on-top adsorption mode.
The least stable mode is the adsorption on the 3-fold hollow
hcp site, which is about 0.7 kcal/mol less strong than that of
the 3-fold hollow fcc site. Thus, the order of stability is
expressed as on-top> fcc ≈ hcp and correlates with the
highest occupied molecular orbital (HOMO) level. Additional
single-point calculations were performed at the same B3LYP
level, but using more larger and extended basis sets did not
alter the above obtained stability order (see the second and

third rows for the adsorption energy, Table 2). Also, the
adsorption energies estimated at the B3LYP/(Lanl2dz+
6-31G*) level lie within 1-2 kcal/mol as compared to those
estimated at higher levels of the theory for each selected
adsorption mode of the NO on Pt(111). However, this
obtained stability order of adsorption complexes is in contrast
with the results of other theoretical studies6,7 but supports
well the results of an experimental study obtained by
Matsumoto et al.27 According to the latter experimental
interpretation, NO occupies the three sites sequentially
depending on the NO coverage. First NO adsorbs at the
3-fold hollow fcc site, next at the top site, and last at the
3-fold hollow hcp site.

The above findings of ours need additional remarks. A
traditional picture proposed by Gland and Sexton1b for the
interaction of NO with Pt(111) points out that at low
coverages bridge sites are initially occupied by NO mol-
ecules. This erroneous ascription has been, however, later
corrected by other studies1c,3,27 so that it turned out to be
3-fold hollow fcc sites. Gland and Sexton1b claimed also that
the bridge NO species leaves the bridge sites and moves to
the on-top sites as the NO coverage increases that is based
on the disappearance of the vibrational band at 1490 cm-1

at high NO coverage in the reflection absorption infrared
spectroscopy measurements (RAIRS). However this mode
remains in the high-resolution electron energy loss spectros-
copy measurements (HREELS) even at the saturation cover-
age. Therefore, the site transfer model proposed by Sexton
and Gland1b is insufficient and is not applicable to explain
the discrepancy between the results of RAIRS and HREELS.
Moreover, the previous theoretical calculations3,6,7 have
shown also that the 3-fold hollow fcc site is the most
preferable adsorption site, so that there are no reasons for
the move of the adsorption complex from the 3-fold hollow
fcc site to on-top sites, at least at coverages lower than 0.25
multilayers. In addition, why the on-top species exists is
irrespective of the relative instability as compared to the
above 3-fold hollow fcc and hcp site species. The latter
picture is even highly pronounced in ref 6, where the relative
stability of the adsorption complexes on the 3-fold hollow
fcc and the hcp sites are ca. 3.5 times larger than that of the
on-top site that even rules out the formation of the latter
adsorption complexes. Thus, our results obtained above are
in line with the interpretation proposed by Matsumoto et al.,27

and the move from the 3-fold hollow fcc site to the on-top
site is driven by a slight preference in the adsorption energy
for the latter on-top sites.

(iii) The adsorption of NO leads to the elongation of the
N-O bond length as compared to the isolated gas-phase
value. This increase in the bond distance is larger for the
adsorption of NO on the 3-fold hollow fcc and hcp sites being
about 0.05 Å. Note also that the two latter adsorption
complexes of NO on 3-fold hollow sites result in the
formation of three nonequivalent Pt-N bonds because of
the shift of the center of mass of NO from the center of the
respective hollow sites to the nearest edge site. The nearest
distance from the metal surface amount to 1.291 and 1.293
Å for the adsorption complexes on the 3-fold hollow fcc
and hcp sites, respectively. Note that the most stable on-top
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adsorption mode of NO observed in the present study results
in the formation of a tilted structure, the tilt angle being equal
to 59.5°. This finding is in line with the results of other
investigations on the adsorption of NO on Pt(111)3,6,7as well
as on Pd(111).28 Also, the geometry parameters that char-
acterize these three adsorption complexes of NO (i.e., the
N-O and Pt-N bond distances, see Table 2) are in good
agreement with the observed data of the NEXAFS5 and
LEED29 experiments.

(iv) The stretching frequency of NO shows a red shift
during the adsorption as compared to that of the isolated
gas-phase value. For the on-top adsorption complex, it
appears at 1707 cm-1, while for the 3-fold hollow fcc and
hcp sites they are centered at 1515 and 1530 cm-1,
respectively. Because the adsorption energies differ slightly
as well as these three adsorption sites equally available, we
may conclude that at a low NO coverage, the adsorption takes
place on 3-fold hollow sites, while the increase in the NO
coverage will result on adsorption on the top sites. Accord-
ingly, at the initial stage of a low NO coverage, the first
peak would appear at around 1515 cm-1, while it would shift
to 1707 cm-1 at high NO coverage. These findings are in
complete accordance with the observed experimental data
(see, for example, ref 6).

Following the symmetry of the Pt10 cluster model, we have
considered also some representative structures on extended
models. The first one is obtained from Pt10 by an increase
in Pt atoms at the top layer only (the Pt22 cluster model
containing 19 and 3 atoms in two layers, respectively), while
the second cluster corresponds to the Pt31 one containing
atoms from the next shell in both layers (19 and 12 atoms at
each layers, respectively, see Figure 3). Because of the size
of these clusters, single point calculations at the similar
B3LYP/Lanl2dz level were carried out to estimate an optimal
spin state for these two cluster models at fixed geometries
found for the Pt10 cluster (at its optimal high spin state). It
was found that the energetically most preferable states are
those containing 16 and 20 unpaired electrons for the Pt22

and Pt31 cluster models, respectively. The on-top adsorption
mode of NO on the Pt22 cluster results in close geometrical
parameters and adsorption energy as those found for the case
of the minimal Pt10 cluster model. For example, the Pt-N
and N-O bond distances are equal to 2.000 and 1.159 Å,
respectively, while its adsorption energy amounts to 24.6
kcal/mol, an increase of 5.5 kcal/mol as compared to that
found for the on-top adsorption on the Pt10 cluster model.

Let us move to consider the interaction of the bromine
with the Pt(111) surface. As we have noted before, this issue
is important, at least in relation to the STM tip modification
and in understanding the nature of the target interaction. Note
that in STM experiments the most common tip is made from
a tungsten polycrystalline wire, while others are based on
transition metals usually made from Pt and iridium alloys.
To the first approximation, one may consider just a very
dense Pt(111) structure as the tip and clarify its interaction
with the bromine. Based on the above results obtained for
NO interactions with the same Pt10 cluster model, we have
considered adsorption modes for the bromine molecule and
the atom on the top position of Pt(111) as well as the

dissociative adsorption form of Br2. Table 3 lists the results
of these calculations, while Figure 4 shows their optimized

Figure 3. The extended cluster models of Pt22 (a) and Pt31

(b) as well as the optimized structure mimicking on-top
adsorption mode of NO on the Pt22 cluster (c).

Table 3. Adsorption Energy (Eads, kcal/mol), Multiplicity
(M), Value of /S2/ before (after) Spin Annihilation, Charges
(QBr and QPt, e-) on the Br and Central Pt Atoms, Spin
Density (FBr, e-) on the Adsorbate, Bond Lengths (RPt-Br

and RBr-Br, Both in Å), and HOMO (au) for the On-Top
Adsorption Complexes of Br2 and Br as Well as
Dissociative Adsorption of Br2 on Pt(111) Mimicked by the
Two-Layer Pt10 Cluster Model

on-top Br2 on-top Br dissociative Br2

Eads 20.4 42.5 72.9
M 9 8 9
/S2/ 20.10 (20.00) 15.81 (15.75) 20.07 (20.00)
QBr +0.03 (-0.27)a +0.04 +0.05 (+0.04)b

QPt +0.08 -0.24 -0.24
FBr +0.02 (+0.03)a +0.03 +0.04 (+0.12)b

RPt-Br 2.720 2.570 2.568 (2.663)b

RBr-Br 2.749
HOMO -0.2226 -0.2167 -0.2240

a The value in parentheses is for the end bromine atom. b The value
in parentheses is for the Br atom that bonds with the nearest two
edge Pt atoms.
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geometries. An analysis of these data shows that the
molecular adsorption of Br2 on the top position of Pt(111)
is twice as weak as that of the atomic Br adsorption.
Moreover, the molecular adsorption is much less profitable
as compared to its dissociative adsorption form. In the latter
dissociative adsorption form, the two Br atoms are initially
attached to the on-top and to one of the edge Pt atoms.
However, the geometry optimization leads to the structure
shown in Figure 4c where one of the Br atoms makes in-
plane symmetric two bonds with the two nearest edge Pt
atoms. Its overall adsorption energy amounts to 72.9 kcal/
mol as compared to the isolated noninteracting Pt10 cluster

and the Br2 molecule. Interesting to note is that both
molecular and dissociative adsorption of Br2 did not alter
the optimal spin state of the bare Pt10 cluster, while an atomic
Br adsorption lowers it, as is found before in the case of the
on-top adsorption of NO. Based on these energetic criteria
we conclude that the STM tip immersed into a bromine
solution may contain only dissociated bromine atoms that
are strongly bound with the surface Pt atoms. This finding
is in complete agreement with the results of experimental
investigations.15,17 As a result, one may not see theνBrBr

stretching vibration of the adsorbed Br2 molecule (see Figure
5a) because it will be blue shifted due to the appearance of
the νPtBr stretching vibration centered at around 202 cm-1

(see Figure 5b). Note that the theoretical IR spectrum has
been simulated by the Lorentzian broadening of the calcu-
lated discrete vibrations with a half width of 20 cm-1.

Summary and Conclusions
The obtained results of the density functional calculations
at the B3LYP level using the above combined basis sets can
be concluded as follows:

1. The adsorption energies of NO on different sites of the
Pt(111) surface lie in close proximity to each other, while
the relative stability order of adsorption complexes can be
expressed as on-top> fcc ≈ hcp that correlates directly with
the HOMO level. At low NO coverage, the first peak is
predicted to appear at around 1515 cm-1, while it would shift
to 1707 cm-1 at high NO coverage in accordance with
experimental observations.

2. An atomic Br as well as the dissociative adsorption of
Br2 proceed highly favorably as compared to the molecular
adsorption of Br2 on the top position of the Pt(111) surface
that is the least favorable one. Both the molecular and
dissociative adsorption of Br2 did not alter the optimal spin
state of the bare Pt10 cluster, while an atomic Br adsorption
lowers it for one.

3. The STM tip immersed into a bromine solution may
contain only dissociated bromine atoms that strongly bind
with the surface Pt atoms. As a result, theνBrBr stretching

Figure 4. The optimized adsorption complexes of (a) mo-
lecular Br2 and (b) atomic Br on the top position and (c)
dissociative adsorption of Br2 on-top as well as the two edge
Pt atoms of the Pt(111) surface.

Figure 5. Theoretical IR spectra of bromine adsorbed on the
Pt(111) surface: (a) molecular Br2 adsorption and (b) atomic
Br adsorption.
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vibration of the adsorbed Br2 molecule cannot be seen
because of a blue shift and are centered at ca. 202 cm-1.
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Abstract: The first-, second-, and third-order static and frequency-dependent polarizabilities

of a series of octupolar tri-s-triazines have been investigated by using the ab initio coupled

perturbed Hartree-Fock (CPHF) method. Effects of substitution have also been considered.

The results show that R, â, and γ values for octupolar tri-s-triazines are much larger than those

for s-triazine in both static and frequency-dependent cases. Attaching groups containing π
systems such as azide and ethenyl to the tri-s-triazine molecule results in a significant increase

of first-, second-, and third-order polarizabilities. Our calculations suggest that the octupolar

tri-s-triazines may be prospective candidates for nonlinear optical materials.

Introduction
Molecules possessing large nonlinear optical (NLO) proper-
ties have been intensively investigated for potential applica-
tions in the areas of integrated optics and other sections of
materials science.1-3 As is well-known, second-order NLO
compounds show great promise in their application in
photonic devices such as high-speed electrooptic (E-O)
modulators and switches, owing to their large E-O coef-
ficients, ultrafast response times, and ease of processing into
thin films.4,5 On the other hand, third-order NLO properties
provide the basic means for light controlling with light in
all optics, as in optical bistability and phase conjugation.
Furthermore, the understanding of all-optical switching,
modulating, and computing devices is important in modern
optical technology, and NLO materials with large third-order
nonlinear susceptibilities are indispensable for such devices.
For example, if a material has a high third-order nonlinear
susceptibility, it can generate a strong conjugate wave in
optical phase-conjugate wave generation devices, and the
length of the resonator for reaching the bistable region in

optical bistable devices can be much reduced. Our present
research is focused on the development of NLO molecules
with large nonlinearity, high thermal stability, and good
processability.6,7

The traditional materials with enhanced molecular second-
order NLO coefficients are those with extendedπ-systems
and significant molecular dipoles. Although there are many
examples of dipolar molecules exhibiting extremely large
hyperpolarizabilities, several limitations prevent them from
being a candidate for NLO materials, such as the NLO
efficiency-transparency tradeoff, and the proclivity of dipolar
molecules to adopt centrosymmetric packing in the solid
state.8 Octupolar molecules, which combine nonlinear optical
properties with a strict cancellation of all vectorlike observ-
able dipole moment,8-11 overcome these problems due to
the presence of a 3-fold symmetry axis in octupolar 1,3,5-
substituted aromatic ring systems. Such a 3-fold axis may
lead to better transparency characteristics,11 and the lack of
a molecular dipole enhances the prospects of noncentro-
symmetric crystal packing.

In the 1990s, Zyss and co-workers introduced octupolar
molecules for second-order nonlinear optics.8,9 Since the
development of hyper-Rayleigh scattering techniques, the
hyperpolarizabilities of octupolar molecules, such as tri-
cyanomethanide ion, tetraorganotin compounds, and sym-
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metrically substituted benzenes and triazines as well as
tertiary amines, have been evaluated experimentally.12-17 In
1999, Humphrey et al. first reported data exploring the third-
order NLO potential of an organometallic octupolar com-
pound.18 In 1995, Ray and Das measured the first hyper-
polarizabilities of some symmetrically substituted triazines
and compared them with those of the corresponding sym-
metrically substituted benzenes. It was found that the
octupolar triazines have quadratic polarizabilities higher than
the corresponding octupolar benzenes.19 In 2002, Wu inves-
tigated the first- and third-order polarizabilities of a series
of octupolar heteroaromatic-substituted triazines using ab
initio methods. It was revealed that these triazines have high
polarizabilities.20 In a recent study, we calculated the
geometric and electronic structures of some symmetrically
substituted tri-s-triazines21 and found that the octupolar tri-
s-triazines molecules possess high thermal stability. In this
work, we report NLO data for these octupolar compounds
using ab initio molecular orbital method.

Methods
The geometries of all symmetrically substituted tri-s-triazines
studied in this work were optimized at the B3LYP/aug-cc-
pVDZ level of theory using the software package Gaussian
98.22 The calculations for the NLO properties were performed
using the HONDO 99.9 set of programs.23 Static polariz-
abilities as well as the first- and second-order hyperpolar-
izability components were calculated analytically using the
coupled perturbed Hartree-Fock (CPHF) method.24 The
Buckingham type expansion25 was used in the CPHF
calculation:

whereE is the energy of a molecule under the electric field
F, E(0) is the unperturbed energy of a free molecule,Fi is
the vector component of the electric field in theith direction,
and µi, Rij, âijk, and γijkl denote the dipole moment, linear
polarizability, and first- and second-order hyperpolarizabili-
ties, respectively. Each of the subscriptsi, j, k, and l
represents the index of the Cartesian axesx, y, and z. To
provide additional useful information to experimentalists, we
also calculated the frequency-dependent polarizabilities and
hyperpolarizabilities using the time-dependent CPHF method.26

The 1064 nm line of Nd:YAG laser is used in our calculation
since the second-harmonic generation (SHG) experiments
are usually performed at this fundamental wavelength.

It is well-known that splitting valence basis sets with
additional diffuse and polarization functions can be employed
to correct the underestimation, especially for theγ-tensor
components. Hurst et al.24 reported that the 6-31G functions
plus one p and one d function (6-31G plus lpld) is a reliable
basis set which yields qualityâ and γ values of polyene
systems, even though it is not a very big basis set. In this
work, we selected Pople’s standard 6-31++G(d,p) basis set
in the CPHF calculations. The reliability of this method can
be justified since it has been applied to a variety of molecules

and has achieved good results.20,27So fars-triazine derivatives
have not been extensively investigated for NLO applications.
Only a few importants-triazine derivatives have been
synthesized and their second harmonic generation properties
measured. But these derivatives are too large to be dealt with
the CPHF/6-31++G(d,p) method. Instead, we calculated the
(hyper)polarizability of benzene and compared our compu-
tational results with the available experimental data. The
calculatedR (64.5 au) is very close to the experimental value
of 71.5 au.28 For the calculatedγ (13 241 au, dcKerr 632.8
nm), we also find satisfactory agreement with the measured
value (12 800 au, dcKerr 632.8 nm).29 Hence the theoretical
methods adopted in this work should be reliable.

The calculated tensors were transformed to mean scalar
values by applying the following equations.

Zyss et al.8,9,11,30have developed and discussed the tensorial
nature of the second-order polarizability for octupolar
molecules. Within their framework, the second-order polar-
izability tensor can be decomposed in two componentsâJ)1

and âJ)3, the dipolar and octupolar contributions, respec-
tively.

For 2-D planar systems, the following expressions apply:

Results and Discussion
Static First-, Second-, and Third-Order Polarizabilities.
The octupolar tri-s-triazines studied in this work shown in
Figure 1 are derived from symmetrical substitution of
hydrogen atoms by various groups in tri-s-triazine. The
s-triazine molecule is also displayed for comparison. The
geometric structures of these molecules were discussed in
detail in our previous work.21 Tables 1-3 list the calculated
values of the static first-, second-, and third-order polariz-
abilities and their individual components for all six tri-s-
triazines shown in Figure 1. The tensor components listed
in these tables have the following approximate relationships:

In all the molecules investigated in this work, the axial
componentRzz of R along theC3V axis is smaller than the

E ) E(0) - µi
(0)Fi - 1

2
RijFiFj - 1

6
âijkFiFjFk -

1
24

γijklFiFjFkFl - ‚‚‚

R ) 1
3
(Rxx + Ryy + Rzz)

〈γ〉 ) 1
5
(γxxxx+ γyyyy+ γzzzz+ 2γxxyy+ 2γxxzz+ 2γyyzz)
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|â|2 ) |âJ)1|
2 + |âJ)3|
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Figure 1. Optimized molecular structures for s-triazine and octupolar tri-s-triazines with bond lengths in Å and angles in degrees.
Experimental data for s-triazine and tri-s-triazine are given in parentheses.
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nonaxial componentsRxx andRyy. As expected, the polariz-
ability R of tri-s-triazine is larger (by a factor of 2.2) than
that ofs-triazine. The averageR of the parent molecule tri-
s-triazine is 15.5911 Å3. Upon substitution, the averageR
decreases slightly to 15.4486 Å3 in the fluoro derivative but
increases significantly to 20.1243, 23.3340, 28.2958, and
29.7387 Å3 for the amino, nitro, azido, and ethenyl deriva-
tives, respectively. It is noted that, when the substituent
containsπ system such as azide and ethenyl, theR value of
the tri-s-triazine derivative is nearly twice as that of the parent
molecule. The fluorine atom plays the role ofπ-acceptor
and drains part of theπ-electron cloud from the rings, which
in turn decreases the degree ofπ-charge delocalization.
Hence the fluoro-substituted tri-s-triazine has the smallest
R value.

When we turn to the second-order polarizabilityâ, we
notice that the|â| value for the parent tri-s-triazine molecule
is 459.2260× 10-32 esu, which is almost 8 times larger than
that of s-triazine (64.6887× 10-32 esu). By symmetry, the
nonzero tensors ofâ in tri-s-triazine and its fluoro and amino
derivatives, all with D3h symmetry, areâyyy and âxxy.
However, for the nitro, ethenyl, and azide derivatives, all
with C3h symmetry, the nonzeroâ tensors areâxxx, âyyy, âxxy,
and âxyy. With tri-s-triazine as a reference, the|â| value

increases slightly in fluoro and nitro derivatives but increases
by about 3-5 times in amino, azido, and ethenyl derivatives.
This shows that the substituent containingπ system enhances
the second-order polarizability|â| drastically.

The averaged third-order polarizabilities<γ> of the
s-triazine, tri-s-triazine, and its derivatives are listed in Table
3. Usings-triazine as a reference, the<γ> value of tri-s-
triazine increases by about 2-fold. However, comparing with
the parent tri-s-triazine, trifluoro-tri-s-triazine decreases by
about 25%, while the other derivatives experience an increase
of 1 order of magnitude.

In summary, when compared with the parent molecule,
all substituted tri-s-triazines, except the fluoro derivative,
experience an increase, sometimes even by several orders
of magnitude, for the static first-, second-, and third-order
polarizabilities.

Frequency-Dependent First-, Second-, and Third-
Order Polarizabilities. From a qualitative point of view,
tuning up the frequency of the external electric field induces
an increase of delocalizability, allowing a stronger electron
mobility in the aromatic systems. This simple model leads
to a practical explanation of the frequency dispersion pattern
found in tri-s-triazines.

The frequency-dependentR andâ values are reported in
Table 4, where the laser frequency 1064 nm was used as a
standard. For polarizabilityR, comparing the last column of
Table 1 with the second column of Table 4, the effect of
frequency dispersion is very small. But for second-order
polarizabilityâ, comparing the last column of Table 2 with
the third and fourth columns of Table 4, frequency dispersion
enhances theâ value by 10% and more. In particular, the
increase is more pronounced when electron-donating or
π-bonding substituents are involved. Also, the increase for
SHG â (-2ω; ω, ω) is more prominent than that for
electrooptic pockels effect (EOPE)â (-ω; 0, ω). Compared
with the static value, for the ethenyl derivative,â (-2ω; ω,

Table 1. Static First-Order Polarizabilities (Å3) and Their
Individual Components of s-Triazine and Octupolar
Tri-s-triazines

molecule Rxx Ryy Rzz R

s-triazine 8.3265 8.3265 4.3104 6.9878
tri-s-triazine 19.5108 19.5108 7.7516 15.5911
trifluoro-tri-s-triazine 19.3357 19.3357 7.6744 15.4486
triamino-tri-s-triazine 25.2204 25.2204 9.9322 20.1243
trinitro-tri-s-triazine 26.1252 26.1200 17.7568 23.3340
triethenyl-tri-s-triazine 37.9127 37.9127 13.3907 29.7387
triazido-tri-s-triazine 36.7575 36.7574 11.3723 28.2958

Table 2. Static Second-Order Polarizabilities (10-32 esu) and Their Individual Components of s-Triazine and Octupolar
Tri-s-triazines

molecule âxxx âyyy âxxy âxyy |â|

s-triazine 32.3444 -32.3443 64.6887
tri-s-triazine -229.6120 229.6133 459.2260
trifluoro-tri-s-triazine -282.5875 282.5871 565.1744
triamino-tri-s-triazine -632.9766 632.9786 1265.9562
trinitro-tri-s-triazine -248.8180 265.8763 -265.9148 248.6477 728.1550
triethenyl-tri-s-triazine 276.1715 -1018.2450 1018.2460 -276.1698 2110.0658
triazido-tri-s-triazine 162.1427 -1019.7733 1019.7743 -162.1436 2065.1679

Table 3. Static Third-Order Polarizabilities (10-39 esu) and Their Individual Components of s-Triazine and Octupolar
Tri-s-triazines

molecule γxxxx γyyyy γzzzz γxxyy γxxzz γyyzz <γ>

s-triazine 2657.8618 2657.8703 1730.1931 885.9296 676.2007 676.2029 2304.5183
tri-s-triazine 6036.2210 6036.6554 2478.1237 2012.2301 1241.5368 1241.5300 4708.3188
trifluoro-tri-s-triazine 4638.8088 4639.2272 1873.7772 1546.4137 845.5892 845.5909 3525.4001
triamino-tri-s-triazine 13385.3187 13386.4202 3664.2631 4462.1743 1706.9594 1706.9679 9237.6411
trinitro-tri-s-triazine 8403.6906 8401.1645 951.2307 2800.4181 952.1211 952.0732 5433.4621
triethenyl-tri-s-triazine 44783.0373 44783.2771 10353.5549 14927.7331 4283.2492 4283.2457 29381.6605
triazido-tri-s-triazine 31072.2844 31071.7690 2688.5543 10357.2748 1757.4668 1757.4676 18515.4052
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ω) is increased by 25%. For the azide and amino derivatives,
the corresponding enhancements are 18% and 13%, respec-
tively. For â (-ω; 0, ω) values, a similar trend is detected.
This means that, as the staticâ values increase, so do the
frequency dispersion effects.

For the third-order polarizabilities of tri-s-triazines, five
different optical processes are considered: third-harmonic
generation (THG)γ (-3ω; ω, ω, ω), electric-field-induced
second-harmonic generation EFISHγ (-2ω; 0, ω, ω),
degenerate four-wave mixing DFWMγ (-ω; ω, ω, -ω),
electric-field-induced Kerr effect EFIKEγ (-ω; 0, 0, ω),
and electric-field-induced optical rectification EFIORγ (0;
0, ω, -ω). The calculated values of the third-order polar-
izability γ for the aforementioned processes are tabulated in
Table 5, where only the averaged scalar values<γ> are
listed. As can be seen from this table, the effect of frequency
dispersion onγ is very strong, with the trendγ (-3ω; ω,

ω, ω) > γ (-2ω; 0, ω, ω) > γ (-ω; ω, ω, -ω) > γ (0; 0,
ω, -ω) ≈ γ (-ω; 0, 0,ω) for all studied molecules. Again,
as expected, the derivatives containingπ-bonding substitu-
ents, such as ethenyl and azide groups, have the largest
frequency-dependent third-order polarizability. Also, as the
static γ values increase, so do the frequency dispersion
affects. Taking triethenyl-tri-s-triazine as an example,γ
(-3ω; ω, ω, ω), γ (-2ω; 0, ω, ω), γ (-ω; ω, ω, -ω), γ
(0; 0, ω, -ω), andγ (-ω; 0, 0, ω) increase by 88%, 31%,
21%, 9%, and 9%, respectively.

Ground-State Net Charges and Energy Levels.The
ground-state net charge distribution of the tri-s-triazines
studied in this work was analyzed by means of the natural
bond orbital (NBO) model.31-34 The natural atomic charges
of the atoms in the tri-s-triazine ring are listed in Table 6.
The results indicate that the total net charge of the fused
ring for the tri-s-triazine molecule is-0.65 and that all
substituents decrease the magnitudes of negative charges of
the ring. These results imply that there is partial electron
transfer from the rings to the substituents. This transfer is
more pronounced for the fluoro and nitro derivatives, where
the total net charges of the ring become positive. As a result
of the charge transfer, theR, â, andγ values in triamino-
tri-s-triazine, trinitro-tri-s-triazine, triethenyl-tri-s-triazine, and
triazido-tri-s-triazine molecules are much greater than that

Table 4. Frequency-Dependent (λ ) 1064 nm) First- (Å3) and Second-Order (10-32 esu) Polarizabilities of s-Triazine and
Octupolar Tri-s-triazines

molecule R (-ω, +ω) |â| (-2ω; ω, ω) |â| (-ω; 0, ω)

s-triazine 7.0462 71.0365 66.6595
tri-s-triazine 15.7928 512.9644 529.8788
trifluoro-tri-s-triazine 15.6171 616.0259 581.22425
triamino-tri-s-triazine 20.3787 1435.5371 1318.2964
trinitro-tri-s-triazine 23.6296 813.2688 754.5485
triethenyl-tri-s-triazine 30.3280 2644.1821 2265.4672
triazido-tri-s-triazine 28.7613 2437.2169 2176.6892

Table 5. Frequency-Dependent (λ ) 1064 nm) Third-Order (10-39 esu) Polarizabilities of s-Triazine and Octupolar
Tri-s-triazines

molecule γ (-3ω; ω, ω, ω) γ (-2ω; 0, ω, ω) γ (-ω; ω, ω, -ω) γ (-ω; 0, 0, ω) γ (0; 0, ω, -ω)

s-triazine 2857.1075 2555.7084 2470.8334 2382.8672 2378.8438
tri-s-triazine 7003.7833 5329.7833 5164.3859 4899.9057 4889.4697
trifluoro-tri-s-triazine 4502.7955 3918.5818 3828.9645 3649.5615 3647.7562
triamino-tri-s-triazine 12844.0528 10663.8378 10336.4123 9690.8679 9728.7243
trinitro-tri-s-triazine 8334.8171 6094.7383 5972.8161 5646.8307 5659.3228
triethenyl-tri-s-triazine 55269.1883 38363.5500 35562.8818 31994.5338 32094.7608
triazido-tri-s-triazine 30792.1488 23025.3981 21757.3120 19873.1236 19952.7164

Table 6. Natural Atomic Charges of the Atoms in
Tri-s-triazine Ring for Octupolar Tri-s-triazines

tri-s-triazine

trifluoro- triamino- trinitro- triethenyl- triazido-

N1 -0.55 -0.57 -0.61 -0.52 -0.55 -0.55
C2 0.36 0.91 0.66 0.65 0.47 0.64
N3 -0.55 -0.57 -0.61 -0.51 -0.56 -0.59
C3a 0.68 0.69 0.69 0.70 0.69 0.69
N4 -0.55 -0.57 -0.61 -0.51 -0.55 -0.55
C5 0.36 0.91 0.66 0.63 0.47 0.64
N6 -0.55 -0.57 -0.61 -0.51 -0.56 -0.59
C6a 0.68 0.69 0.69 0.70 0.69 0.69
N7 -0.55 -0.57 -0.61 -0.51 -0.55 -0.55
C8 0.36 0.91 0.66 0.64 0.47 0.64
N9 -0.55 -0.57 -0.61 -0.51 -0.56 -0.59
C9a 0.68 0.69 0.69 0.70 0.69 0.69
N9b -0.47 -0.48 -0.51 -0.46 -0.48 -0.49
total -0.65 0.90 -0.12 0.49 -0.33 0.08

Table 7. HOMO and LUMO Energies and the Their Gaps
for Octupolar Tri-s-triazines

molecule
EHOMO

(eV)
ELUMO

(eV)
∆ELUMO-HOMO

(eV)

tri-s-triazine -7.32 -3.40 3.92
trifluoro-tri-s-triazine -8.14 -3.64 4.50
triamino-tri-s-triazine -6.44 -1.52 4.92
trinitro-tri-s-triazine -8.91 -4.85 4.06
triethenyl-tri-s-triazine -6.84 -3.19 3.65
triazido-tri-s-triazine -7.48 -3.34 4.14
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observed in tri-s-triazine molecule, while, in the trifluoro-
tri-s-triazine molecule, theâ value increases and both theR
andγ values decrease.

The energies of HOMO and LUMO and the gaps between
them for the molecules investigated are summarized in Table
7. When compared with the parent molecule, the HOMO
and LUMO energy levels decrease in fluoro and nitro
derivatives, while they increase in amino and ethenyl
substitutions. The energy gap decreases only in triethenyl-
tri-s-triazine, in which the substituent is a very effective
π-donating system. Owing to this small energy gap, the
triethenyl-tri-s-triazine molecule possesses the largestR, â,
andγ values.

π-Conjugation Effects. From the previous analysis, it
should be noted that the substituents withπ-donating group
could enhance the (hyper)polarizabilities of tri-s-triazines
dramatically. We now examine the role ofπ-conjugation
between the substituent R group and the parent tri-s-triazine
ring. In general, the most stable conformation of triethenyl-
tri-s-triazine and triazido-tri-s-triazine adopts a planar ge-
ometry in order to achieve conjugation between the R group
and the parent ring. Examination of the molecular orbitals
reveals that theπ orbital of the ring is composed of 2pz

orbitals of nitrogen and carbon atoms on the ring, and theπ
orbitals of ethenyl and azido groups are also composed of
2pz orbitals of the atoms in the groups. The conjugation
between the groups and the parent ring extends the delocal-
ization of the electrons in the molecule. Hence triethenyl-
tri-s-triazine and triazido-tri-s-triazine have the largest (hyper)-
polarizabilities.

It is possible that this conjugation will be destroyed to a
large extent when rotation around the dihedral angles N1-

C2-C6-C7 of triethenyl-tri-s-triazine and N1-C2-N6-
N7 of triazido-tri-s-triazine deviate significantly from 0°.
When we rotated the three equivalent dihedral angles N1-
C2-C6-C7 of triethenyl-tri-s-triazine and N1-C2-N6-
N7 of triazido-tri-s-triazine to 30°, 60°, and 90° and
calculated the (hyper)polarizabilities of these configurations,
the results listed in Tables 8 and 9 were obtained. As can be
seen from these tables, the (hyper)polarizabilities decrease
with the increase of the dihedrals, which weakens the
conjugation between the substituents and the ring. Even under
such conditions, the (hyper)polarizabilities of all these
configurations are still much larger than those of other
substituted tri-s-triazines.

Conclusions
We have reported an ab initio study on the first-, second-,
and third-order static and frequency-dependent polarizabili-
ties of a series of octupolar tri-s-triazines. Our calculations
show that octupolar tri-s-triazines have much largerR, â,
and γ values thans-triazine, both in static and frequency-
dependent cases. Theπ-containing substituents such as azide
and ethenyl result in a significant increase of first-, second-,
and third-order polarizabilities. Based on our results, these
octupolar tri-s-triazines can be classified as a new family of
NLO materials.
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Table 8. Static First-Order Polarizabilities (Å3) and Their Individual Components of Triethenyl-tri-s-triazine,
Triazido-tri-s-triazine, and Their Configurations

molecule Rxx Ryy Rzz R

triethenyl-tri-s-triazine 37.9127 37.9127 13.3907 29.7387
triethenyl-tri-s-triazine-30a 31.4639 19.9353 36.4698 29.2897
triethenyl-tri-s-triazine-60a 32.5031 18.5031 33.4127 28.1396
triethenyl-tri-s-triazine-90a 28.5112 24.4644 29.3246 27.4334
triazido-tri-s-triazine 36.7575 36.7574 11.3723 28.2958
triazido-tri-s-triazine-30b 35.4912 13.3622 35.4744 28.1093
triazido-tri-s-triazine-60b 32.4198 17.3844 32.3598 27.3880
triazido-tri-s-triazine-90b 30.5213 24.2214 25.7043 26.8157

a Three N1-C2-C6-C7 dihedrals are 30°, 60°, and 90°, respectively. b Three N1-C2-N6-N7 dihedrals are 30°, 60°, and 90°, respectively.

Table 9. Static Third-Order Polarizabilities (10-39 esu) and Their Individual Components of Triethenyl-tri-s-triazine,
Triazido-tri-s-triazine, and Their Configurations

molecule γxxxx γyyyy γzzzz γxxyy γxxzz γyyzz γ

triethenyl-tri-s-triazine 44783.0373 44783.2771 10353.5549 14927.7331 4283.2492 4283.2457 29381.6605
triethenyl-tri-s-triazine-30a 27273.2289 11475.0252 80337.7657 8989.0430 11870.8883 5359.7104 26330.1226
triethenyl-tri-s-triazine-60a 2649.5188 6143.9387 27637.2076 3350.2628 8351.7971 3401.2846 18007.4708
triethenyl-tri-s-triazine-90a 11981.5824 7753.9653 13130.8486 4020.2897 4645.3995 3893.5861 11596.9894
triazido-tri-s-triazine 31072.2844 31071.7690 2688.5543 10357.2748 1757.4668 1757.4676 18515.4052
triazido-tri-s-triazine-30b 28777.3275 3398.8258 28823.6385 1954.6754 9620.8997 1897.6983 17589.2677
triazido-tri-s-triazine-60b 21667.6432 4080.1100 21437.4695 2005.1426 7297.3843 2146.9824 14016.8483
triazido-tri-s-triazine-90b 14865.2099 6947.8452 8648.6290 3463.8451 3606.3176 3639.6542 10376.2636

a Three N1-C2-C6-C7 dihedrals are 30°, 60°, and 90°, respectively. b Three N1-C2-N6-N7 dihedrals are 30°, 60°, and 90°, respectively.
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Abstract: The purpose of this paper is 2-fold. First, we present several extensions to the

ONIOM(QM:MM) scheme. In its original formulation, the electrostatic interaction between the

regions is included at the classical level. Here we present the extension to electronic embedding.

We show how the behavior of ONIOM with electronic embedding can be more stable than QM/

MM with electronic embedding. We also investigate the link atom correction, which is implicit in

ONIOM but not in QM/MM. Second, we demonstrate some of the practical aspects of

ONIOM(QM:MM) calculations. Specifically, we show that the potential surface can be discontinu-

ous when there is bond breaking and forming closer than three bonds from the MM region.

1. Introduction
Hybrid methods allow the combination of two or more
computational techniques in one calculation and make it
possible to investigate the chemistry of very large systems
with high precision. The region of the system where the
chemical process takes place, for example bond breaking or
bond formation, is treated with an appropriately accurate
method, while the remainder of the system is treated at a
lower level. The most common class of hybrid methods is
formed by the QM/MM methods, which combine a quantum
mechanical (QM) method with a molecular mechanics (MM)
method.1-4 The ONIOM (our Own N-layer Integrated
molecular Orbital molecular Mechanics) scheme is more
general in the sense that it can combine any number of
molecular orbital methods as well as molecular mechanics
methods.5-13 Hybrid methods in general have been the
subject of a number of recent reviews.14-22

A variety of QM/MM schemes have been reported in the
literature. Although the main concepts are similar, the
methods differ in a number of details. One major distinction
is in the treatment of covalent interaction between the two
regions. The resulting dangling bonds in the QM calculation
need to be saturated, and the simplest approach is to use
link atoms.2,23 These are usually hydrogen atoms but can, in
principle, be any atom that mimics the part of the system
that it substitutes. Link atoms are used in a large proportion
of QM/MM implementations as well as our ONIOM scheme.
The main alternative to link atoms is the use of frozen
orbitals, which can through parametrization and use ofp and
d orbitals describe a more accurate charge density than link
atoms.1,24-26 Although the few studies that directly compare
link atom methods with frozen orbital methods show that
both schemes perform well,25,27it appears generally accepted
that the latter can provide a better description of the
boundary. However, due to the required parametrization of
the frozen orbitals, they lack the flexibility and generality
of link atoms. In our implementation we exclusively use link
atoms because we consider generality one of the key aspects
of our ONIOM scheme, and it is not feasible to parametrize
frozen orbitals for every possible method combination. It
must be noted that to some extent also the accuracy of link
atoms can be improved by parametrization. The electrone-

* Corresponding author fax: 203 284 2520; e-mail: thom@
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† Gaussian, Inc.
‡ Emory University.
§ Current address: Thrombosis and Haemostasis Research Group

of the Hungarian Academy of Sciences at the University of
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gativity can be modified through the use of a shift operator28

or, in the case of semiempirical QM methods, the parameters
involving link atoms can be adjusted.29 We have not included
this limited parametrization in our current method but may
do so in the future. Besides frozen orbitals and link atoms,
several QM/MM methods use pseudopotentials to handle the
covalent interactions between the QM and MM regions.30,31

The second main difference between various QM/MM
methods is the way the electrostatic interaction between the
two layers is treated.32 In its simplest form, the interaction
between the QM and MM region is completely described
by MM style terms. This includes the electrostatic interaction,
which is then evaluated as the interaction of the MM partial
charges with partial (point) charges assigned to the atoms
in the QM region. This approach is usually referred to as
classicalor mechanical embedding. In the second approach,
the charge distribution of the MM region interacts with the
actual charge distribution of the QM region. In this case,
the partial charges from the MM region are included in the
QM Hamiltonian, which provides a more accurate description
of the electrostatic interaction and, in addition, allows the
wave function to respond to the charge distribution of the
MM region. This approach is referred to aselectronic
embedding. In the original version of ONIOM, the QM
region and MM region interact via mechanical embedding.

In this paper we present several issues that are specifically
related to QM/MM and QM/QM/MM methods within the
ONIOM framework, where we focus on aspects that are
different in most other QM/MM schemes. We will discuss
partitioning restrictions that follow from the fact that the
ONIOM energy expression is in the form of an extrapolation,
which we refer to as thecancellation problem. Further, we
discuss the placement of the link atoms in the MM model
system calculation. Finally, we extended our methods to
include electronic embedding. For a discussion of the
geometry optimization methods in our package we refer to
a separate series of papers.33-36 In the following sections we
will first introduce the details of the ONIOM method. We
will not provide a comprehensive overview of QM/MM
methods but do present a ‘generic QM/MM method’ that
contains all the components that we need for comparison to
ONIOM. From here on we will use the term ONIOM to
denote the combination of QM methods with MM methods
in the ONIOM framework and QM/MM to denote the
‘generic QM/MM method’. The ONIOM scheme has been
implemented in the Gaussian suite of programs.37 Some of
the developments, however, are only available in the private
development version of the program,38 and it must be noted
that a first version of electronic embedding in ONIOM was
independently implemented by Istva´n Komáromi.

Finally, we want to clarify some of the misconceptions
about our methods that occasionally seem to arise.39 The
ONIOM method as it is currently implemented is the latest
incarnation of a series of hybrid methods developed by
Morokuma and co-workers. This series includes IMOMM
(Integrated Molecular Orbital+ Molecular Mechanics),
which combines a Molecular Orbital (MO) method with a
MM method, and IMOMO (Integrated Molecular Orbital+
Molecular Orbital), which combines two MO methods into

one calculation. IMOMM and IMOMO arenot a subset of
ONIOM. The link atom position in ONIOM is obtained with
a scale factor, while in IMOMM and IMOMO the link atom
is placed at a specified distance from the atom to which it is
connected. We consider the link atom treatment an intrinsic
aspect of the ONIOM method.

2. Theory
2.1. MM Force Fields.An example of a typical force field,
in this case Amber,40 is of the form

The first three terms describe thebonded interactions, formed
by all the (chemical) bonds, angles, and dihedrals (including
out-of-plane deformations) that are present in the system.
The number of bonded terms scales linearly with the size of
the system. The last term describes thenonbonded interaction
between each pair of atom in the system. The van der Waals
interaction, (Aij/rij

12 - Bij/rij
6), and the Coulomb interaction,

qiqj/εrij, are scaled by factorssij
VdW andsij

q, respectively. The
factors only differ from unity when the centersi and j are
separated by three bonds or fewer, and the argument for using
them is that the van der Waals and electrostatic interactions
are already included in the bonded terms. The number of
nonbonded terms scales quadratically with the size of the
system and would be the bottleneck in MM calculations if
computed as written in eq 1. Most implementations, however,
use either distance based cutoffs or linear scaling methods
for the evaluation of the nonbonded interaction. In our
implementation we use cutoffs and a boxing algorithm to
evaluate with the van der Waals interaction35 and the Fast
Multipole Method to deal with the electrostatic inter-
action.35,41-44

2.2. ONIOM and QM/MM Energy Expressions. In a
two-layer ONIOM(QM:MM) calculation, the total energy of
the system is obtained from three independent calculations:

Thereal system contains all the atoms and is calculated only
at the MM level. Themodelsystem contains the part of the
system that is treated at the QM level. Both QM and MM
calculations need to be carried out for the model system. In
Figure 1 we illustrate the terminology using ethane, where
we include one methyl group in the QM region and the

Figure 1. ONIOM terminology using ethane as an example.

Etotal ) ∑
bonds

Kr(r - req)
2 + ∑

angles
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∑
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2
[1 + cos(nφ - γ)] + ∑

i<j [sij
VdW(Aij
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12
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rij
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qiqj
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(1)

EONIOM ) Ereal,MM + Emodel,QM- Emodel,MM (2)
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remainder in the MM region. Because there is bonded
interaction between the two regions, the model system
includes a hydrogen link atom to saturate the open valence.
The atoms that occur in both the model system and the real
system have identical geometrical coordinates. The link atom
(LA) is placed on the line that connects the center to which
it is connected (theLink Atom Connection, LAC) with the
atom that it substitutes (theLink Atom Host, LAH). The
LAC-LA distance is obtained by scaling the original LAC-
LAH distance with a constant factor,g, which is chosen so
that a (chemically) reasonable LAC-LAH distance yields a
reasonable LAC-LA distance.5

We will now relate the ONIOM(QM:MM) expression to
the generic QM/MM scheme. The latter can be written as

In Figure 2 we illustrate the QM/MM terminology. We
assume that the position of the link atom is the same as in
the ONIOM scheme.EMM-only,MM is the MM energy of the
part of the system that only involves MM atoms (thus
excluding the LA’s). EMM-only*model-only,MM describes the
interaction between the QM region and the MM region and
contains all the MM terms that have at least one center in
the MM-only region and at least one center in the model-
only region. The QM/MM equation reflects a different
approach than the ONIOM equation: Equation 4 is a
summation scheme. It adds the QM energy of the QM region,
the MM energy of the MM region, and the MM interaction
energies between the two regions. The ONIOM expression
2, on the other hand, is cast as an extrapolation scheme. Note
that in the ONIOM expression all three subcalculations are
on ‘complete systems’, whereas in the QM/MM expression
two of the terms are on partial systems, which is the reason
for only ONIOM allowing the combination of QM methods
with QM methods.

In the ONIOM scheme, most of the MM terms in the
model system exist in the real system as well and cancel
exactly in the full expression. The difference between the
real system and model system MM calculations, theS-value,
describes the contribution from the MM region, which
includes both the energy of the MM region as well as the
interaction between the QM region and the MM region.

SMM plays the same roll as theEMM-only,MM +

EMM-only*model-only,MM terms in the QM/MM expression. In
fact, when no bonded interactions are present between the
regions,SMM is identical to (EMM-only,MM+EMM-only*model-only,MM),
and also the ONIOM and QM/MM energies become identi-
cal.

When bonded interactions are present in the system, the
ONIOM and QM/MM functions are not identical. The terms
involving LA in the model system calculation are not
identical to the terms involving LAH in the real system
calculation and do not cancel. The difference between the
terms describes the difference between the LA and the LAH
and can be interpreted as the MM extrapolation (or correc-
tion) of the link atoms in the model system QM calculation
to the corresponding LAH atoms in the real system. In the
generic QM/MM scheme, this extrapolation (or any other
way to correct the QM link atom) is not present, although
several QM/MM methods deal with this issue in other ways.

It is clear that when the ONIOM scheme is applied in its
original formalism, as in eq 2, the interaction between the
QM and MM regions is included via the MM calculations
and therefore follows themechanical embeddingformalism.
For this reason we also presented the generic QM/MM
method in its mechanical embedding form. Later we will
presentelectronic embeddingformalisms for both ONIOM
and QM/MM.

2.3. Derivatives and Three-Layer ONIOM.Derivatives
with respect to geometrical coordinates and other properties
can be obtained with the ONIOM formalism.5 For example,
the gradient is written as

q is a vector that contains the Cartesian coordinates of the
real system, andqQM

M andqMM
M are the Cartesian coordinates

of the QM and MM model systems, respectively. The
JacobianJ projects the gradients of the link atoms onto the
link atom host (LAH) and connection (LAC) coordinates.
Because the positions of the link atoms is a function of the
geometry of the real system, there are no additional (or fewer)
degrees of freedom in the ONIOM scheme, and the potential
function is well-defined. ONIOM can therefore be used in
standard geometry optimization schemes and almost every
other technique for the investigation of potential energy
surfaces.

In principle, ONIOM can handle any number of layers,
although the current implementation is limited to three. This
facilitates QM/QM/MM calculations, which can for a given
accuracy handle much larger QM regions than regular QM/
MM methods. The combined QM/QM region in ONIOM-
(QM:QM:MM) is obtained in a similar manner as in
ONIOM(QM:QM), using three independent QM subcalcu-
lations. This is conceptually different from the QM/QM/MM
implementation using CDFT, in which only two QM
subcalculations are carried out, and the wave functions are
directly coupled.45 The expression for ONIOM(QM-high:
QM-low:MM), where QM-high and QM-low denote a high-

Figure 2. QM/MM terminology using ethane as an example.

qLA ) qLAC + g(qLAH - qLAC) (3)

EQM/MM ) EMM-only,MM + Emodel,QM+ EMM-only*model-only,MM

(4)

SMM ) Ereal,MM - Emodel,MM (5)

EONIOM

∂q
) Ereal,MM

∂q
+ Emodel,QM

∂qQM
M

JQM - Emodel,MM

∂qMM
M

JMM (6)
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level QM method and a low-level QM method, respectively,
contains five terms:

Intermediatedenotes the intermediate model system. Gra-
dients and properties can be obtained for a three-layer system
in the same way as for a two-layer system.

2.4. Link Atom Placement and Link Atom Extrapola-
tion. When we first presented the ONIOM formalism, we
assumed all the geometrical coordinates of the two model
system calculations to be identical. The link atom scale
factors are then the same for the QM and MM model
systems, and alsoJQM andJMM in eq 6 are identical. In the
most recent implementation we generalized the link atom
placement and allow different scale factorsg for the QM
model system and the MM model system. The initial reason
for lifting the restriction was to be able to minimize the error
resulting from the link atom. In ONIOM(QM:MM) calcula-
tions, however, we can use this mechanism for a different
purpose, which we illustrate in Figure 3. The QM model
system calculation is obtained in the usual way with
‘chemically reasonable scale factors’, but the MM model
system is obtained with unit scale factors, andJMM is a unit
matrix. In addition, the MM atom type of the link atom is
kept the same as the LAH in the real system. Carrying out
an ONIOM(QM:MM) calculation in this way has the
advantage that no MM parametrization for the link atoms is
required and that therefore any system for which MM
parameters are available can also be treated with ONIOM-
(QM:MM). However, close inspection of the MM terms in
the ONIOM energy expression shows that all the MM terms
from the model system occur in the real system as well and
therefore cancel. Since the terms involving LAH and LA
are now identical, the extrapolation of the LA to the LAH is
no longer present. In fact, the ONIOM(QM:MM) expression

with unit scale factors for the MM model system becomes
in this case identical to the QM/MM expression 4! Since
the advantages of ONIOM(QM:MM) over QM/MM are
removed with unit scale factors, we do not favor this.

The effect of the different link atoms placement is
illustrated by the vibrational analysis of the ethane example
from Figures 1-3. We calculated the vibrational spectrum
at the B3LYP/6-31G(d) level of theory and compared this
to the spectrum obtained with ONIOM and QM/MM. As
outlined above, the latter is identical to ONIOM with the
unit scale factor for the MM model system link atom. We
used B3LYP/6-31G(d) for the QM method and the Amber
force field for the MM method. In Table 1 we show the
frequencies. The C-C stretching frequency is in bold. It is
clear that the ONIOM value is much closer to the B3LYP
reference value than the QM/MM value is. This is due to
the link atom correction at the MM level of theory, which
specifically improves the C-C stretch mode because it
involves the border between the MM and QM region. Some
of the other values are quite similar for QM/MM and
ONIOM but differ significantly from B3LYP. These are
modes that are either fully or partially located in the MM
region and are therefore (partially) described by the MM
parameters.

2.5. Cancellation Problem. We will now turn to a
technical issue that needs to be taken into account when

Figure 3. Alternative link atom placement in the MM model
system in ONIOM.

Table 1: Vibrational Frequencies (cm-1) of Ethane with
ONIOM, B3LYP, and the Generic QM/MM

mode B3LYP QM/MM ONIOM

CH3-CH3 twisting 312 317 316
asymmetric C-C-H bending (2) 832 903 972
C-C stretching 1010 786 955
symmetric C-C-H bending (2) 1235 1098 1168
asymmetric CH3 umbrella 1433 1387 1468
symmetric CH3 umbrella 1454 1474 1562
symmetric H-C-H bending (2) 1532 1414 1414
asymmetric H-C-H bending (2) 1537 1534 1549

EONIOM3 ) Ereal,MM + Eintermediate,QM-low - Eintermediate,MM+
Emodel,QM-high - Emodel,QM-low (7)

Figure 4. Carboxylation of lysine.
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studying chemical reactivity. Standard (nonreactive) MM
methods cannot handle bond breaking and forming. As a
general rule, relative energies only make sense when the
structures are computed with the same atom types and
connectivity. In other words, the potential function 1 needs
to be continuous, which means that the list of angles, bends,
etc. and the associated parameter cannot change. For
example, consider the carboxylation of the lysine amino acid
residue (Figure 4). The reactant and product have a different
connectivity, and therefore the reaction energy cannot be
computed with MM methods. Somewhere during the reaction
(in the TS region), the connectivity changes from ‘reactant’
to ‘product’. This introduces a discontinuity in the potential
function, which is clearly wrong; for a method to describe
bond breaking and forming correctly, the potential energy
surface must be continuous.

In contrast to MM methods, ONIOM and QM/MM are
able to describe bond breaking and forming. We illustrate
this with the carboxylation example. The bond between H21
and O24 is broken in the reactant complex and formed in
the product. In a MM calculation there is therefore a
stretching term for this bond in the product but no stretching
term in the complex. In a pure MM calculation, this results
in a discontinuity in the potential surface. However, the
ONIOM energy expression contains two MM terms,Ereal,MM

and Emodel,MM, and the stretching term for H21 and O24
occurs in both. Because these two H21-O24 stretching terms
enter the energy expression with different sign, they cancel
exactly and have no contribution to the ONIOM energy. The
result is that the energy does not depend on whether the bond
between H21 and O24 is considered being broken or formed

in the MM subcalculations. In other words, the ONIOM
energy is continuous, despite the changes in the connectivity
during the reaction.

We can present the issue raised in the previous paragraph
in a more formal way. For the ONIOM surface to be
continuous, the MM contribution to the energy must be
continuous. The MM contribution is defined as theS-value,
eq 5. Using theS-value, the ONIOM energy can be written
as

For theS-value to be continuous, it must be independent of
the definition of the connectivity in the reaction center. For
example, when we take the transition state structure of the
carboxylation reaction, theS-value calculated with the
connectivity as in the reactant structure must be the same as
theS-value calculated with the connectivity as in the product
structure:

In Table 2 we show theSMM and ∆SMM values for the
transition state of the carboxylation reaction, for the three
partitionings in Figure 5. We calculated theS-value with both
the reactant connectivity and the product connectivity and
show the difference∆SMM in the final column. Besides the
total MM values (in bold), we also show the values broken
down for each type of MM term.

In the table we see that the reactantS-value and product
S-value differ for both partitioning 1 and partitioning 2. Thus

Table 2: S-Values (Hartrees) for the Three Partitionings of the Carboxylation of Lysine

reactant connectivity product connectivity

EMM,Real(TS) EMM,Model(TS) S(TS,Reac) EMM,Real(TS) EMM,Model(TS) S(prod) ∆S(TS)

Partitioning 1
Coulomb -0.07858 -0.07807 -0.00051 -0.21806 -0.21072 -0.00735 0.00683
van der Waals 7.91222 7.89104 0.02118 0.10302 0.09556 0.00746 0.01372
stretching 0.06245 0.06144 0.00102 0.10449 0.10348 0.00102 0.00000
bending 0.01353 0.01008 0.00345 0.05744 0.05509 0.00235 0.00110
torsion 0.00825 0.00000 0.00825 0.00755 0.00000 0.00755 0.00070
out-of-plane 0.00002 0.00000 0.00002 0.00005 0.00004 0.00002 0.00000
total 7.91788 7.88448 0.03340 0.05449 0.04345 0.01105 0.02235

Partitioning 2
Coulomb -0.07858 -0.06837 -0.01021 -0.21806 -0.20726 -0.01080 0.00059
van der Waals 7.91222 7.90447 0.00775 0.10302 0.09522 0.00780 -0.00005
stretching 0.06245 0.06113 0.00132 0.10449 0.10317 0.00132 0.00000
bending 0.01353 0.01170 0.00183 0.05744 0.05562 0.00183 0.00000
torsion 0.00825 0.00076 0.00748 0.00755 0.00006 0.00748 0.00000
out-of-plane 0.00002 0.00000 0.00002 0.00005 0.00004 0.00002 0.00000
total 7.91788 7.90969 0.00819 0.05449 0.04685 0.00764 0.00054

Partitioning 3
Coulomb -0.07858 -0.06416 -0.01442 -0.21806 -0.20364 -0.01442 0.00000
van der Waals 7.91222 7.90432 0.00790 0.10302 0.09512 0.00790 0.00000
stretching 0.06245 0.06130 0.00115 0.10449 0.10334 0.00115 0.00000
bending 0.01353 0.01182 0.00171 0.05744 0.05574 0.00171 0.00000
torsion 0.00825 0.00077 0.00748 0.00755 0.00007 0.00748 0.00000
out-of-plane 0.00002 0.00000 0.00002 0.00005 0.00004 0.00002 0.00000
total 7.91788 7.91405 0.00383 0.05449 0.05066 0.00383 0.00000

EONIOM ) Emodel,QM+ SMM (8)

∆SMM ) SMM(TS,reactant connectivity)-
SMM(TS,product connectivity)w must be zero
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∆S is not zero, and the result depends on the definition of
the connectivity. This is clearly not what we expect from a
correct partitioning, which we refer to as thecancellation
problem.

How is it possible that∆S is not zero, despite the only
changes in the connectivity being completely in the QM
region? From Table 2 we see that for partitioning 1,∆S is
zero for the stretching terms. Indeed, the stretching terms
that are affected by the change in connectivity are identical
and therefore cancel exactly in the real system and in the
model system. However, the torsional terms, for example,
have a nonzero∆S for partitioning 1. Consider the torsional
term for atoms H17-N19-H21-O24. This term does not
exist in the model system, so its value does not cancel in
the ONIOM expression. But whether this term is included
in the energy expression (via theEMM,Real term) depends on
whether the bond between N19 and H21 is considered broken
or formed. If the bond is considered broken, the term will
not enter the energy expression. If the bond is considered
formed, it will enter the ONIOM energy expression. The
result is that for partitioning 1, the total ONIOM energy
depends on the connectivity and is not continuous. Therefore,
partitioning 1 is wrong and should not be used. Looking at
the table, partitioning 2 still produces a small energy
difference, which results from the nonbonded terms that
involve the link atom. This difference is so small that in

practice this partitioning can be used. Only the third
partitioning generates exactly the same energies with both
connectivity sets. Of course, this ‘cancellation problem’ is
directly the result of MM terms extending over more than
one bond. Since the ‘largest’ MM terms extend over three
bonds (dihedral angle terms), the cancellation problem will
never occur when there are more than three bonds between
the MM region and any bond that is formed or broken during
the reaction. However, avoiding the cancellation problem is
only one requirement for a reliable potential. In most cases
it will be necessary to include many more centers in the QM
region in order to obtain meaningful results.

To summarize, when bond breaking and forming is part
of the process in the QM region, it is safest to have the MM
region at least three bonds away from the bond breaking/
formation to avoid the cancellation problem. However,
depending on the exact parameters involved in the MM terms
in the border region, there are instances where one or two
bond separations are sufficient. To test whether this is
possible for a particular problem, once can apply the tests
using theS-value as described in the paragraphs above.
Although we discussed the problem with the cancellation
using the ONIOM expression, it will occur with the generic
QM/MM expression as well. TheEMM-only*model-only,MM term
in eq 4 contains all the MM terms that have at least one
center in the MM-only region and at least one center in the
model-only region. Again, which terms are included in
EMM-only*model-only,MM depends on the connectivity, and the
potential surface may be discontinuous when bond breaking
and formation takes place close to the MM region.

2.6. Electronic Embedding.In QM/MM methods, there
are two choices for dealing with the electrostatic interactions
between the QM layer and the MM layer. The first,classical
embeddingor mechanical embedding, treats the cross-region
electrostatic interactions at the molecular mechanics level.
The second,electronic embedding, incorporates the cross-
region electrostatic interaction in the QM Hamiltonian. The
latter avoids the approximation of the QM charge distribution
by point charges and allows the wave function to be polarized
by the charge distribution of the MM region. From the
original formulation, as outlined in the previous sections, it
follows that ONIOM uses mechanical embedding by default.
In this section we will present the modification of the
ONIOM scheme to include electronic embedding. We also
present the electronic embedding version of the generic QM/
MM method and compare the two schemes in the results
section.

To illustrate the different embedding approaches, we use
the deprotonation of Histidine in Figure 6 as an example.
The ONIOM expression contains two molecular mechanics
terms, of whichEmodel,MM includes the electrostatic interaction
for the QM region, whileEreal,MM includes the electrostatic
interaction for the full system. The latter includes the
electrostatic interactions between atoms within the MM
region, atoms within the QM region, and atoms in the QM
region with atoms in the MM region. Electrostatic interac-
tions between atoms that are separated by three bonds or
less are scaled according to the MM force field definition,
because they are (partially) implicit in the stretch, bend, and

Figure 5. Partitionings for the carboxylation of lysine.
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torsional terms (For example, Amber uses a factor of zero
for one and two bond separated electrostatic interactions and
a factor of 1/1.2 for three bond separated interactions.). Using
Figure 6, we show in Table 3 a number of specific
interactions to illustrate which terms are included.

Because the interactions between QM and QM atoms (for
example between H16 and H13) are included inboth the
Emodel,MM and theEreal,MM terms, they cancel in the ONIOM
energy expression. It follows that the only electrostatic
interactions at the MM level that are retained in eq 1 are
those between MM atoms and MM atoms and those between
MM atoms and QM atoms. Hence, the electrostatic interac-
tion between the two layers is described by the MM
component of the energy expression, which is referred to as
mechanical embedding. The point-charge electrostatic in-
teractions involving LA and LAH are a special case. The
interactions of the QM atoms with both LAH (C5) and LA
(H5a) are retained but with different value, sign, and position.
Their difference represents the extrapolation of the hydrogen
link atom in the QM calculation to the carbon atom as it is

in the real system, similar to the bonded terms involving
LA and LAH as discussed in the previous sections.

We will first discuss how the generic QM/MM scheme is
extended to electronic embedding. The QM/MM energy
expression 4 is modified to

where

N, J, and i refer to the atoms from the MM region, atoms
from the QM region, and electrons, respectively. The
subscript noQ indicates that the electrostatic terms are
excluded. The scaling factorsN is used to avoid overpolar-
ization of the wave function due to large charges close to
the QM region. UsuallysN is zero for charges less than three

Figure 6. Real system, QM/MM partitioning, and model system for the (H18) deprotonation of histidine.

Table 3: Inclusion of Specific Interactions in the Standard (Mechanical Embedding) ONIOM(QM:MM) Energy Expression

centers included in MM model system? included in MM real system? in QM model?

N1-C6 no (centers not in model) no (2 bond separation) no
N1-N25 no (centers not in model) scaled (3 bond separation) no
N1-C27 no (centers not in model) yes no
C3-C9 no (C3 not in model) no (2 bond separation) no
C3-C12 no (C3 not in model) scaled (3 bond separation) no
C3-N15 no (C3 not in model) yes no
C6-C9 no (C6 not in model) scaled (3 bond separation) no
C6-N11 no (C6 not in model) yes no
C6-C14 no (C6 not in model) yes no
C6-H17 no (C6 not in model) yes no
H16-C9 no (2 bond separation) no (2 bond separation) yes
H16-N11 scaled (3 bond separation) scaled (3 bond separation) yes
H16-H13 yes yes yes
C5-N11 no (C5 not in model system) no (2 bond separation) no
C5-C14 no (C5 not in model system) scaled (3 bond separation) no
C5-H17 no (C5 not in model system) yes no
H5a-N11 no (2 bond separation) no (H5a not in real system) yes
H5a-C14 scaled (3 bond separation) no (H5a not in real system) yes
H5a-H17 yes no (H5a not in real system) yes

EQM/MM-EE ) EMM-only,MM + Ev
model,QM+

EnoQ
MM-only*model-only,MM (9)

Ĥv
model,QM) Ĥmodel,QM- ∑

i
∑
N

sNqN

riN

+ ∑
J
∑
N

ZJsNqN

rJN

(10)
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bonds away from the QM region, and unit for the remaining
charges. The scaling factor also avoids ‘overcounting’. For
example, for the C3-C5-C9 angle there are molecular
mechanics bending (C3-C5-C9) and stretching terms (C3-
C5 and C5-C9) in EnoQ

MM-only*model-only,MM (see Table 4). The
electrostatic and van der Waals interactions between these
three centers are implicit in these bending and stretching
terms and are therefore excluded from the list of nonbonded
interactions in MM calculations. However, if the partial
charge of C3 were included in the QM Hamiltonian, the
electrostatic interaction of this center with the charge density
of C9 would be fully included via the termEv

model,QM. The
electrostatic interaction would then be included twice: once
through the C3-C5-C9 bending term and once through the
inclusion of the charge on C3 in the Hamiltonian. We refer
to this as ‘overcounting’, and scaling the charge on C3 to
zero ensures that it does not take place. This solution,
however, is not satisfactory, because scaling the charge on
C3 to zero results in the exclusion of the electrostatic
interaction of this center with all the other QM atoms (C14,
N15, etc.). Since these interactions should in fact be included,
we refer to this as ‘undercounting’. In short, standard QM/
MM will always result in either undercounting or overcount-
ing, which is ultimately the result of the incompatibility
between the QM charge density and the MM atom centered
charges.

Some QM/MM implementations deal with the overpolar-
izaton and overcounting problem by using delocalized
charges instead of point charges,46,47or by redistributing the
charges close to the QM region.48 For electronic embedding
in ONIOM we follow an approach that differs from standard
QM/MM schemes. Following the spirit of ONIOM, we
perform the model system calculations on the same system,
which includes the charges that come from the MM region.
In the QM model system these point charges are then
incorporated in the Hamiltonian, while in the MM model

system calculation they are evaluated at the classical level.
Furthermore, only the model system calculations are modi-
fied, while the real system MM term remains identical to
that in the ONIOM-ME (ONIOM-Mechanical Embedding)
expression 1. The expression for ONIOM-EE (ONIOM-
Electronic Embedding) becomes

where

The QM calculation in eq 11 is identical to that in eq 9.
Because the model systems must be identical, we use the
same scale factorsN in both the QM and the MM model
system calculations.

It must be noted that the use of delocalized or redistributed
charges, as in other QM/MM schemes, is not mutually
exclusive with the ONIOM implementation of electronic
embedding. Applying both methods simultaneously might
provide a superior scheme. Furthermore, from a practical
point of view, a major difference between the QM/MM and
ONIOM electronic embedding schemes is that in the latter
the user must specify charges for the QM region.

In Table 5 we give again the specific electrostatic
interactions in the MM terms, with the entries in italic being
different from the corresponding Table 3 for ONIOM-ME.
We will now compare the specific electrostatic interactions
between standard QM/MM-EE and ONIOM-EE. With QM/
MM-EE, we saw that the interaction between C3 and N15
is undercounted because the charge on C3 is scaled to zero
in the QM calculation, and the C3-N15 interaction is
excluded from the MM calculations. In the ONIOM-EE
scheme, however, this interaction is still present in theEreal,MM

Table 4: Inclusion of Specific Interactions in the Generic Electronic Embedding QM/MM Energy Expression, with the
Charges on C3 and C5 Scaled to Zero in the Model System Calculationsa

centers included in MM model system? included in MM real system? in QM model?

N1-C6 no (centers not in model) no (2 bond separation) no
N1-N25 no (centers not in model) scaled (3 bond separation) no
N1-C27 no (centers not in model) yes no
C3-C9 no (C3 scaled to zero) no (excluded) no (C3 scaled)
C3-C12 no (C3 scaled to zero) no (excluded) no (C3 scaled)
C3-N15 no (C3 scaled to zero) no (excluded) no (C3 scaled)
C6-C9 yes no (excluded) yes
C6-N11 yes no (excluded) yes
C6-C14 yes no (excluded) yes
C6-H17 yes no (excluded) yes
H16-C9 no (2 bond separation) no (2 bond separation) yes
H16-N11 scaled (3 bond separation) scaled (3 bond separation) yes
H16-H13 yes yes yes
C5-N11 no (C5 scaled to zero) no (excluded) no (C5 scaled)
C5-C14 no (C5 scaled to zero) no (excluded) no (C5 scaled)
C5-H17 no (C5 scaled to zero) no (excluded) no (C5 scaled)
H5a-N11 no (excluded) no (H5a not in real system) yes
H5a-C14 no (excluded) no (H5a not in real system) yes
H5a-H17 no (excluded) no (H5a not in real system) yes

a Entries in italics are different from those in Table 3.

EONIOM-EE ) Ev
model,QM+ Ereal,MM - Ev

model,MM (11)

Ev
model,MM ) Emodel,MM + ∑

J
∑
N

qJsNqN

rJN

(12)
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term. The electrostatic interaction between C3 and N15 is
therefore still included in the ONIOM expression, albeit at
the classical level. Another example is the interaction
between C6 and C9. The MM torsional term C9-C5-C3-
C6 already contains implicitly part of the electrostatic
interaction, which is why the three-bond separated non-
bonded interactions are scaled. However, the C6-C9 elec-
trostatic interaction is without scaling included in the QM
term in equationEv

model,QM. In QM/MM-EE this leads to
overcounting, but in ONIOM-EE this particular interaction
is included fully in the model system MM termEv

model,MM

and scaled in the real system MM termEreal,MM. The
difference between the MM terms can be regarded as a
correction to the overcounting at the QM level. In other
words, in ONIOM-EE the overcounting or undercounting
introduced at the QM level is always corrected automatically
at the classical level. This follows naturally from the ONIOM
expressions and does not require any of the corrections that
generic QM/MM-EE schemes need.

In Figure 7 we show the error of the ONIOM-EE and QM/
MM-EE calculations on the deprotonation of histidine,

compared to full QM calculations. Our focus is not on the
absolute performance of the hybrid schemes but rather on
the difference in behavior between ONIOM and the generic
QM/MM method. The graph shows the error as a function
of the number of bonds away from the QM region that have
the charges scaled to zero. The charge on C5 is always scaled
to zero. Atx ) 1, only charges one bond out (C5) are scaled.
At x ) 2, charges up to two bonds out (C5, H7, H8, and
C3) are scaled, and so forth.

Even though the QM/MM-EE has the smallest absolute
error (at x)4), its behavior is much more erratic than
ONIOM-EE. The reason is that, in this particular example,
the sign of the charges in the MM region is alternating with
each step further away from the QM region and that therefore
the total charge included in the set of (nonzero) point charges
changes strongly with each increasingx-value. In ONIOM-
EE the total charge is always the same, because the error at
the QM level is corrected at the MM level, and the graph is
much less erratic.

At x ) 6, all the charges in the MM region are scaled to
zero in the model system calculations, and ONIOM-EE
becomes identical to ONIOM-ME. We see that the result is
quite similar to the ONIOM-EE results, which indicates that
the partial charges assigned to the QM region describe the
real QM charge density quite well. Note that ONIOM-EE
and QM/MM-EE are not identical to each other when all
the charges are scaled to zero, atx ) 6. In that case, QM/
MM-EE completely ignores all the electrostatic interactions
between the two layers, while QM/MM-EE becomes ONIOM-
ME and still includes the electrostatic interactions at the
classical level, through theEreal,MM calculation.

Finally, we want to stress that the example above is
intended primarily to demonstrate that correct charge balanc-
ing follows naturally from the electronic embedding version
of ONIOM. Our generic QM/MM implementation is crude
in many ways, and the unfavorable comparison to ONIOM-

Table 5: Inclusion of Specific Interactions in the Electronic Embedding ONIOM(QM:MM) Energy Expression, with the
Charges on C3 and C5 Scaled to Zero in the Model System Calculationsa

centers included in MM model system? included in MM real system? in QM model?

N1-C6 no (centers not in model) no (2 bond separation) no
N1-N25 no (centers not in model) scaled (3 bond separation) no
N1-C27 no (centers not in model) yes no
C3-C9 no (C3 scaled to zero) no (2 bond separation) no (C3 scaled)
C3-C12 no (C3 scaled to zero) scaled (3 bond separation) no (C3 scaled)
C3-N15 no (C3 scaled to zero) yes no (C3 scaled)
C6-C9 yes scaled (3 bond separation) yes
C6-N11 yes yes yes
C6-C14 yes yes yes
C6-H17 yes yes yes
H16-C9 no (2 bond separation) no (2 bond separation) yes
H16-N11 scaled (3 bond separation) scaled (3 bond separation) yes
H16-H13 yes yes yes
C5-N11 no (C5 scaled to zero) no (2 bond separation) no (C5 scaled)
C5-C14 no (C5 scaled to zero) scaled (3 bond separation) no (C5 scaled)
C5-H17 no (C5 scaled to zero) yes no (C5 scaled)
H5a-N11 no (2 bond separation) no (H5a not in real system) yes
H5a-C14 scaled (3 bond separation) no (H5a not in real system) yes
H5a-H17 yes no (H5a not in real system) yes

a Entries in italics are different from those in Table 3.

Figure 7. Error of ONIOM-EE and QM/MM-EE as a function
of the charges scaled based on distance from the QM region.
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EE in Figure 7 is not typical for state-of-the-art QM/MM
implementations, which have incorporated other methods for
dealing with the charge-balancing. These methods, however,
are complimentary with ONIOM, and using both approaches
simultaneously may provide the superior QM/MM scheme.

2.7. Three-Layer Electronic Embedding.In ONIOM-
(QM-high:QM-low:MM)-EE, we need to decide which
charges need to be included in each of the four QM model
system calculations. In the calculations on the intermediate
model system, we always include the MM charge density.
In the calculation on the small model system, we have two
choices. First, we can carry out the calculations on the small
model system with the same charge cloud as the intermediate
model system calculations. We denote this as ONIOM3-EE.
Note that in this case, only the partial charges of the MM
layer are included and not the charges associated with the
intermediate layer. Second, we can carry out the calculations
on the small model system without any charges, assuming
that the effect of the charge cloud is accurately included via
the calculations on the intermediate model system. This is
denoted as ONIOM3-EEx.

It depends on the problem whether ONIOM3-EE or
ONIOM3-EEx is the best choice. The QM-high layer can

be far away from the MM layer (with the QM-low layer
acting as buffer). If the MM density is included in the model
system calculations, following ONIOM3-EE, the QM-high
layer ‘feels’ the full charge density. However, in reality the
charges from the MM region will be screened by the QM-
low layer. If this screening is important, ONIOM3-EE will
be unphysical. Excluding the MM charges from the model
system calculation, in ONIOM3-EEx, is not always correct
either, especially when the QM-low method cannot describe
accurately the effect of the MM charge distribution on the
QM-high layer.

To illustrate the three-layer version of ONIOM with
electronic embedding, we use the S0 f S1 excitation in
bacteriorhodopsin (bR) from ref 11. We include the complete
chromophore in the intermediate model system, while the
chromophore without the substituents (only the Schiff base
polyene) is in the small model system (Figure 8). The levels
of theory used are B3LYP/6-31G(d) for QM-high and HF/
3-21G for QM-low and TD-B3LYP and TD-HF for the
excitation energies. We calculated the HF:Amber and
B3LYP:HF:Amber excitations on the geometries optimized
at the specific level of theory.

In Table 6 we show the excitation energies for the three-
layer ONIOM calculations as well as two-layer ONIOM
calculations. In the latter, the full chromophore is included
in the QM region. The two-layer B3LYP:Amber calculation
then forms the benchmark to which we compare the results.

Figure 8. ONIOM3 partitioning of bR. Ball and stick represents B3LYP, tube HF, and wireframe the Amber molecular mechanics
force field.

Table 6: Excitation Energies of BR for Various Partitionings and Method Combinations

real (kcal/mol) model-high (kcal/mol) model-low (kcal/mol) ONIOM (kcal/mol) time (min)

HF:Amber-EE 81.45 81.45 39
B3:Amber-EE (benchmark) 58.25 58.25 318
B3:HF:Amber-EE 69.70 62.80 71.24 61.26 109
B3:HF:Amber-EEx 72.33 60.78 69.62 63.50 102

EONIOM3-EE ) Ev
model,QM-high + Ev

intermediate,QM-low -

Ev
model,QM-low + Ereal,MM - Ev

intermediate,MM (13)

EONIOM3-EEx ) Emodel,QM-high + Ev
intermediate,QM-low -

Emodel,QM-low + Ereal,MM - Ev
intermediate,MM (14)
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The results are clear. B3LYP:HF:Amber does always a better
job than the two-layer HF:Amber. In addition, for this
example it does appear necessary to include the charge cloud
also in the smallest model system, although the difference
is small. In the three-layer calculation, we obtain virtually
identical results, for about a third of the CPU time as needed
in the two-layer calculation.

3. Conclusions
We presented several developments of the ONIOM(QM:
MM) method and compared the behavior and performance
to a generic QM/MM scheme. The electronic embedding
version of ONIOM appears to be more stable than QM/MM
with electronic embedding. However, we implemented only
the simple charge zeroing version of the latter, and QM/
MM might compare more favorably to ONIOM when more
sophisticated methods for avoiding overpolarization are
implemented, such as delocalized charges or charge redis-
tribution. Combining these methods with the ONIOM scheme
may present a superior scheme for electronic embedding.
Furthermore, we showed that the link atom correction that
is implicit in ONIOM and omitted from simple QM/MM
schemes can improve the results significantly.

We analyzed in detail the occurrence of discontinuities in
the ONIOM(QM:MM) energy when bond breaking and
formation is involved. The ‘better safe than sorry’ approach
is to ensure that there are at least three bonds between the
MM region and the bonds in the QM region that are being
broken or formed. In some cases it may be possible to have
only one or two bonds, but careful testing is required to
ensure that the potential is correct.

To conclude, we feel that the extrapolation nature of
ONIOM provides elegant and implicit solutions to some
problems, especially related to charge balancing, that require
ad-hoc corrections in most other QM/MM schemes. Some
of the solutions that follow from the ONIOM method can
be incorporated in other QM/MM schemes. In turn, many
of the promising developments in other QM/MM methods
can be formulated in the ONIOM framework as well.
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Abstract: The calculation of rotational g tensors using density functional theory (DFT) with

hybrid exchange-correlation functionals is considered. A total of 143 rotational g tensor elements

in 58 molecules (67 isotopic combinations) are calculated using three standard hybrid functionals.

Tensor elements determined using an uncoupled approach with orbitals and eigenvalues

calculated from the multiplicative optimized effective potential (OEP) constitute a significant

improvement over those determined in the conventional coupled manner with a nonmultiplicative

exchange-correlation operator. Relative to experimental results, mean absolute errors are

reduced by a factor of 2; mean errors and standard deviations are reduced by more than a

factor of 3. The results are also an improvement over those determined using a generalized

gradient-approximation functional optimized for magnetic response properties. The influence of

orbital exchange is investigated for a representative subset of molecules, yielding an optimal

amount near 0.3. Rotational g tensors are also determined from coupled-cluster electron densities

using a combined DFT/wave-function approach. Being substantially more expensive, they do

not offer a notable improvement on the pure DFT values from OEP-based hybrid calculations.

1. Introduction and Background
A rotating molecule acquires a magnetic moment propor-
tional to its angular momentum. In an external magnetic field,
the Zeeman interaction between this magnetic moment and
the external magnetic induction causes a shift in the rotational
energy levels, as observed by molecular beam1 and micro-
wave Zeeman experiments.2,3 In atomic units (as used
throughout this paper), the energy shift is conventionally
expressed as

whereµN is the nuclear magneton,B is the external magnetic

induction,J is the angular momentum of the molecule with
respect to its center of mass, andg is the dimensionless 3×
3 rotationalg tensor. Theg tensor can be evaluated as the
second derivative of the electronic energyE with respect to
B andJ:

The calculation ofg tensors is thus similar to that of other
singlet second-order magnetic response properties such as
nuclear magnetic resonance (NMR) shielding constants, spin-
rotation constants, and magnetizabilities. Indeed, in the
center-of-mass coordinate system,4 the g tensor can be
determined directly from the magnetizability

* Corresponding author fax: 0191 384 4737; e-mail: D.J.Tozer@
Durham.ac.uk.

† University of Oslo.
‡ University of Durham.
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using the relation

whereêCM
para is the paramagnetic contribution to the magne-

tizability calculated with the gauge origin at the center of
mass,I nuc is the moment-of-inertia tensor, andZK is the
charge of nucleusK at positionRK relative to the center of
mass. This relation arises because the paramagnetic contribu-
tions to theg tensor and to the magnetizability (with the
gauge origin at the center of mass) are proportional to each
other,gpara ) -2êCM

paraInuc
-1/µN, as follows by comparing the

first-order electronic perturbations generated by the external
magnetic fieldB and by the rotationally induced magnetic
field -2Inuc

-1J. The paramagnetic contributionêCM
para is

straightforwardly obtained from the total magnetizability
(calculated with London orbitals)êLAO, by subtracting the
diamagnetic (expectation value) contributionêCM

dia . For fur-
ther details regarding the theory and computation of rotational
g tensors, see ref 4.

The high accuracy obtained in the experimental deter-
mination of rotationalg tensors makes them an excellent
test case for quantum-chemical theories. Indeed, a wide range
of electronic-structure methods have been used to calculate
g tensors, including Hartree-Fock (HF) theory;4-7 multi-
configurational self-consistent field (MCSCF) theory;8-15

Møller-Plesset theory to second,14,16,17third,14,16and fourth
orders14 (MP2, MP3, and MP4); linearized coupled-cluster
doubles (L-CCD) theory;16 coupled-cluster singles-
and-doubles (CCSD) theory;14 the second-order polari-
zation propagator approximation (SOPPA);14,18-20 the
coupled-cluster polarization propagator approximation
(CCSDPPA);21-24 the SOPPA using CCSD amplitudes
[SOPPA(CCSD)];14,25 full configuration-interaction (FCI)
theory;26-28 and density functional theory (DFT).13,29,30DFT
is particularly attractive because of its low computational
cost. Recently, Wilson et al.30 presented an extensive
assessment of DFT rotationalg tensors, using a range of
exchange-correlation functionals. They considered the local
density approximation (LDA), the Becke-Lee-Yang-Parr
(BLYP)31 generalized gradient approximation (GGA), and
the Becke-3-parameter-Lee-Yang-Parr (B3LYP)32 hybrid
functional. They also considered the Keal-Tozer (KT2)
GGA functional,33 which was specifically designed to yield
good quality magnetic response parameters. In particular, this
functional has been shown to provide improved magnetiz-
abilities compared to conventional approximations.33 For
rotationalg tensors, Wilson et al.30 observed that the quality
improved in the order LDA< BLYP < B3LYP < KT2,
reflecting the close relationship between the rotationalg
tensor and the magnetizability (see eq 4).

For the LDA and GGA functionals, the Kohn-Sham
orbitals{æp(r )} and eigenvalues{εp}sthe key quantities in
the calculation of DFT response propertiessare determined
from the Kohn-Sham equations

whereVs(r ) is a multiplicative one-electron potential

comprising external, Coulomb, and exchange-correlation
components, respectively. The LDA and GGA magnetic
Hessian, which determines the imaginary component of the
orbital response, is diagonal, and so NMR shielding and spin-
rotation constants as well as magnetizabilities and rotational
g tensors are determined in an uncoupled manner. The whole
approach is rigorously Kohn-Sham theory.

By contrast, for hybrid functionals such as B3LYP, which
combines a GGA functional with an amountê of exact orbital
exchange, the standard implementation in all widely used
programs is not strictly Kohn-Sham theory. Specifically,
rather than containing a multiplicative exchange-correlation
potential as in eq 5, the orbital equations involve the scaled
nonmultiplicative Hartree-Fock exchange operator

whereF1(r ,r ′) is the one-particle density matrix and theVxc(r )
part of Vs(r ) (see eq 6) is the multiplicative potential
associated with the GGA component of the functional. The
resulting magnetic Hessian is nondiagonal, and so magnetic
properties are determined in a coupled manner. This was
the approach used for the B3LYP rotationalg tensor
calculations of Wilson et al.30

There has recently been much interest34-42 in determining
uncoupled second-order magnetic properties from hybrid
functionals using a rigorous Kohn-Sham equation of the
form of eq 5. The high-quality results obtainable from such
an approach were first demonstrated for shielding constantss
Wilson and Tozer34 determined multiplicative potentials from
electron densities with the Zhao-Morrison-Parr (ZMP)
approach43 and used the resulting orbitals and eigenvalues
to determine uncoupled shieldings. When hybrid functional
DFT densities were used, the ZMP results for a series of
small, highly correlated molecules were two to three times
more accurate than those of conventional hybrid theory; the
results were also a significant improvement on the uncoupled
values of conventional GGA theory. Cohen et al.37 subse-
quently demonstrated that essentially identical shieldings are
obtained when the potentials are determined using the
rigorous optimized effective potential (OEP) approach.44

Similar improvements have been observed for chemical
shifts35 and magnetizabilities,36 and so analogous improve-
ments are also anticipated for rotationalg tensors. See refs
38-42 for more recent studies using alternative potential
constructions.

The aim of the present study is to quantify the improve-
ment in rotationalg tensors. Specifically, we shall use the
OEP method to determine multiplicative potentials associated
with the B3LYP, B97-2,45 and B97-346 hybrid functionals
and then use the orbitals and eigenvalues from a rigorous
Kohn-Sham equation of the form of eq 5 to determine
uncoupled rotationalg tensors. The results will be compared

g ) -
2

µN

êCM
paraInuc

-1 +
1

2µN
∑
K

ZK (RK
TRKI3 - RKRK

T)Inuc
-1 (4)

[- 1
2
∇2 + Vs(r )] æp(r ) ) εp æp(r ) (5)

Vs(r ) ) Vext(r ) + VJ(r ) + Vxc(r ) (6)

[- 1
2
∇2 + Vs(r )] æp(r ) - ê ∫ F1(r ,r ′)

|r - r ′| æp(r ′) dr ′ ) εp æp(r )

(7)
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with the conventionalg tensors, determined in a coupled
manner with a nonmultiplicative exchange-correlation opera-
tor as in eq 7, as well as with the uncoupled results from the
KT2 GGA functional.33 All results will be compared with
experimental values, mentioning, where possible, the effect
of zero-point vibrational corrections. We shall also investigate
the influence of orbital exchange and determine rotationalg
tensors directly from ab initio coupled-cluster electron
densities using the Wu-Yang (WY) approach.47 We com-
mence by summarizing the OEP and WY approaches and
providing some computational details in section 2. The results
of our calculations are presented in section 3. Conclusions
are presented in section 4.

2. Theory and Computational Details

The OEP method44 is the rigorous approach for handling
orbital-dependent (e.g., hybrid) functionals in Kohn-Sham
theory. The aim of the OEP method is to find the multiplica-
tive potential,Vs(r ), in a rigorous Kohn-Sham equation of
the form of eq 5, that minimizes the total electronic energy
for the chosen exchange-correlation functional. We have
implemented the OEP method, using the approach of Yang
and Wu,48,49 in the CADPAC quantum-chemistry code.50

Specifically, the potential is written

where Vext(r ) is the external potential,V0(r ) is a fixed
reference potential, and the final term is an expansion in an
auxiliary basis of Gaussian functionsgt(r). The only unknown
parameters are the coefficients{bt}, which are determined
by a direct minimization of the total electronic energy with
respect to these parameters, using an approximate Newton
scheme.49 For the reference potential, we use the Fermi-
Amaldi potential constructed using the Hartree-Fock density
of the system,

where N is the number of electrons andVJ
HF(r ) is the

Coulomb potential of the Hartree-Fock density.

While the OEP method provides the rigorous scheme for
orbital-dependent functionals in DFT, the constrained-search
formulation51 provides an alternative method for determining
multiplicative exchange-correlation potentials. In this method,
the noninteracting kinetic energy is minimized subject to the
constraint that the orbitals yield a supplied electron density.
Wu and Yang have proposed a particular method47 for such
calculations, denoted WY, which is computationally similar
to the OEP method and formally equivalent to the ZMP
method. We have also implemented this approach in CAD-
PAC. For a given input densityFin(r ), the solution to the
problem can be recast as the unconstrained maximization of
the functional

with respect to{bt}, where the orbitals are obtained from a
Kohn-Sham equation of the form of eq 5 with the potential
defined as in eq 8 andF(r ) is the density constructed from
these orbitals. The maximization is carried out using a quasi-
Newton algorithm similar to the one used for the OEP
approach. For further details, see ref 47.

The WY method can be applied to a DFT density
associated with a hybrid exchange-correlation functional. As
demonstrated by Cohen et al.,37 the resulting WY shielding
constants are very close to those obtained by applying the
OEP method to the same functional. However, the WY
method has the important advantage that it does not require
explicit knowledge of the exchange-correlation functional
associated with the input density. In the present work, we
shall therefore also calculateg tensors using potentials
determined from high-quality Brueckner-doubles (BD)
coupled-cluster densities.

A key feature of the OEP and WY schemes is thatVs(r )
is expressed analytically through eq 8. Once optimal{bt}
coefficients have been determined, it is therefore straight-
forward to reconstruct this potential in any electronic-
structure program. Specifically, we here determine these
coefficients using CADPAC and then read the values into a
modified version of the DALTON program,52 which as-
sembles the potential using the same geometry, reference
potential, and orbital and auxiliary basis sets. The resulting
Kohn-Sham equations are then solved [by a single diago-
nalization becauseVs(r ) does not depend on the orbitals],
and the orbitals and eigenvalues are used to compute the
uncoupled rotationalg tensors.

The main advantage of this two-code approach is that it
allows us to use rotational London atomic orbitals in the
g-tensor evaluation to ensure fast basis-set convergence and
gauge-independent results,4 noting that such orbitals are
essential for molecules of the size considered in this work
and that they are not available in the CADPAC program.
The approach also allows the enhanced property calculations
of DALTON to be exploited in future investigations. Our
implementation was checked by confirming that the con-
verged one-electron eigenvalues in DALTON agreed with
those of the CADPAC OEP/WY calculation, to within
numerical integration error. Property calculations were
checked by comparing single-origin magnetizability calcula-
tions in DALTON and CADPAC. The London-orbital
calculations were checked by confirming gauge-origin in-
variance and by comparing large-basis single-origin mag-
netizabilities with London-orbital magnetizabilities for small
molecules.

We closely follow the study of Wilson et al.,30 using the
same aug-cc-pVTZ basis53-55 (but with Cartesian rather than
spherical functions) and the same molecules, omitting the
largest four because of computational limitations. The 58

Vs(r ) ) Vext(r ) + V0(r ) + ∑
t

bt gt(r ) (8)

V0(r ) ) (1 - 1
N) VJ

HF(r ) (9)

Ws[Φdet,V(r )] ) 2∑
i

N/2〈æi|-1

2
32|æi〉 +

∫ dr {Vext(r ) + V0(r )}{F(r ) - Fin(r )} +

∫ dr∑
t

bt gt(r ) {F(r ) - Fin(r )} (10)
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molecules considered (67 isotopic combinations, 143 tensor
elements) are listed in Table 1. Rotationalg tensors are
known to be sensitive to geometry,13 although Wilson et al.
observed that the relative performance of different DFT
functionals was the same whether optimized or experimental
geometries were used. We only consider experimental
geometries here, taken from ref 30 apart from ozone, for
which we user ) 1.2717 Å andθ ) 116.78°.56 With the
exception of ammonia and thioformaldehyde, we compare
results with the experimentalg tensors compiled by Wilson
et al.30 For ammonia, we found experimental results with
smaller error bars;57 for thioformaldehyde, we used-5.2602
for the dominant diagonal element of theg tensor, noting
that Wilson et al. used an incorrect value of-5.6202 because
of a typographical error in the original experimental paper.58

We commenced by performing extensive investigations
into the choice of the auxiliary Gaussian basis functionsgt(r )
for the expansion of the potential in eq 8 and the value of
the filter in the singular-value decomposition (SVD) proce-
dure used to construct the inverse Hessian in the optimization
schemes. For the auxiliary basis, we considered both even-
tempered basis sets and the use of the primary orbital basis.
We found that the primary orbital basis was not sufficiently

large, with deviations of more than 2% from converged
results for simple molecules. For the even-tempered auxiliary
basis sets,s, p, d, and f functions were placed on all atom
centers, with exponentsλns, λnp, and so forth, whereλ is a
universal base andns, np, and so forth are (negative and
positive) integers that define the range of the functions. After
some investigations, a base ofλ ) 2 was used for all
functions with the range chosen such that the exponents span
those of the orbital basis, with the lowest exponent multiplied
by 0.1. Because very large exponents led to a spurious
structure in the OEP potential, functions with exponents
larger than 26 were discarded, noting that the removal of
the high exponents affected theg tensors less than a change
in the orbital basis from triple- to quadruple-ú. For the SVD
filter, an analysis of the shape of the potentials and the
dependence of the highest occupied molecular orbital eigen-
value led us to conclude that a value of 10-4 was appropriate.
Once again, the effect of changing the filter was smaller than
the orbital-basis incompleteness error.

To test our auxiliary basis set, we used the OEP procedure
to calculate rotationalg tensors for the KT2 GGA functional.
Because the KT2 Kohn-Sham equation already takes the
form of eq 5, the OEP procedure should, in the limit of a
complete auxiliary basis, yield the same solution. A com-
parison of conventional uncoupled KT2g tensors with those
determined using the OEP orbitals and eigenvalues therefore
provides a measure of the quality of the auxiliary basis set.
Calculations were performed on a representative subset
(specifically, the molecules considered in section 3.1). For
the 15 tensor components, the average deviation from
conventional KT2 values was 0.1%, with a maximum
deviation of 0.3%.

3. Results and Discussion
Table 2 lists the mean absolute error (MAE), mean error
(ME), percentage mean absolute error (PMAE), and standard
deviation (SD) for the calculated rotationalg tensors of the
molecules in Table 1, compared with experimental values.
Following Wilson et al.,30 we present the error analysis both
including and omitting the ozone molecule, because of its
significant multireference character. Whereas the values
denoted B3LYP, B97-2, and B97-3 refer tog tensors
determined in a conventional, coupled manner using orbitals
and eigenvalues from eq 7, those denoted O-B3LYP, O-B97-
2, and O-B97-3 are the new values, determined in an
uncoupled manner, using orbitals and eigenvalues from eq

Table 1. Molecules Considered in This Study

carbon monoxide [CO], carbon sulfide [CS], carbon selenide [CSe],

hydrogen cyanide [HC15N], fluoro cyanide [FC15N], chloro cyanide [ClC15N],

bromo cyanide [BrC15N], carbonyl sulfide [OCS, OC34S, O13CS],

nitrous oxide [15N15NO, 14N14NO], carbonyl selenide [OC80Se, OC76Se],

methylidene phosphine [HCP, DCP], hydrogen boron sulfide [HBS],

fluoro acetylene [FCCH], chloro acetylene [35ClCCH, 37ClCCH],

bromo acetylene [79BrCCH, 81BrCCH], ammonia [15NH3],

trifluoromethane [CHF3], methylisocyanide [CH3
14NC],

acetonitrile [CH3C15N, CH3C14N, CD3C14N], fluoromethane [CH3F],

chloromethane [CH3Cl], acrolein [CH2CHCHO], propene [CH2CHCH3],

propynal [HCCCHO], dimethyl ether [CH3OCH3],

dimethylsulfane [CH3SCH3], acetaldehyde [CH3CHO], formaldehyde [H2CO],

thioformaldehyde [H2CS], formic acid [HCOOH], formamide [HCONH2],

glycoaldehyde [CH2OHCHO], methyl formate [HCOOCH3], ketene [H2CCO],

difluoromethane [CH2F2], carbonic difluoride [F2CO], formyl fluoride [HFCO],

fluoroethene [CFHCH2], 1,1-difluoroethene [CF2CH2],

cis-difluoroethene [CFHCFH], fluoroethane [CFH2CH3],

trifluoroethene [CF2CFH], ozone [O3], sulfur dioxide [SO2],

difluorooxide [F2O], hypofluoros acid [HOF], water [H2O],

hydrogendisulfide [H2S], methylenecyclopropane [C4H6],

cyclopropene [C3H4], aziridine [C2H5N], oxirane [C2H4O],

thiirane [C2H4S], cyclopropenone [C3H2O], methylcyclopropene [C4H6],

cyclobutene [C4H6], oxetane [C3H6O], â-propiolactone [C3H4O2]

Table 2. Mean Absolute Error (MAE), Mean Error (ME), Percentage Mean Absolute Error (PMAE), and Standard Deviation
(SD) for Rotational g Tensor Elements, Relative to Experimental Values

including ozone excluding ozone

MAE ME PMAE SD MAE ME PMAE SD

KT2 0.0082 -0.0043 10.9 0.0203 0.0078 -0.0048 11.1 0.0197
B3LYP 0.0153 -0.0133 11.3 0.0636 0.0107 -0.0087 11.2 0.0347
B97-2 0.0125 -0.0084 8.8 0.0583 0.0079 -0.0037 8.7 0.0224
B97-3 0.0149 -0.0107 9.2 0.0735 0.0091 -0.0049 9.1 0.0297
O-B3LYP 0.0077 -0.0037 12.0 0.0189 0.0070 -0.0046 12.2 0.0162
O-B97-2 0.0057 0.0013 7.1 0.0165 0.0048 0.0003 7.2 0.0120
O-B97-3 0.0064 0.0018 6.8 0.0214 0.0049 0.0003 6.9 0.0120
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5 with the multiplicative OEP exchange-correlation potential.
The results of all individual calculations, together with
experimental data, are available in the Supporting Informa-
tion.

For hybrid functionals, the uncoupled OEP approach gives
significantly improvedg tensors compared with those of the
conventional approach. When all of the molecules are
included, mean absolute errors reduce by at least a factor of
2 in moving from B3LYP, B97-2, and B97-3 to O-B3LYP,
O-B97-2, and O-B97-3, respectively, while mean errors and
standard deviations reduce by more than a factor of 3. The
percentage mean absolute error reduces for the latter two
functionals. The percentage errors are particularly large for
tensor elements in molecules such as dimethyl ether and
fluorethane. When ozone is excluded from the analysis, the
improvement is more modest, reflecting the fact that ozone
is particularly poorly described by conventional calculations.
This is to be expected because the method has a close
relationship (because of the fraction of orbital exchange) to
coupled Hartree-Fock theory, which is very poor because
of the multireference nature of this molecule. By contrast,
ozone is not an especially challenging case for the OEP-
based calculations. To quantify this, Table 3 presents
rotationalg tensors for ozone, compared with experimental
values, both including and excluding zero-point vibrational
contributions. For thegzzcomponent, which is described well
by the conventional hybrid calculations, the OEP calculations
yield essentially the same results. For thegxx and gyy

components, which are in error with the conventional
approach, the OEP calculations are a notable improvement.
The improvement ingxx is particularly pronounced.

With all molecules included, the quality as measured by
the MAE can be summarized as

with the top method, O-B97-2, exhibiting MAE, ME, PMAE,
and SD values of 0.0057, 0.0013, 7.1%, and 0.0165,
respectively. Figure 1 quantifies the correlation between the
O-B97-2 and experimentalg tensors; the slope and intercept
of the linear trendline are 1.0102 and-0.0002, respectively,
with R2 ) 0.9993. When O3 is excluded, there is little to
choose between O-B97-2 and O-B97-3 as the top method.
Whether ozone is included or not, the KT2 functional, which

was found to be the most accurate DFT method in the study
of Wilson et al.,30 is outperformed by the OEP-based hybrid
functionals.

The errors are particularly small for the 22 linear molecules
in the data set. For this subset, O-B97-3 gives the lowest
MAE of just 0.0011, followed by O-B97-2 (0.0013), KT2
(0.0017), O-B3LYP (0.0018), B97-2 (0.0040), B97-3 (0.0049),
and B3LYP (0.0050). The smallest errors are approaching
the experimental error bars. Considering individual linear
molecules, the OEP-based hybrid values are a particular
improvement on the conventional hybrid results for CO, CS,
CSe, and HCN. Otherg-tensor elements for which the OEP
results represent a sizable improvement are the large
components in thioformaldehyde, formaldehyde, and sulfur
dioxide. Indeed, it was the analysis of our OEP results that
highlighted the error in the quoted thioformaldehyde experi-
mental number of refs 3 and 30. After ozone, the most
significant error with O-B97-2 occurs for the largest com-
ponent of the keteneg tensor. The O-B97-2 value (-0.3267)
is well-above the experimental value (-0.4182) and is even
less accurate than the conventional B97-2 result (-0.3601).
The discrepancy is evident in Figure 1. We have confirmed
that this discrepancy does not arise from inadequacies in the
orbital or auxiliary basis sets. It is interesting to note that
the KT2 functional is also relatively poor for ketene
(-0.3433).

It is pertinent to comment on the effect of zero-point
vibrational corrections (ZPVCs) on rotationalg tensors. The
experimental data used in the above comparison with DFT
do not include ZPVCs; they contain vibrational as well as
electronic contributions. Vibrational corrections are scarce,
although we are aware13,15of MCSCF values for NH3, H2O,
HOF, and O3 and a Hartree-Fock value for H2S. To examine
the importance of such corrections, we have computed errors
for these molecules, comparing them with corrected as well
as uncorrected experimental data. For O-B3LYP, O-B97-2,
and O-B97-3, inclusion of the ZPVC reduces the MAE, by
an average of 6%. For B3LYP, B97-2, and B97-3, by
contrast, the correction increases the error, by an average of
14%. For all six methods, the PMAEs actually increase
slightly because of the smallg-tensor components, although

Table 3. Rotational g Tensor Components for the Ozone
Molecule

gxx gyy gzz

KT2 -2.9230 -0.2313 -0.0792
B3LYP -3.6369 -0.2657 -0.0783
B97-2 -3.6351 -0.2635 -0.0751
B97-3 -3.7980 -0.2729 -0.0754
O-B3LYP -2.8729 -0.2259 -0.0782
O-B97-2 -2.8508 -0.2226 -0.0752
O-B97-3 -2.7752 -0.2195 -0.0754
exptl. -2.9877 -0.2295 -0.0760
exptl.a -2.9169 -0.2277 -0.0746

a Experimental results with calculated zero-point vibrational con-
tributions (from ref 13) removed.

B3LYP < B97-3< B97-2< KT2 < O-B3LYP <
O-B97-3< O-B97-2 (11)

Figure 1. Correlation of O-B97-2 rotational g tensors with
experimental values. The inset includes the entire range of g
tensors.
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the average increase is smaller for the OEP-based methods.
Explicit values for ozone are presented in Table 3. This
analysis, albeit based on limited data, supports our conclu-
sions regarding the improved quality of predictions from
OEP-based hybrid calculations.

3.1. Influence of Orbital Exchange. In ref 59, we
investigated the influence of the amount of orbital exchange
ê (see eq 7) on uncoupled shielding constants determined
using orbitals and eigenvalues associated with a multiplica-
tive exchange-correlation potential. Using the ZMP exchange-
correlation potential, we found that an amount 0.2e ê e
0.3 was optimal, consistent with the amount used in common
hybrid functionals such as B3LYP. By contrast, Arbuznikov
and Kaupp40 used the localized Hartree-Fock (LHF) ap-
proach60 [equivalent to the common energy denominator
approximation (CEDA)61] and instead found that an amount
nearer 0.6 was optimal. These different optimal amounts of
exact exchange reflect differences between the LHF and ZMP
potentials. The reader is referred to refs 38 and 62 for further
discussion on the differences between these and other
potentials.

In the present investigation, we have used the OEP
procedure to determine orbitals and eigenvalues for the series
of functionals in ref 59, with different amounts of exchange
0 e ê e 1. From these potentials, we have determined
uncoupled rotationalg tensors for the representative subset
of molecules CO, CSe, OCS, N2O, NH3, HOF, H2O, and
SO2. Figure 2 presents the mean absolute error relative to
experimental results as a function ofê. In line with the NMR-
shielding observations of ref 59, the best results are obtained
with ê ≈ 0.3, which is consistent with previous observations
highlighting the similarity of the ZMP and OEP poten-
tials.37,62

3.2.g Tensors Calculated from Coupled-Cluster Densi-
ties.The results discussed so far have been pure DFT results.
We complete this study by instead determining rotationalg
tensors directly from ab initio electron densities using the
WY approach. Specifically, we calculate BD coupled-cluster
relaxed densities and input them [Fin(r ) in eq 10] into our
implementation of the WY procedure in CADPAC, which
yields an optimal set of expansion parameters{bt}. These
are then transferred to DALTON as in the OEP calculations,

and the uncoupledg tensor is evaluated. The results are
denoted WY(BD).

We have considered the same subset of molecules as that
in section 3.1; all results are presented in the Supporting
Information. The conventional hybrids give mean absolute
errors from 0.0127 (B97-2) to 0.0139 (B97-3), whereas the
OEP errors are between 0.0068 (O-B97-3) and 0.0084 (O-
B3LYP). The WY(BD) mean absolute error is slightly lower,
at 0.0066. The WY(BD) results are of good quality but, of
course, require the evaluation of the coupled-cluster relaxed
density. The modest gain in accuracy is therefore associated
with a significant increase in computational cost; the method
is not practical for larger molecules. We also note that the
WY(BD) results are poor for the ozone molecule. If this
molecule is included in the subset, then the OEP methods
are an improvement over WY(BD).

4. Conclusions
In line with previous studies of NMR shielding constants,34,37

chemical shifts,35 and magnetizabilities,36 we have demon-
strated that significantly improved rotationalg tensors can
be obtained with hybrid functionals by an uncoupled evalu-
ation, using orbitals and eigenvalues from a rigorous Kohn-
Sham equation, eq 5. Compared with the conventional
approach, which uses a coupled formalism and nonmulti-
plicative exchange-correlation operator, eq 7, mean absolute
errors are reduced by at least a factor of 2, whereas mean
errors and standard deviations are reduced by more than a
factor of 3. When ozone is omitted, the improvement is more
modest, reflecting the fact that ozone is particularly poorly
described by conventional calculations. Notably, the results
are also an improvement over those from the KT2 GGA
functional, which was developed with an emphasis on a high-
quality magnetic response and which provided the highest
quality in the study of Wilson et al.30 The OEP calculations
are more computationally demanding than those of the KT2
functional, requiring an implementation of the OEP meth-
odology, although they do exhibit the favorable scaling of
DFT. We have also demonstrated that, for a representative
subset of molecules, optimal results are obtained with an
amount of orbital exchangeê ≈ 0.3. Wheng tensors are
determined from coupled-cluster electron densities, the
improvement is only modest, at significant additional com-
putational expense.

This study highlights the high-quality rotationalg-tensor
predictions possible within DFT; further investigations are
under way. We are also using the ideas of this paper to
investigate spin-rotation constants, which are related to
shielding constants in the same way thatg tensors are related
to magnetizabilities. Results will be reported in a forthcoming
publication.
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Abstract: A geometry optimization method using an energy-represented direct inversion in the

iterative subspace algorithm, GEDIIS, is introduced and compared with another DIIS formulation

(controlled GDIIS) and the quasi-Newton rational function optimization (RFO) method. A hybrid

technique that uses different methods at various stages of convergence is presented. A set of

test molecules is optimized using the hybrid, GEDIIS, controlled GDIIS, and RFO methods.

The hybrid method presented in this paper results in smooth, well-behaved optimization

processes. The optimization speed is the fastest among the methods considered.

I. Introduction
Geometry optimization is an essential part of computational
chemistry. Any theoretical investigation that involves calcula-
tions of transition structures, barrier heights, heats of reaction,
or vibrational spectra requires searches for one or more
minima or saddle points on a potential energy surface (PES).
Computational methods are applied to large systems of ever-
increasing size. Biomolecules, polymers, and nanostructures
with hundreds to thousands of atoms are often difficult to
optimize because of excessive degrees of freedom. Any
decrease in the computational cost and increase in the general
stability of geometry optimization would be welcome.

A variety of algorithms for geometry optimization are
widely used in computational chemistry (for some recent re-
views, see refs 1 and 2). Geometry optimization methods
can be broadly classified into two major categories. First-order
methods use only analytic first derivatives to search for sta-
tionary points; second-order methods use analytic first and
second derivatives, assuming a quadratic model for the poten-
tial energy surface and a Newton-Raphson step for the
minima search

where g is the gradient (first derivative) andH-1 is the
inverse Hessian (second derivative). While second-order
optimization schemes need fewer steps to reach convergence
than first-order methods,3 this approach can quickly become
very expensive with increasing system size because the
explicit computation of the Hessian scales asO(N4)-O(N5),
where N is a measure of the system size. Quasi-Newton
methods are intermediate between the first- and second-order
approaches. An initial estimate of the Hessian is obtained
by some inexpensive method. Subsequently, the Hessian is
updated using the first derivatives and displacements, by
methods such as BFGS,4-7 SR1,8 and PSB.9,10 The quasi-
Newton approach is comparable in computational cost to
first-order methods and in convergence speed to second-order
methods.

The use of a Newton-Raphson step when the PES is far
away from a quadratic region can lead to overly large step
sizes in the wrong direction. The stability of a Newton-
Raphson geometry optimization can be enhanced by control-
ling the step size using techniques such as rational function
optimization (RFO)11,12 and the trust radius model.1-3,13-16

To reduce the number of iterations required to reach
convergence, a least-squares minimization scheme is used:
direct inversion in the iterative subspace (DIIS).17,18The DIIS
approach is efficient in both converging the wave function17-21

and optimizing the geometry.22,23It extrapolates/interpolates
a set of vectors{Ri} by minimizing the errors in the least-
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squares sense (for a leading reference, see ref 17):

where λ is the Lagrangian multiplier. The coefficients
minimize a working function, which can be an error
function17,18,21-23 or an energy function.19,20Fock matrix and
nuclear positions are often chosen as the vectors for self-
consistent field (SCF)17,18,20,21and geometry22,23optimizations,
respectively. When the working function is an error function,
the matrix A is usually defined as the product of error
vectors,ai,j ) eiej

T, where the error vector can be a quasi-
Newton step for geometry optimization22,23or the commutator
[F, P] for SCF convergence.17,18 Solving eq 2 leads to a set
of DIIS coefficientsci that are used to obtain a new vector,
R* ) ∑iciRi, which has the minimum functional value within
the search space. Direct solution of eq 2 often leads to
unproductive oscillations when optimizing large systems.20,23

Farkas and Schlegel have introduced some controls to ensure
a downhill DIIS extrapolation/interpolation for geometry
optimization (GDIIS).23 Scuseria and co-workers have in-
troduced a stable and efficient alternative DIIS formalism
for SCF convergence, energy-DIIS (SCF-EDIIS).19,20 The
SCF-EDIIS algorithm minimizes an energy function and
enforces coefficients to be positive definite.

This paper extends the energy-represented direct inversion
in the iterative subspace algorithm from SCF convergence
to geometry optimization (GEDIIS). A hybrid geometry
optimization technique that utilizes the advantages of dif-
ferent methods of various stages of the optimization is then
illustrated and tested.

II. Methodology and Benchmarks
Optimizations are carried out using the development version
of the Gaussian series of programs24 with the addition of
the geometry optimization algorithms using GEDIIS and the
hybrid method presented here. For all methods, the geometry
optimization is considered converged when the root-mean-
square (RMS) force is less than 1× 10-5 au, the RMS
geometry displacement is less than 4× 10-5 au, the
maximum component of the force vector is less than 1.5×
10-5 au, and the maximum component of the geometry
displacement is less than 6× 10-5 au. All calculations are
carried out with redundant internal coordinates. No symmetry
operations or reorientations are imposed. Starting geometries
are available upon request (li@chem.washington.edu).

A. Geometry Optimization Using Energy-Represented
Direct InVersion in the IteratiVe Subspace (GEDIIS).As in
all DIIS-based schemes, the GEDIIS formalism yields a new
vector R* constructed from a linear combination ofN
previously computed vectorsRi

In GEDIIS,Ri’s are geometries andci’s minimize an energy
function. The energy of the new structureR* can be
approximated to first order with an expansion atRi

whereE(Ri) andgi are the energy and gradient of structure
Ri, respectively. Multiplying both sides of eq 4 byci, and
summing overN points, we obtain

A simple algebraic manipulation leads to the GEDIIS
working function

or

where

The quadratic term in eq 6 represents the variations in energy
for changes of geometric coordinates and gradients within
the search space. Equation 6 is formally identical to
Scuseria’s SCF-EDIIS equation for wave-function optimiza-
tion.20 In both the GEDIIS and SCF-EDIIS formalisms, the
energy function is minimized directly with respect to the
expansion coefficients,ci’s. The working functions in GE-
DIIS, SCF-DIIS,17,18 SCF-EDIIS,20 and GDIIS22,23 are all
quadratic with respect toci, and minimizations are therefore
performed in a least-squares sense. The comparison of this
technique with Pulay’s DIIS17,18 has been discussed exten-
sively in the literature.19,20

The set of DIIS coefficients,ci’s, that minimize the energy
function, eq 6, are used to construct a new geometryR*
from a linear combination of known points (eq 3). The
resulting geometryR* is, to a first-order approximation,
associated with the optimal energy within the search space.
However,R* is not necessarily the final minimum structure.
The distance fromR* to the minimum structure can be
approximated by a second-order Newton step. In this work,
we use a RFO step for the second-order correction

where the parameterê is optimized using the RFO approach

A )(a1,1 ‚‚‚ a1,N 1
l ‚‚‚ l l

aN,1 ‚‚‚ aN,N 1
1 ‚‚‚ 1 0)

(a1,1 ‚‚‚ a1,N 1
l ‚‚‚ l l

aN,1 ‚‚‚ aN,N 1
1 ‚‚‚ 1 0)(c1

l
cN

λ
) ) (0l0

1
) and∑ci ) 1 (2)

R* ) ∑
i)1

N

ciRi, ∑
i)1

N

ci ) 1 (3)

E(R* ) ) E(Ri) + (R* - Ri)gi (4)

E(R* ) ) ∑
i)1

N

ci[E(Ri) + ∑
j)1

N

cjRjgi - Rigi] (5)

E(R* ) )

∑
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1
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1
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(note that the Hessian is a constant in a quadratic approxima-
tion).11,12 With no constraint on the sign ofci, eq 7 is
essentially an extrapolation; whenci > 0, it becomes an
interpolation step. When the molecular geometry is far from
convergence, extrapolations can lead to erroneously large
steps away from the optimized geometry. To ensure opti-
mization stability, an enforced interpolation constraint,ci >
0, is added into eq 2 (for detailed machinery, see ref 20).
As a result, GEDIIS searches for a new geometry in the
region close to the local potential energy surface, that is,
interpolations only.

We update the geometric Hessian with first derivatives:
a weighted combination of BFGS and SR123 with the square
root of the Bofill25 weighting factor

Equation 8 has been successfully used for large-molecule
geometry optimization.26

Figures 1 and 2 show energy profiles for the first 40
optimization steps of taxol and For-(Ala)10-NH2 using
RFO, GDIIS, and GEDIIS methods at the AM1 level of
theory. The GEDIIS method reduces, or even eliminates,
large energy oscillations, which often appear in GDIIS at
the early stage of optimization because of large extrapolation
steps. The convergence behavior of the GEDIIS approach
is generally smooth and well-behaved. Note that GEDIIS

shows small bumps at places similar to those in GDIIS,
indicating that it is taking approximately the same path but
in a more controlled fashion. This enhanced stability is a
result of the better representation of error vectors and the
enforced DIIS interpolation. The SCF-EDIIS method for
wave-function optimization also shows enhanced stability.20

Because the DIIS algorithm collects information from
previously computed points for a better picture of the local
potential surface than that obtained from a single point, as
in the RFO method, the potential energies at the same
optimization step are generally in the orderEGEDIIS < EGDIIS

< ERFO.
B. Mixed Geometry Optimization Scheme.The simple

RFO, GDIIS, and GEDIIS methods each perform best in
different stages of the geometry optimization. Even though
GEDIIS exhibits fast and smooth behavior at the early stage
of geometry optimization, the first-order energy-represented
A matrix has no knowledge of the curvature of the local
potential surface, so the problems of gradient-based methods
are still present in a direct implementation of the GEDIIS
method presented here. In a well-behaved quadratic region
near convergence, first-derivative-based optimizations such
as GEDIIS are generally slower than those using both first
and second derivatives. To take advantage of the fast
convergence of Hessian-based methods near minima, GDIIS
using RFO steps as error vectors can be used instead of
GEDIIS when the optimization process is close to conver-
gence. Another critical problem for methods using DIIS
minimization schemes results from interpolation where the
optimization scope is limited to neighboring potential
surfaces only: optimizations can easily be trapped in
undesired shallow potential wells. This is particularly
troublesome for optimizing large molecules with many
degrees of freedom. By contrast, RFO is essentially a single
extrapolation step that is better able to overcome shallow
potential wells. Therefore, it is a reasonable strategy to use
RFO as apreoptimizeror potential well selectorfollowed
by DIIS-based optimization methods.

We thus combine methods to gain a fast hybrid geometry
optimization scheme: (1) The geometry optimization begins
with the RFO method to use the Hessian-based quadrature

Figure 1. Energy vs step number for geometry optimizations
on taxol at AM1.

H i ) H i-1 + æ∆H i
SR1+ (1 - æ)∆H i

BFGS

∆H i
SR1) -

(H i-1∆Ri-1 - ∆gi)(H i-1∆Ri-1 - ∆gi)
T

(H i-1∆Ri-1 - ∆gi)
T∆Ri-1

∆H i
BFGS)

∆gi∆gi
T

∆Ri-1
T ∆gi

-
H i-1∆Ri-1∆Ri-1

T H i-1

∆Ri-1
T H i-1∆Ri-1

æ ) xæBofill )

x [(H i-1∆Ri-1 - ∆gi)
T∆Ri-1]

2

(H i-1∆Ri-1 - ∆gi)
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Figure 2. Energy vs step number for geometry optimizations
on For-(Ala)10-NH2 at AM1.
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to avoid shallow potential wells; (2) the optimization
algorithm switches to fast and smoothly converging GEDIIS
when the root-mean-square force of the latest point is smaller
than 10-2 au; (3) when the root-mean-square RFO step of
the latest point is less than 2.5× 10-3 au, GDIIS23 is used
until convergence. This hybrid method takes advantage of
the three methods considered heresthe ability to overcome
shallow potential wells by RFO, smooth optimization by
GEDIIS, and fast convergence of RFO-DIIS near the
minimum. The switching criteria were optimized from tests
on the Baker set (Table 1).27 Figure 3 illustrates optimizations
using RFO, GDIIS, GEDIIS, and the hybrid method for For-
(Ala)10-NH2 at the HF/STO-3G level of theory. Both GDIIS
and GEDIIS converge to a minimum that is about 1.5×
10-3 au higher in energy than that by RFO. The smallest
harmonic frequency for the DIIS minimum is only about 7
cm-1, indicating a very flat potential well. The hybrid
optimization switches to GEDIIS from RFO after the first
20 steps and switches to GDIIS after another 26 steps.
Convergence is reached within 79 steps, significantly faster

than the 94 steps by RFO. While the DIIS methods remain
at a higher energy minimum, the hybrid method overcomes

Table 1. Comparison of the Computational Costs for Quasi-Newton RFO, Controlled GDIIS, GEDIIS, and Hybrid
Optimization Methods on Select Baker Test Molecules

RFO GDIIS GEDIIS hybrid

Ea (au) Tb Nc Tb Nc Tb Nc Tb Nc

disilyl ether -657.881 31 1.28 13 1.18 12 1.10 11 1.00 10
1,3,5-trisilaceyclohexane -990.064 87 1.10 12 0.93 10 1.07 12 1.00 11
2-hydroxybicyclopentane -270.492 14 1.14 15 0.99 13 1.00 13 1.00 13
achtar10 -363.046 87 1.27 18 1.06 15 1.00 14 1.00 14
benzidine -574.008 39 1.08 12 1.00 11 1.01 11 1.00 11
pterin -580.647 03 1.00 12 1.01 12 1.01 12 1.00 12
histidine -548.755 26 1.01 17 1.00 17 1.00 17 1.00 17
caffeine -680.376 96 1.00 11 1.00 11 0.86 9 1.00 11
menthone -467.143 10 1.00 14 1.00 14 0.95 13 1.00 14
acthcp -852.314 18 1.05 17 1.00 16 1.00 16 1.00 16
histamine H+ -360.593 73 1.06 16 0.92 14 0.92 14 1.00 15
hydrazobenzene -573.970 61 1.00 20 1.10 22 1.41 28 1.00 20
a Final energy. b Total CPU time with respect to that of the hybrid method. c Number of optimization steps.

Table 2. Comparison of the Computational Costs for Quasi-Newton RFO, Controlled GDIIS, GEDIIS, and Hybrid
Optimization Methods

histidine
(20 atoms)

hydrazobenzene
(26 atoms)

taxol
(113 atoms)

For-(Ala)10-NH2

(106 atoms)
For-(Ala)20-NH2

(206 atoms)

MP2/6-311G(d) B3LYP/6-31G(d) PBEPW91/3-21G HF/STO-3G AM1

Final Energy
RFO -545.663 46 -573.970 61 -2911.140 32 -2593.884 16 -1.425 66
GDIIS -545.663 46 -573.970 61 -2911.140 33 -2593.882 62 -1.425 66
GEDIIS -545.663 46 -573.970 61 -2911.140 33 -2593.882 58 -1.425 66
hybrid -545.663 46 -573.970 61 -2911.140 33 -2593.884 16 -1.425 66

Number of Optimization Steps
RFO 21 20 135 94 107
GDIIS 21 22 136 111 92
GEDIIS 16 28 125 67 88
hybrid 19 20 105 79 91

Relative CPU Timesa

RFO 1.10 1.00 1.22 1.11 1.13
GDIIS 1.10 1.10 1.30 1.47b 1.02
GEDIIS 0.85 1.41 1.19 0.81b 0.96
hybrid 1.00 1.00 1.00 1.00 1.00

a Total CPU time with respect to that of the hybrid method. b Minima higher in energy than that optimized by the hybrid method.

Figure 3. Energy vs step number for geometry optimizations
on For-(Ala)10-NH2 at HF/STO-3G.
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the shallow potential well and optimizes For-(Ala)10-NH2

to the RFO minimum.
Table 2 compares final energies and computational costs

by the RFO, GDIIS, GEDIIS, and hybrid optimization
methods on select molecules at various levels of theory. The
computational costs are presented as the relative CPU times.
The hybrid method introduced in this paper is the fastest
among the popular geometry optimization methods consid-
ered here. Most importantly, the optimization behavior of
the hybrid method is consistently smooth and fast through
optimizations of the Baker set and large biochemical
molecules tested in this paper.

III. Conclusion
This paper presents a geometry optimization method using
GEDIIS. The GEDIIS method minimizes an energy repre-
sentation of the local potential energy surface in the vicinity
of previously computed points (gradients and geometries)
as a least-squares problem. The enforced interpolation in
GEDIIS leads to enhanced stability.

A hybrid geometry optimization algorithm is proposed that
takes into account the problems and advantages of different
optimization methods. The hybrid method starts off with
RFO as apreoptimizerand switches to GEDIIS when a
certain convergence threshold is met. Near the minimum,
GEDIIS switches to RFO-DIIS. This takes advantage of
RFO’s ability to overcome shallow potential wells, smooth
optimization by GEDIIS, and fast convergence of RFO-
DIIS near the minimum. Optimizations of test molecules with
the hybrid method are shown to be smooth, reliable, and fast.
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Abstract: Functionally relevant transitions between native conformations of a protein can be

complex, involving, for example, the reorganization of parts of the backbone fold, and may occur

via a multitude of pathways. Such transitions can be characterized by a transition network (TN),

in which the experimentally determined end state structures are connected by a dense network

of subtransitions via low-energy intermediates. We show here how the computation of a TN

can be achieved for a complex protein transition. First, an efficient hierarchical procedure is

used to uniformly sample the conformational subspace relevant to the transition. Then, the best

path which connects the end states is determined as well as the rate-limiting ridge on the energy

surface which separates them. Graph-theoretical algorithms permit this to be achived by

computing the barriers of only a small number out of the many subtransitions in the TN. These

barriers are computed using the Conjugate Peak Refinement method. The approach is illustrated

on the conformational switch of Ras p21. The best and the 12 next-best transition pathways,

having rate-limiting barriers within a range of 10 kcal/mol, were identified. Two main energy

ridges, which respectively involve rearrangements of the switch I and switch II loops, show that

switch I must rearrange by threading Tyr32 underneath the protein backbone before the rate-

limiting switch II rearrangement can occur, while the details of the switch II rearrangement differ

significantly among the low-energy pathways.

1. Introduction
Conformational changes are critical to the function of many
proteins. Well-known examples of functional transitions
include the rearrangement of subunits in the hemoglobin
tetramer upon oxygen binding,1 the lever-arm motion in
myosin during muscle contraction,2 and the molecular switch
in Ras p21 (see Figure 2) that signals cell division.3,4 Such
functional changes in conformation are often complex,

involving the rearrangement of backbone segments or the
packing at domain interfaces. Understanding the mechanism
of these transitions is particularly challenging, because the
nature and order of their subtransitions are difficult to predict
and may, in principle, occur in different ways.

X-ray crystallography and nuclear magnetic resonance
spectroscopy can provide atomic-detail structures for stable
end states of conformational transitions and sometimes long-
lived intermediates. However, the transitions themselves are
difficult to characterize experimentally because, although the
time required for a complete structural change can be
relatively long (µs or longer), the transition states involved
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are very short-lived. Computer simulation can help to gain
insight into these processes.

Because complex conformational transitions usually occur
on long time scales, they are not accessible to unbiased
molecular dynamics (MD) simulation with presently avail-
able computing power. Consequently, alternative computa-
tional approaches must be used. Variations of molecular
dynamics have been proposed to overcome this time scale
problem. For example, multiple time-step methods5 are quite
successful in certain multiple-time scale contexts. However,
they do not achieve sufficient speedup for the present
purposes.6,7 Other methods bias the underlying energy
potential8 or reduce the dimension of the conformational
space.9 These methods face the difficulty that a good guess
of the energy surface along the whole transition must in
principle be known a priori, which is usually not possible
for complex transitions in proteins. Steered and Targeted
Molecular Dynamics10,11 incorporate a constraint into the
energy function that directs the system toward the desired
product structure. While these methods are successful in
cases where the reaction follows a pathway that is compatible
with these constraints,12 they lead to unnatural structures and
unrealistic energy barriers in other cases.13 A further variant
is conformational flooding,14 which approximates the local
shape of the underlying energy surface explored by an MD
trajectory by computing its principal components and then
escapes the local energy minimum by adding a multivariate
Gaussian function to the energy function the form of which
depends on these principal components. Although this
method allows the trajectory to overcome high energy
barriers, it is designed to explore yet unknown new states
rather than performing a transition into a predefined state.

Pathway methods are a different approach to simulating
molecular transitions. Starting from an initial guess, the
transition pathway is allowed to relax on the energy surface
by constrained molecular dynamics15,16or by local minimiza-
tion methods.17-21 These methods have been applied suc-
cessfully in cases where the transition does not involve too
complex rearrangements of the protein, such that a number
of reasonable initial guesses of the pathway can easily be
formulated.22-24 This is particularly the case when the
conformational distance between the transition end states is
small. In contrast, when the transition involves rearrange-
ments of the protein fold, a guess for the initial path is more
difficult to make. Moreover, such transitions can follow
multiple pathways, as the energy landscape is likely to
include broad energy ridges with many saddle-points of
similar energies. Therefore, the determination of a single
reaction pathway (even if it is the lowest-energy one) does
not yield a comprehensive description of the transition.13

To represent multiple pathways, thetransition network
approach may be used. Transition networks are a discrete
and simplified representation of configurational space and
encode the possible transition pathways in a network of
subtransitions. Each subtransition occurs between two con-
formations that are relatively close in conformational space.
Each conformation in the network can be reached and left
through at least one, but usually several, subtransitions. Each
subtransition has an associated energy barrier that can be

used to determine an associated rate constant or a mean
passage time (i.e. “cost”). See Figure 1 for an illustration.

The construction of transition networks is documented in
a large number of studies which have addressed the analysis
of energy surfaces by mapping its local minima and saddle
points.25-46 These stationary points can be generated by local
optimization starting from conformational ensembles that are
generated by high-temperature molecular dynamics,29,33,36,39,47

by a mode-following guided parallel search starting from a
deep initial minimum,35,42,48 or by Discrete Path Sampling
(DPS).43,45,49 The kinetics between groups of stationary
points may be recovered using Master-Equation dynamics
(MED),28,29,32,36,39,35,38-40,42,43,45,46Kinetic Monte Carlo (KMC),45

or, again, by Discrete Path Sampling (DPS).43,45,49Typical
applications of the above methodology are the rearrangement
of atomic or molecular clusters29-31 and the rearrangement
or folding of peptides27,28,32,33,36,35,38,40,43,45and of model
proteins.34,42,50

The applicability of the above approaches to complex
transitions between native conformations of a protein is
limited by two main difficulties. The first involves the
generation of the minima which serve as TN vertices: It is
a priori unclear how a conformational ensemble can be
generated that adequately covers the volume of conforma-
tional space that is relevant for the transition. In particular,
the direct manipulation of the backbone torsion angles or
high-temperature dynamics are likely to disrupt the native
structure, while search-based procedures may get lost in the
huge number of possibly distant low-energy minima. Discrete
Path Sampling is likely to be successful in identifying a
connected channel between the end states, but it is unclear
how it can identify a collection of considerably different
channels. The second problem involves the computation of
energy barriers. The determination of global properties of
the network, such as the kinetics or the optimal path between

Figure 1. Transition network on a schematic two-dimensional
energy surface. The network vertices (white bullets) cor-
respond to low-energy intermediates between the reactant and
product end states of the transition (black bullets). The network
edges (white lines) correspond to subtransitions between the
vertices and are associated with weights (white numbers),
which are the rate-limiting energy barriers along each sub-
transition.
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two end states,51 requires the barriers of the subtransitions
in the network to be known. Dense transition networks for
complex macromolecular transitions typically have so many
edges and the computation of each subtransition barrier is
so CPU-demanding that the computation of all subtransition
barriers cannot be afforded.

In the present contribution we address these two problems.
In section 3.1 we present a procedure for efficiently sampling
the relevant degrees of freedom of a complex transition
between two native conformations of a protein so as to yield
a representative set of low-energy conformers. Then, in
section 3.2 we present a graph-theoretical approach that
allows for determining global network properties (such as
the best transition pathway or the rate-limiting ridge dividing
the energy surface into reactant and product basins) based
on the computation of only a limited subset of all subtran-
sition barriers.

The methods introduced here are used to identify likely
pathways and the order of events in an example system, the
molecular switch of Ras p21 (section 4). This switch plays
an important role in the signal transduction pathways that
control proliferation, differentiation, and metabolism.3,4 The
conformational transition, which occurs in the GDP-bound
state, involves a complex rearrangement of the backbone fold
around the nucleotide binding site (Figure 2). The complexity
of the transition suggests that it may occur via many different
pathways, thus making it an excellent case for testing the
present transition network approach. Among the questions
that have been raised by a previous study of this conforma-
tional transition13 and that are addressed here are as fol-
lows: (1) Is the rearrangement of switch I characterized by
the side chain of Tyr32 threading underneath the backbone
or by moving it through the solvent (see Figure 2)? (2) Is
there a coupling between the switch I and switch II
transitions, i.e. is the relative order of events in the two switch
regions strictly defined? (3) Is there a well-defined unfolding
pathway of switch II?

The present study reports on methodological advances
which permit the generation and analysis of a comprehensive
set of pathways for a complex conformational transition
between two native conformations of a protein. The meth-
odology is applicable to complex conformational changes
in many other proteins whose functional time scale and
complexity precludes the use of direct simulation.

2. Theory
Transition networks (TN) can in principle be used to model
any dynamical system that can be appropriately described
by a (possibly large) number of states and interstate transi-
tion rules. Here, we focus on TN for molecular systems
and in particular for conformational changes in proteins. A
TN is a discrete model which abstracts dynamic proper-
ties from the full system and captures its relevant
kinetic behavior. Formally, a TN is a weighted graph,G )
(V,XS,ES,E,XTS,ETS), where the list of vertices,V ) (1,...,|V |),
represents the stable states of the protein,XS ) (x1

S,...,x|V |
S )

are the corresponding configuration vectors, andES )
(E1

S,..., E|V|
S ) are corresponding state energies. The list of

edges,E ) ((u, V),...,(w, y)), specifies between which pairs

of states direct subtransitions are considered.XTS ) (xuV
TS,...,

xwy
TS) are the configuration vectors of the corresponding

transition states andETS ) (EuV
TS,..., Ewy

TS) are the associated
transition state energies.

Each TN vertex,V, corresponds to a regionRV of the
configurational space, containing a group of geometrically
similar molecular configurations. What is appropriate as a
definition of “group” depends on the application. For the
current work, each given vertexV corresponds to an
attraction basin, i.e. the set of configurations that can be
mapped to the same local minimumxV

S on the potential
energy surfaceU(x) by a direct minimization.25,52 Each
vertex,V, is associated with a state energyEV

S, generally, the
free energy of the basinRV. Depending on the complexity
of the system used, different approximations to the free
energy may be necessary. For systems where all basins can
be mapped, it has been shown that free energies calculated
from harmonic approximations to the potential in each basin
are able to reproduce thermodynamic properties.42,43

Figure 2. The conformational switch in Ras p21. (A) The
GTP-bound and (B) GDP-bound conformers of the Ras p21
transition. The blue regions are very similar in the crystal-
lographic end states and were kept fixed during the simula-
tions. During the transition, switch I (residues 30-35, in red)
rearranges such that Tyr32 (shown in red) is repositioned on
the opposite site of the backbone and opens the nucleotide
binding site to prepare for the release of GDP (shown in green
van der Waals spheres). Switch II (residues 61-71, in yellow)
unfolds from a helix to a coil structure.
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The TN edges represent subtransitions between pairs of
neighboring vertices. To any given edge (u, V), there is an
associated transition state configuration,xuV

TS. The energy
EuV

TS associated with the edge is generally the free energy of
the transition state.

The absolute height of the vertex and edge energies can
be shifted by subtracting an arbitrary constant valueE0

without affecting the results. To avoid numerical problems
when using exponentials ofEuV

TS, it is desirable to chooseE0

in such a way as to keepEuV
TS small.

Figure 1 shows a schematic representation of a transition
network.

2.1. Best Paths.Given the weighted graphG, one can
search for the “best” path connecting two particular vertices
VR andVP (e.g. corresponding to experimentally determined
“reactant” and “product” structures). For this, consider a
subtransition along one edge between two vertices,u f V,
with associated energiesEu

S and EuV
TS. We can express the

flux from state u into stateV, kuV, as a product of the
probability of being in stateu, pu, with the rate constant for
the transitionu f V, k′uV:

53

Using free energies for vertices and edges, the probability
pu at equilibrium is given by the ratio of the partition
functions foru and the full phase space:

Using the phenomenological form of transition state
theory,54 and assuming that all subtransitions have a similar
dynamic prefactor,γ, the rate constant can be expressed as

wherekB is Boltzmann’s constant, andT is the temperature.
Substituting eqs 2 and 3 into eq 1, we see that the equilibrium
flux for the transitionu f V is proportional to the Boltzmann
weight of EuV

TS:

The mean time between two subsequent transition events
from u to V, τuV, is given by the inverse of the flux:τuV )
kuV

-1. We take theedge cost, wj uV, as proportional toτuV,
setting the proportionality factor to unity:

For a path connecting verticesV1 ) VR andVm ) VP via a
series ofmvertices,P ) (V1, V2,...,Vm), travelling over edges

((V1, V2),...,(Vm-1, Vm)), the best path is defined as that which
minimizes the cumulative edge costs

This definition of a best path is similar to the previously
proposed notion of the continuous pathway with “maximum
flux” or “minimum resistance”.15,55 To determine the best
path in practice, the edge energy vectorETS is transformed
into a cost-vectorwj using eq 5.wj has size|E | and assigns
a costwjuV to each edge (u, V) in E. Subsequently, the Dijkstra
algorithm51 is used to identify a best path between the two
end states through the weighted network defined by (V,E,
wj ). This path minimizes the path costC(P) given in eq 6.

This best path furnishes a preliminary understanding of
the transition,13 and it may be used as a guess for a reaction
coordinate for free energy calculations56 or as a starting point
for discrete path sampling.49 However, it dominates the
transition only if the barriers of alternative pathways are
considerably higher. To obtain an idea of the number of
different accessible pathways and their associated structures,
it is useful to determine the set ofk different pathways,
(P1, P2,..., Pk) with costs (C1 e C2 e ... e Ck), whereP1 is
the path with the lowest cost,C1, P2 is the path with the
second-lowest cost,C2, etc. This so-called “k best path
problem” is well-known in graph theory.57 To precisely
define it, one must define in which way two paths must differ
in order to be treated as different. In a transition network, it
is clearly not very meaningful to distinguish two pathways
which differ only in two low-energy, non-rate-limiting
barriers. Therefore, two paths are treated as different only if
their rate-limiting steps (i.e. their highest-energy edges) do
not coincide. Thek best paths are determined ink steps:
The second best path is found by using the Dijkstra algorithm
after “blocking” the edge (u, V) associated with the highest
energy barrier in the previously found best path (by setting
its EuV

TS ) ∞). The third best path is found by blocking the
highest edges of the best and second best paths, etc.

2.2. Energy Ridge.The collection of rate-liming transition
states from all different (as defined above) paths from a
defined reactant to a defined product belongs to a (D-1)-
dimensional transition surface that divides theD-dimensional
conformation space into a reactant and a product side. In
terms of topography, this transition surface corresponds to
anenergy ridge, as illustrated in Figure 3. On a geographical
landscape, it is analogous to a water-shed, i.e. the mountain
ridge that separates water flows toward distinct oceans. The
particular interest of the energy ridge is that it allows for a
feeling to be quickly obtained for how degenerate the
transition is, i.e., how many significantly different paths are
likely to be accessible. For instance, if one transition state
in the ridge has a significantly lower energy than the other
transition states in the ridge, then the transition mechanism
is dominated by a well-defined bottleneck. In contrast, if the
ridge contains many different transition states with similar
energies, the transition mechanism is not well defined.

In graph-theoretical terms, an energy ridge is acut. The
name “cut” stems from the fact that deletion of its edges

kuV ) puk′uV (1)

pu )
exp(-Eu

S /kBT)

∑
w)1

|V|
exp(-Ew

S /kBT)

(2)

k′uV ) γ exp
-(EuV

TS- Eu
S)

kBT
(3)

kuV ∝ exp(-
EuV

TS

kBT) (4)

wj uV ) exp(EuV
TS

kBT) (5)

C(P) ) ∑
k)1

m-1

wj VkVk+1
(6)
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dissociates the network into two disconnected subnetworks.
Formally, the cutC is a set ofM edgesC ) {(u1, V1),...,(uM,
VM)} with the property that each vertexui belongs to one
set,U (e.g. “reactant side”), each vertexVi belongs to another
set,V (e.g. “product side”), and (U, V) partition the set of
all vertices (i.e.,U ∪ V ) V andU ∩ V ) L).

When the best and all next-best paths each have a
dominant (rate-limiting) step, the energy ridge is identical
to the cut whose total fluxkUV across it is minimal.kUV is
given by the sum of all localized fluxeskuiVi in the direction
u f V across edges (ui, Vi) in the cut

wherekuiVi is the equilibrium flux from eq 4. By dismissing
the proportionality constant, we obtain the normalized total
flux, kUV,0:

Note that the cut that minimizeskUV,0 (the rate-limiting
cut) and the cut associated with the topographic energy ridge
are not always identical. For example, consider a case where
the topographic ridge is very broad, its cut containing many
edges of similar energy, whereas another cut contains only
a single edge of slightly lower energy than those of the
topographic ridge. Then the cut with the single edge has a

lower kUV,0 than the cut of the topographic ridge, because
the many individual fluxes across the broad topographic ridge
add up to a larger total flux. In the current context, however,
this theoretical difference is not of importance.

The rate-limiting cut can be found by defining the vector
of weightsw ) (wE1,...,wE |E|), where for each edge (u, V) in
the networkwuV ) exp(-EuiVi

TS/kBT), and using the algorithm
of Nagamochi and Ibaraki.58 However, this algorithm is
computationally expensive (scaling asO(|V |3) or O(|V |2
+ |V ||E | log|V |), depending on the implementation).
Since the computation of the cut has to be repeated many
times (see section 3.3.2), we used the topographical energy-
ridge cut rather than the rate-limiting cut.

The topographical energy-ridge cut is determined by an
algorithm that can be likened to flooding the energy
landscape by stepwise filling up its basins. The ridge that
last divides the reactant and product “lakes” before they
become connected is the energy ridge. In the network, the
edges which define the energy ridge are identified iteratively,
starting from an edgeless network,G, consisting only of the
vertices,V. In each iteration, a new edgee ∈ E is added to
the network in order of increasing edge energy. At each
iteration, the topology ofG allows the identification of
connected subgraphs (i.e. sets of vertices in which each
vertex has at least one link to another vertex in the set). Each
vertex is assigned an identifier that is unique for the
connected subgraph it belongs to. The subgraph containing
the reactant vertex is always assigned the identifier ‘0’, while
the subgraph containing the product vertex is always assigned
‘1’. Whenever an edge would be added that connects two
vertices with identifiers ‘0’ and ‘1’, this edge is not added
but marked as part of the energy ridge. The full ridge is
determined when all edges have been iterated.

3. Methods
3.1. Efficient Sampling Procedure for Complex Confor-
mational Changes in Proteins.In this section, a method is
described for generating a representative sample of low-
energy minima covering the conformational (sub)space
relevant to a conformational transition. The method consists
mainly of two stages: (1) generation of a sample of low-
energy minima that are sparsely distributed over a large
conformational subspace and (2) finding new low-energy
minima between the minima found in (1) so as to densely
map out the low-energy regions of conformational space.

In the first stage, the sampling can be limited to conforma-
tions that are likely to be relevant to the transition, thus
avoiding sampling of the full conformational space (which
would include, for example, mostly unfolded structures of
the protein). For most transitions between native protein
conformations, a good estimation can be made as to which
structural regions are likely to require significant sampling.
Small deformations in the remaining domains, which are
structurally similar in the two end states, are then sampled
by a simple interpolation between the end states. This
partitioning and sampling procedure is described in sections
3.1.1-3.1.3 and is illustrated in Figure 4. Section 3.1.4
describes strategies for finding a uniformly dense set of low-

Figure 3. Schematic representation of the graph-theoretical
concepts introduced in sections 2 and 3.3. (A) The best path
(white line) connecting the transition end states (black bullets)
and the energy ridge (black line) separating them. (B) Profile
of vertex and edge energies along the best path through the
network. The best path is requested to be correct in all edges
with energies in the range [Epeak - ∆Esure, Epeak] (indicated
by squares). (C) Profile of the energy ridge cutting the TN
into two conformational regions. The energy ridge is guaran-
teed to be correct in all edges with energies in the range [Elow,
Elow + ∆Esure].

kUV ) ∑
(ui,Vi)∈C

kuiVi
(7)

kUV,0 ) ∑
(ui,Vi)∈C

exp(-
EuiVi

TS

kBT) (8)
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energy minima. Figure 5 gives a schematic overview of all
the steps involved in the generation of the TN.

3.1.1. The Sampling (S) and Interpolation (I) Regions.
Functionally relevant conformational changes in proteins are
usually relatively local in the sense that most native contacts
are preserved. While there might be complex rearrangements
in certain regions, involving sometimes even refolding of
parts of the backbone (such as in Ras p21), the remainder
of the protein only deforms flexibly. This allows a sampling
subspace with a considerably reduced dimensionality to be
defined. Thus, the protein can be partitioned into interpolation
(I ) and sampling (S) regions. The changes in theI atoms
are sampled by simply interpolating between the atomic
positions in the two transition end states (see Figure 4a for

an illustration). For each such interpolated structure, the
rotable torsion angles of theS-region (including backbone
φ/ψ torsions and single-bond side-chain torsions) are sampled

Figure 4. Illustration of the sampling procedure. (A) Some
intermediate conformations are generated by interpolating the
positions of a subset of protein atoms (the I-region) between
their end state positions “R” and “P” (here 3 intermediate
structures are generated, shown in circles). From each
structure along the interpolation, a large set of conformations
is generated by sampling the torsional angles of the S-region
of the protein. The full set of conformations is defined by all
combinations of the five (including both end states) conforma-
tions for the I-region with each sample of the S-region. (B)
The interpolation (I) and sampling (S) regions in Ras p21.
Left: The atoms of the I-region are interpolated between the
transition end states (shown in white and dark blue), here
producing three intermediates (shown in shades of blue).
Right: The single-bond torsion angles of the S-region (switch
I in red, switch II in yellow) are sampled uniformly (examples
of several S conformations are overlaid). The S region
encompasses switch I (residues 30-35) and switch II (resi-
dues 61-70).

Figure 5. Overview of the steps in generating a transition
network (TN). (a) The potential energy surface and the
minimized reactant and product end states of the transition.
(b) Conformers (white bullets) are uniformly spread over the
part of conformational space that is relevant to the transition
(see Figure 4 and section 3.1.3). (c) Structures without steric
clashes are accepted (see Appendix A) and energy-minimized
(see section 3.1.4). Interpolation between pairs of available
conformers is used to explore nearby low-energy regions
(dashed line). (d) The minimized interpolation intermediates
(black bullets) increase the density of low-energy minima (see
section 3.1.4). These minima form the TN vertices. (e) Pairs
of neighboring minima are associated, forming the TN edges.
The subtransitions of selected edges are computed by CPR,
yielding the rate-limiting energy barriers for the TN edges (see
section 3.2).
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uniformly (Figure 4b). Finally, all degrees of freedom are
locally relaxed during the energy minimizations that follow
this combinedI /S sampling procedure.

3.1.2. Interpolation of I-Atoms. To obtain a smooth
variation of the positions of atoms in theI region near the
boundary to theS region, the coordinates of theI region are
generated by interpolating between the end states of the
transition. For this, a combined interpolation procedure is
used: First, so as to preserve the backbone fold, the backbone
atoms are interpolated in Cartesian coordinates, and then the
side-chain atoms are built onto the interpolated backbone,
using internal coordinate values that are interpolated between
the internal coordinates of the end states. This interpolation
method has been shown to produce less distorted structures
than Cartesian or internal coordinate interpolation alone.13

For practical convenience, the combined interpolation is
done for all atoms of the protein (including the atoms of the
S region). Because theS region has by definition very
different conformations in the end states, the interpolated
structures involve distorted internal coordinates in theSpart
of the backbone. To start theS sampling with reasonable
values of the internal coordinates of theS region, each
interpolated structure is energy minimized with positional
harmonic constraints on theI atoms (force constant 1 kcal
mol-1Å-1). In the example treated here,ninterpol ) 3 inter-
polated structures of Ras p21 were generated in this way,
yielding 5 structures along the interpolation including the
end states.

3.1.3. Conformational Sampling of the S Region.For
each of the structures along the interpolation between the
two end states, many conformers of theS region are
generated (Figure 5b). Sampling of theS region is performed
uniformly in the space of flexible torsion angles, comprising
the φ/ψ backbone and single-bond side-chain angles. The
stiff internal degrees of freedom (i.e. bond lengths, valence
angles and backboneω angles) were not sampled here. The
flowchart in Figure 6 summarizes the following algorithm
for sampling backbone conformations.

If the sampling region is located at one of the termini of
the polypeptide chain, there are no closure constraints on
the backbone, allowing theφ/ψ angles to be sampled directly
by setting them to random values. However, when the
sampling region is within the polypeptide chain (as is the
case for the switch I and switch II loops in Ras p21), this
“free” sampling is not possible, as it would involve violation
of the backbone closure (i.e., some backbone bond lengths
and angles would not be preserved) or disruption of the native
fold of the protein. Therefore, random backbone conforma-
tions are generated using a variant of the so-called window
method.59,60 This procedure allows backbone variation of a
series ofr g 3 consecutive residues (the “window”) while
preserving the position and orientation of the backbone at
the boundaries of that window. Out of the windows’ 2r
torsion angles (φ andψ), 2r - 6 can be freely chosen and
rotated randomly. The remaining six torsion angle values
are determined by the window method (see ref 59 for a
detailed description). In each sampling step, the location and
length of the window in theS region and the rotated torsion
angles are randomly chosen.

A backbone conformer is considered “valid” if it does not
produce steric collisions. For this, it is checked whether the
resulting backbone atoms and atoms whose positions are
directly dependent on the backbone configuration (i.e.,
backbone O and H, Câ, and proline side chains) can be placed
without collision among themselves and with theI region
of the protein. Since a large number ofS conformers have
to be tested for collisions, an efficient strategy is used to
perform these collision checks (see Appendix A).

To obtain a conformational sample that is approximately
uniform, conformers that are valid (i.e., have no collisions)
are “accepted” (i.e., added to a “conformational repository”)
only if they significantly differ from already-accepted
conformers as measured by theφ/ψ dihedral RMS difference,
which must exceed a chosen value,δs (see Table 2 for
suggested parameter values). The choice ofδs determines
the density of sampling. It is set according to how finely the
details of the transition should be probed. Backbone con-
formers are generated until the sampling density defined by
δs has been reached. The criterion used here for this is that
no “valid” structures are “accepted” anymore for a number
of nreject successive attempts. This yields a number ofni

back

backbone conformations for each interpolation stepi (i ∈
{0,1,...,ninterpol + 1}, where i ) 0 and i ) ninterpol + 1 are
associated with the end states and 1,...,ninterpol are the
interpolated intemediates).

To obtain a complete conformation, the side chains of the
S region are built onto a randomly picked backbone out of
the ni

back generated backbones, using randomly chosen
single-bond torsion angles. The resulting conformer is
accepted if it does not involve atom collisions (see Appendix
A), giving for each interpolation stepi a numberni

full of
sterically valid conformations of theS region. ni

full )
ksideni

back, wherekside is the desired average number of side
chain conformers per backbone conformer. An efficient

Figure 6. Flowchart for the backbone sampling procedure
(section 3.1.3).
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protocol for building side chains on largeS regions is
described in Appendix B.

For Ras p21, the switch I and IIS regions were sampled
independently, usingδs ) 50° andnreject ) 1000. For each
interpolation step,i (i ∈{0,...,4}), this yieldedni

back1 ≈ 30
backbone conformers for switch I andni

back2 ≈ 104 back-
bone conformers for switch II. An average ofkside) 10 side-
chain conformations per backbone conformer were generated,
yielding ni

full1 ≈ 300 andni
full2 ≈ 105 collision-free confor-

mations of switch I and II, respectively. Combining pairs of
these switch I and II conformers yielded 3× 107 fully built
protein structures for each interpolation stepi. Thus, the total
number of collision-free and significantly different structures
is nfull ) 1.5× 108, forming a large conformational repository
from which structures can be drawn and further energy
optimized. The conformations in this repository are distrib-
uted uniformly within the sterically accessible regions of the
conformational subspace spanned by the torsional coordinates
of S and the interpolation coordinate ofI .

3.1.4. Constructing a Uniformly Dense Set of Low-
Energy Minima. To obtain a representative collection of

low-energy minima, a number ofnmin conformers is drawn
randomly from the conformational repository and energy-
minimized on the potentialU(x) (see Figure 5c). Only
minima which reach a low-energy region defined byU(x)
< Elow are accepted, whereElow is a predefined constant.
Minimization of many conformers is expensive, so it is
desirable to reject structures early which are not likely to
fall into low-energy minima. An efficient method to do this
is proposed in Appendix C. For Ras p21,nmin )15 000
conformers were randomly retrieved from the conformational
repository. Out of these, 189 reached the desired low-energy
region belowElow, which was taken here as 40 kcal/mol
above the energy of the minimized reactant structure
(obtained by quenched molecular dynamics, see section 3.4).
These were minimized to a gradient RMS of 10-3 kcal mol-1

Å-1. They form a sparse set of low-energy conformations
in the desired region of conformational space (see Table 4).

The density of conformers in the low-energy regions can,
in principle, be increased by minimizing more structures from
the conformational repository. Given the low yield of this
approach (see above: 189/15 000≈ 1.25%), this is com-

Table 1: Frequently Used Symbols

symbol meaning

U(x) energy function
V ) (1,...,|V |) list of vertices in network; |V | is the number of vertices

XS ) (x1
S,...,x|V|

S ) conformers corresponding to vertices (here: minima on U(x))

E0 energy of the minimized reactant structure (see section 3.4)

ES ) (E1
S,..., E|V |

S ) vertex energies (here: Ei
S ) U(x i

S) - E0)
E ) ((u1, v1),...,(u|E |, v|E |)) list of edges in the network, each edge connecting two vertices of V;

|E | is the number of edges

XTS ) (xu1v1

TS ,...,xu|E|v|E|
TS ) for each edge in E, highest saddle point on minimum-energy path

connecting the conformers xui

S, xvi

S

ETS ) (Eu1v1

TS ,...,Eu|E|v|E
TS ) edge (i.e. saddle-point) energies: Euivi

TS ) U(xuivi

TS) - E0

G ) (V,XS,ES,E,XTS,ETS) transition network composed of vertices V connected by edges E

ETS,min ) (Eu1v1

TS,min,...,Eu|E|v|E|
TS,min) lower bounds to the (yet unknown) edge energies

ETS,max ) (Eu1v1

TS,max,...,Eu|E|v|E|
TS,max) upper bounds to the (yet unknown) edge energies

w ) (wu1v1,..., wu|E |v|E |) Boltzmann weights of the edge energies: wuivi ) exp(-Euivi

TS/kBT)
wj ) (wj u1v1,..., wj u|E |v|E |) inverse Boltzmann weights of the edge energies: wuivi ) exp(Euivi

TS/kBT)

wj min ) (wj u1v1

min ,..., wj u|E|v|E|
min ) inverse Boltzmann weights of the lower edge energy bounds:

wuivi

min ) exp(Euivi

TS,min/kBT)

wj max ) (wj u1v1

max,..., wj u|E|v|E|
max ) same as wj min, for upper bounds

Table 2: Parameters for the Sampling Algorithm

parameter meaning value

ninterpol number of steps along the interpolation between the transition end states, including the end states
(ninterpol g 2)

5

δs shortest permitted RMS distance between two accepted backbone conformers
(here: in φ/ψ torsion angle space)

50°

nreject sampling has converged when nreject newly generated conformers are successively rejected
because they are closer than δs to already-accepted conformers

1000

kside average number of side chain conformers per backbone conformer. 10
Etol largest permitted interaction energy between each atom-pair, for a structure to be considered valid 20 kcal/mol
nmin number of structures drawn from the conf. repository for minimization 15000
Elow largest permitted energy difference above minimized reactant structure to accept a conformer 40 kcal/mol

δmin
interpol shortest and longest permitted RMS distance between a pair of minima to generate additional δmin

interpol ) 0.75 Å

δmax
interpol conformers by interpolation between them δmax

interpol ) 2 Å

δmin
connect shortest permitted RMS distance between any pair of minima xu

S, xv
S, to avoid redundancy in the TN 0.75 Å

δmax
connect longest permitted RMS distance between any pair of minima xu

S, xv
S, to form an edge (u, v) in the TN 1.5 Å

nmax
connect maximum number of neighbors for each vertex 20
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putationally inefficient. Instead, additional conformers are
built by interpolation between the already-found low-energy
conformers. This can be done in various ways. The strategy
used here was to select each pair of low-energy conformers
separated by a distance in the rangeδmin

interpol ) 0.75 Å and
δmax

interpol ) 2 Å (measured as Cartesian RMSD of the CR

atoms in theS region) and to generate an interpolation
pathway between them using the method described in section
3.1.2. Two structures were generated, one-third and two-
thirds of the way along each interpolation, respectively, and
energy minimized as described in section 3.1.4 (see Figure
5d). This procedure was efficient in finding low-energy
minima, increasing the number of conformers belowElow

from 189 to 10 831 (see Table 4). This considerably
increased the average number of neighbors for each minimum
from 3 to 267 (“neighborhood” being defined by a cutoff
distanceδmax

connect, see section 3.2).
During minimization, it is possible that some conformers

end up in similar minima. This produces conformational
redundancy, which was subsequently removed. For this,
minima were considered in the order of increasing energy,
accepting only those minima whose nearest-neighbor distance
to any already-accepted minimum was at leastδmin

connect )
0.75 Å. This led to a final number of|V | ) 6242 diverse
minima.

3.1.5. Verification of the Set of Minima. The available
set of minima is approximately uniformly distributed in a
conformational subspace which depends on the original
definitions of S and I . There are two questions regarding
the adequacy of this set of minima: (1) is the set dense
enough and (2) are relevant parts of conformational space
sampled.

The density of the set may be increased by reducing the
parameterδmin

connect and conducting further interpolations.
Clearly, there is a tradeoff between the density of minima
and the computational requirements. The important question

is how sensitive the analyses are to the density of minima.
In the present study, density variation, within reason, has
little effect as the CPR path calculations used to compute
the edge energies ensure that no important intervening
barriers are missed (see section 3.2). Moreover, the purpose
of the present calculations is to generate a coarse-grained
model of the Ras p21 energy function which is analyzed in
the Results section based on qualitative properties of large
sets of pathways. Local features of the network do not play
a role in this analysis, and therefore the density of minima
was not further increased.

A more critical question is whether there are important
parts of the conformational space that are not sampled at
all. A logical check of this is to examine whether any low-
energy minima exist in regions of conformational space
continguous with regions already explored. If so, energeti-
cally accessible pathways might exist that lead out of the
available set of minima into other regions of the conforma-
tional space which were not included in the initial sampling.
This can be checked by calculating the lowest-energy minima
within shells that are increasingly distant from the reactant
and product vertices and ensuring that the found set of
minima defines an energetic basin that is unlikely to be left.

To examine this, we have analyzed all 35 836 minima that
were generated (see Table 4) and computed their distances
to the reactant or product structure (whichever of the two
was closer). For each distance-window between 1 and 4.5
Å, the lowest energy of all minima within that window was
recorded. The result, which is shown in Figure 7, shows that
there is a strong increase in energy with increasing distance,
reaching about 150 kcal/mol aboveE0 at 4.5 Å. This result
shows that the existence of low-energy exit pathways from
the initial set of minima is unlikely, and therefore a sufficient
volume of conformational space has been sampled.

3.2. Construction of the Ras p21 Transition Network.
The final number of|V | ) 6242 diverse minima served as
the vertices of the transition network (see Table 4).

Table 3: Sampling of the S Regions in Ras P21

symbol meaning (see section 3.1.3) value

ni
back1 number of backbone conformers (residues 30-35),

for each interpolation step i (i ∈{0,...,4})
≈30

ni
back2 same as ni

back1, for residues 61-70 ≈104

ni
full1 number of fully built conformers with side chains

(residues 30-35), for interpolation step i
≈300

ni
full2 same as ni

full1, for residues 61-70 ≈105

nfull total size of the conformational repository 1.5‚108

Table 4: Size and Density of the Network during
Sampling

minimaa acceptedb neighborsc

after first samplingd 15002 189 3
after increasing densitye 35836 10831 267
TN verticesf n/a 6242 117

a The total number of generated energy-minima. b The number of
accepted minima with energy below Elow. c The average number of
neighbors around accepted minima within a distance-range from
δmin

connect to δmax
connect. d After the sampling of the I and S regions

(sections 3.1.2 and 3.1.3). e After increasing the density of low-energy
minima (section 3.1.4). f After removing redundancy by not allowing
neighbors closer than δmin

connect (section 3.2).

Figure 7. Dependence of energies of minima on the distance
from the crystallographic end states. For each minimum, the
distance to the reactant or product structure (whichever is
closer) is calculated. The minima with distances between 1
and 4.5 Å were grouped according to their distances, each
group being 0.1 Å wide. The lowest energy of the minima
within each group is plotted versus the distance of that group.
The plot shows that the energies increase considerably with
increasing distance from the crystallographic end states,
indicating that the relevant portions of conformational space
have been sampled.
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Due to the large number of possible conformations of the
system studied in this article, it is possible to map only a
subset of the dynamically accessible minima, so that the
computation of meaningful free energies is not feasible. Here,
the contributions from local vibrations around the minima
are neglected, and the potential energyU(xV

S) is used
directly for EV

S. Nevertheless, the important free energy
contributions from bulk solvent are accounted for in the
calculation ofU(x) through a continuum solvent method (see
section 3.4).

The absolute height of the vertex can be shifted by
subtracting an arbitrary constant valueE0 without affecting
the results. Thus, we defineEV

S asEV
S: ) U(xV

S) - E0. Here,
E0 is chosen as the minimized reactant energy.

The “reactant” and “product” vertices were redefined by
selecting the lowest energy minima within the vicinity of
the crystallographic reactant and product structures after
quenched MD (see section 3.4). The “vicinity” was defined
here to be within both aφ/ψ-RMSD of 50° and a Cartesian
RMSD of 1.5 Å for the CR-atoms of the switch regions. The
resulting Cartesian RMSD over all CR atoms between the
crystal structures and the so-chosen reactant and product
conformers was 1.4 and 1.5 Å, respectively.

Given the complete set of vertices,V, the edges of the
transition network are generated by defining connections
according to distance-based criteria. Each vertex is connected
to up to nmax

connect of its nearest neighbors that are within a
distanceδmax

connect(see Figure 5e). For Ras p21,δmax
connect) 1.5

Å (measured as RMS distance between the CR-atoms of the
S region), andnmax

connect ) 20 were used. The resulting
transition network had|E | ) 47 404 edges and was fully
connected (i.e. any given pair of vertices is connected by
some pathway).

To determine the energy barrier associated with a given
edge, (u, V), a Minimum Energy Path (MEP) between the
two minima xu

S and xV
S corresponding to that edge was

computed using the Conjugate Peak Refinement (CPR)
method.18 An initial guess for the path was generated by
interpolation between the edge end structures, using the
procedure described in section 3.1.2. Starting from this guess,
CPR identifies all the first-order saddle points that are local
energy maxima along the Minimum Energy Path. Here, the
CPR calculation was stopped as soon as the highest (i.e. rate-
limiting) of these saddle points along the edge was deter-
mined. Its structure is assigned toxuV

TS, the corresponding
edge energy is taken asEuV

TS ) U(xuV
TS) - E0 (see section 2).

3.3. Efficient Determination of Best Paths and Energy
Ridges.Even though the subtransition pathways are short
compared with a whole pathway between the transition end
states, finding the highest saddle-point along an edge can
still be very CPU intensive (here, the average time on a single
3 MHz CPU was about 2 h per subtransition). Therefore, it
is computationally infeasible to do this for all edges in the
network. The problem thus arises that global properties of
the network (such as the best path or the dividing energy
ridge) must be determined using incomplete information on
the barriers. We solve this problem by devising a strategy
such that only a small number of edge energies need to be
computed to determine the best path and the energy ridge.

The strategy relies on the introduction of lower and upper
bounds,EuV

TS,min, EuV
TS,max on each edge energy, which bracket

the (yet unknown) true edge energy,EuV
TS.

The “safe” lower bound for the edge energy isEuV
TS,min )

max{Eu
S, EV

S}, because the energy of each barrier is at least
as high as the highest of the two minima it connects. The
safe upper bound isEuV

TS,max ) ∞, but for numerical reasons
it is taken asEuV

TS,max ) EuV
TS,min + M, whereM is a large but

finite number (here,M)100 kcal/mol). A tighter upper bound
could also be obtained by performing a very short (i.e.
unconverged) CPR path refinement on the edge (u, V) and
using the highest energy along the resulting path asEuV

TS,max.
An alternative method to both the lower and upper bounds,
based on statistical estimates, is used here (see Appendix
D).

To implement lower and upper bounds, two graphs are
defined, which have the same topology as the actual
transition network: one using the lower bounds for the edge
energies,Gmin ) (V,XS,ES,E,ETS,min), and the other using the
with upper bounds for the edge energies,Gmax )
(V,XS,ES,E,ETS,max). The best paths (and energy ridges)
through Gmin and Gmax can be computed, using the corre-
sponding inverse Boltzmann weight vectors,wj min,wj max and
Boltzmann weight vectorswmin,wmax. This is addressed in
the next sections.

3.3.1. Best Paths.The flowchart in Figure 8 summarizes
the procedure for finding the best path. The best path through
the transition network is found iteratively as follows: In each
iteration, the best path through the graphGmin, Pbest

min )
(VR,..., VP), is determined as described in section 2.1. The
edge with the highest unknown energy alongPbest

min, (u, V), is
identified, and its true energyEuV

TS is computed by CPR. The
network Gmin is updated by settingEuV

TS,min to the true edge
energy,EuV

TS (the weightswj min are also updated accordingly).
This procedure is repeated until all edge energies along the
resulting best path have been computed, yielding the true
best path.

A preliminary estimate of the energy barrier of the best
path can be easily obtained. For this, in each iteration of the
above algorithm, the best path is calculated on both graphs
Gmin and Gmax, yielding best pathsPbest

min and Pbest
max, respec-

tively. The rate-limiting barrier of the true best path is
bounded by those ofPbest

min and Pbest
max. During successive

iterations, these bounds converge to the true value (see Figure
9).

Often, one is not interested in the details of how the best
path travels in the low-energy regions, since it is the highest-
energy edges along the whole path that are rate determining.
Computation time can thus be saved if only the high-energy
edges of the best path, i.e., those with barrier energies within
a range∆Esure of the highest-energy barrier along the path,
Epeak, are required to be correct (see Figure 3b). To achieve
this, the computation proceeds as above until the energy of
the rate-limiting barrier,Epeak, is identified. This is the case
whenPmin andPmax have the same value forEpeak. After that,
whenever a barrier is computed whose energyEuV

TS is below
the thresholdEpeak - ∆Esure, the transition networks are
updated by settingEuV

TS,min ) EuV
TS,max: ) max{Eu, EV}, i.e., as
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if the transition were barrierless. This saves computational
effort as it makes sure that (u, V) is a part of the best path
identified in the next Dijkstra computation, thereby avoiding
to spend time in identifying paths avoiding (u, V) that might
have a lower energy barrier thanEuV

TS.

The computing time can be drastically reduced, at the
expense of possibly failing to identify the true best path, if
the “safe” lower edge energy boundEuV

TS,min ) max{Eu, EV}
is replaced with a statistical estimate (described in more detail
in Appendix D). In this case the lower energy bound is not
necessarily correct as it might overestimate the real barrier.
That is, edges which are not included in the resulting best
path and have been rejected based on their lower estimate
EuV

TS,min might in fact have a true edge energyEuV
TS < EuV

TS,min.
The maximum overestimation possible, errmax, is given by

the maximal difference found between any estimated lower
bound and the corresponding safe lower bound:

Thus, errmax, also gives the maximum possible error on
the rate-limiting barrier of the path. If the graphGmax is used
to obtain a preliminary estimate of the energy barrier of the
best path, this estimate is usually improved by also replacing
the safe upper energy boundEuV

TS,max ) ∞ by an statistical
estimate. As the identification of the best path does not
depend onGmax, an incorrect upper boundEuV

TS,max cannot
lead to a wrong result but may give a wrong upper bound
for the preliminary estimate of the best path’s energy barrier.

3.3.2. Energy Ridges.As defined in section 2.2, the
energy ridge is the rate-limiting cut that divides the TN into
a reactant and product side. The algorithm that computes
the energy ridge while determining only a limited number
of edge barriers uses a strategy similar to the one used to
find the best-path. The energy-ridge cut is determined (as
described in section 2.2) on the graphGmax (i.e. using upper
bounds for the yet unknown edge energies). The lowest-
energy unknown edge, (u, V), in the resulting cut,Cmax, is
computed by CPR, andGmax is updated with the value of
EuV

TS. This process is repeated in successive iterations. When
an energy-ridge cutCmax is identified whose edge barriers
are all determined, it is identical to the true energy ridge.

In practice, it is sufficient to compute only the low-energy
barriers of the energy ridge, since the higher-energy barriers
are not populated. Thus, one is only interested in finding
the energy barriers of the energy ridge that are up to an
energy difference∆Esure above the energy of the lowest
barrier in the ridge,Elow (see Figure 3c). To find these
barriers, the algorithm given above proceeds until the value
of Elow is identified. From this moment on, whenever a barrier
is computed which hasEuV

TS > Elow + ∆Esure, Gmax is updated
by setting EuV

TS ) ∞. This fools the algorithm so that it
leaves these high-energy barriers in the ridge and thereby
saves the computational cost of identifying the high-energy
regions of the full ridge.

Figure 8. Flowchart for the best path finding procedure (section 3.3.1).

Figure 9. Convergence behavior of the best-path. The energy
of the rate-limiting transition state along the best path Pbest

min

(solid line) or Pbest
max (dashed line) is plotted as a function of

iterations of the algorithm (see section 3.3.1). (A) Using “safe”
bounds, i.e. setting the lower and upper bounds to 0 and ∞.
(B) Using guessed bounds, i.e. setting the barrier bounds
based on statistics (see Figure 13).

errmax ) MAX[ EuV
TS,min - max{Eu

S, EV
S}]all pairs(u,V) (9)
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Finding the energy ridge depends on the upper bounds on
the edge energies; therefore, the performance of the algorithm
is considerably increased if estimates (see Appendix D) are
used instead of infinite upper bounds. However, in contrast
to the error involved in the determination of best paths (eq
9), no upper bound for the error from using such estimates
can be derived here.

3.4. Test Case: Protein Model and Energy Function.
The method is tested here on Ras p21. The conformational
change in Ras occurs after theγ-phosphate of bound GTP
is cleaved off. GTP hydrolysis can be catalyzed by the
binding of a GTPase-activating protein (GAP)61 or it can
take place as a result of the weak intrinsic GTPase activity
of Ras in absence of GAP. The conformational transition
studied here is in the absence of GAP, as would occur after
intrinsic hydrolysis of GTP. Crystallographic structures exist
for both the GTP-bound (Protein Data Bank structure 5p2162)
and GDP-bound states (1q2163) of Ras p21. Theγ-phosphate
was deleted from 5p21, to yield the reactant state. The 1q21
structure served as product state. The HBUILD facility in
CHARMM64 was used to place the missing hydrogens.

All calculations were performed using the extended-carbon
potential function (PARAM19).65 Contributions from bulk
solvent to the free energy of the conformational substates
were included with the Generalized Born model of con-
tinuum solvation, using version 2 of the Analytical Con-
tinuum Electrostatics (ACE) method.66 Nonbonded interac-
tions were smoothly brought to zero by multiplying them
with a switching function between 8 and 12 Å.

The structure of a protein may be affected by the crystal
environment. Therefore, both the reactant and the product
structures were first relaxed using molecular dynamics
simulations with ACE. For this 20 ps of heating were
followed by 100 ps of equilibration and a 10 ns production
run. One structure every 100 ps (making up 100 structures
in total) was selected and energy minimized with ACE to a
gradient RMS of 10-3 kcal mol-1 Å-1. The structures with
the lowest energies were selected as reactant and product
structures. The potential energy of these structures was lower
than that obtained by a direct minimization of 5p21 and 1q21
by 30-45 kcal mol-1. Structurally, the differences compared
to 5p21 and 1q21 were rather small, consisting mainly of
exposed side-chain rearrangements, while the backbone fold
of the switch regions was preserved. The RMS coordinate
deviations from the directly minimized crystallographic end
states were<1.8 Å for the nonfixed atoms (<2.4 Å for the
switch regions).

To remove insignificant degrees of freedom, residues
which were not involved in the conformational switch and
whose atoms had similar positions in both end states were
fixed (residues 1-4, 42-53, 77-95, 110-115, 124-143,
155-167), leaving 1001 atoms free to move. To obtain the
same positions for the fixed atoms in the two end states, the
product structure was oriented onto the reactant structure so
as to minimize the RMS deviation between the fixed atom
coordinate sets. Then, the reactant and product values of these
coordinates were averaged. The averaged coordinates of the
fixed atoms were used for all calculations. Furthermore,
insignificant differences in the side chains of nonswitch

regions were removed from the end states as described in
ref 13. Finally, both end states were minimized to a gradient
RMS of 10-3 kcal mol-1 Å-1.

4. Results and Discussion
4.1. Performance of Best Path Calculations.Best paths
between the reactant and product structures of the Ras p21
conformational switch were computed using the iterative
algorithm described in section 3.3.1. The performance was
evaluated, first using safe values for the upper and lower
bounds on the edge barriers (i.e.EuV

TS,min ) max{Eu, Ev} and
EuV

TS,max ) ∞). Alternatively, statistical estimates for the
bounds (described in Appendix D) were used. The partial
computation of best paths, using different values for the
energy interval∆Esure(see section 3.3.1 and Figure 3B) was
also examined.

Table 5 shows how many edges need to be computed with
CPR in order for the best path to be determined under these
different conditions (starting the count from scratch for each
setting). To determine the full best path (∆Esure ) ∞) using
safe bounds on the energy barriers, 2252 edges had to be
computed (only 5% of the total number of 47 404 edges). It
was possible to reduce this number by a factor of 4 (to 603)
when statistical estimates of the bounds were used. This faster
convergence behavior is also apparent when comparing
Figure 9A,B and demonstrates that the computation time can
be greatly reduced by introducing a relatively small uncer-
tainty. In the worst case, the error on the rate-limiting barrier
resulting from the present estimates ofEuV

TS,min could have
been as much as 5.25 kcal/mol (from eq 9). But in the present
case, statistical estimation actually resulted in a best path
with the same rate-limiting energy barrier as found when
safe bounds were used. Moreover, except for one additional,
insignificant low-energy step, the estimated best path is equal
to the true best path.

The computational savings are even larger when only the
highest-energy barriers of the best path are determined. The
number of edges that need to be computed with CPR when

Table 5: Number of Edges Computed with CPR To
Determine the Best Patha

∆Esure
b safe boundsc guessed boundsd

∞e 2252 603
30 2246 589
25 2224 565
20 2208 505
15 2115 321
10 2069 212
5 2059 114
0 2059 106
path lengthf 23 24
energy barrierg 45.7 45.7
a Assuming no energy barrier has been previously computed.

b Energy range below the highest barrier for which the barriers of the
best path are to be determined (see Figure 3B). c Using Euv

min )
max{Eu, Ev}, Euv

max ) ∞ as bounds on the unknown energy barriers.
d Using statistical estimates (Appendix D) to guess the Euv

min and Euv
max

bounds. e ∞ means that the whole best path with all its edges is to
be determined. f Number of edges along the fully determined best
path. g Rate-limiting energy barrier along the best path, in kcal/mol
relative to the reactant.
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only the highest barrier along the best path is requested to
be certain (∆Esure ) 0) in conjunction with statistical
estimates onEuV

min is 106, reducing the number of edge
computations by a factor of 6 (from 603). This shows that
statistical estimates help to quickly isolate the rate-limiting
step of the reaction.

4.2. Performance of Energy Ridge Computations.The
highest energy ridge in the TN (here: termed as ridge 2, as
it is associated with rearrangements in the switch II) was
computed with and without the use of statistical estimates
for the barrier bounds to test the performance of the algorithm
given in section 3.3.2. The results are shown in Table 6,
where the counting is started from scratch for each setting,
assuming that no energy barrier has been computed yet. 1092
energy barriers were computed to determine the full energy
ridge (∆Esure) ∞) with safe bounds, which amounts to≈2%
of the total number of 47 404 TN edges. By using statistical
estimates, this number was reduced to 667. When only the
lowest energy barrier of the ridge (∆Esure) 0) was computed,
the computational savings were comparatively slight (805
energy barriers were computed for this), but using both∆Esure

) 0 and statistical estimates reduced the number of computed
barriers to 214. The “safe” and the “estimated” ridge 2 agree
in their lower-energy edges (up to 5 kcal/mol above the
lowest edge). For edges of higher energy, only about 25%
of the edges in the “estimated” ridge belong to the safe
energy ridge.

4.3. Structural Mechanism of Ras p21. Structural
analysis shows that in the best path about half of the switch
II helix first unfolds before the rearrangement of the switch
I, in which Tyr32 passes underneath the backbone. Subse-
quently, the rearrangement of switch II completes. This latter
step is rate limiting, having the highest potential energy
barrier along the best path (Epeak)45 kcal/mol relative to the
reactant). From the time scale of the Ras p21 conformational
switch67 (on the order of 104 s in absence of GAP), it follows
that the highest free energy barrier along the path cannot
exceed 23 kcal/mol.13 This indicates that a significant
contribution from entropy, due possibly to an increase in
backbone flexibility, reduces the high enthalpic barrier found
here.

The next-best pathways (i.e. pathways having a different
rate-limiting transition state, see section 2.1) with rate-
limiting barriers within 10 kcal/mol above that of the best
path were also computed. There are 12 such pathways in
the present TN. The order of events in these pathways is
similar to the events described above for the best path, i.e.,
switch II unfolds (to a varying degree) in the first part of
the transition, and the subsequent switch I transition occurs
with Tyr32 passing underneath the backbone (see Figure 10).
The differences between these pathways are mainly in the
precise order of events in the switch II rearrangement.

In the lowest best path, the passage of Tyr32 underneath
the backbone is associated to an important barrier of about
25 kcal/mol. This raises the question whether the Tyr32 must
necessarily pass underneath the backbone. An obvious
alternative would be for Tyr32 to pass the other way (i.e.
through the solvent). To better analyze the motion of Tyr32,
the energy ridge corresponding to its reorientation (abbrevi-
ated as ridge 1, since it is the rate-limiting step of switch I

Table 6: Number of Edges Computed with CPR To
Determine Ridge 2a

∆Esure
b safe boundsc guessed boundsc

∞d 1092 667
20 1092 622
15 1092 509
10 897 383
5 862 293
0 805 214
ridge sizee 174 162
energy barrierf 45.7 45.7
a The energy ridge of the switch II rearrangement, assuming no

energy barrier has been previously computed. b Energy range above
the lowest barrier for which ridge barriers are to be determined (see
Figure 3C). c Same meaning as in Table 5. d ∞ means that all barriers
of the ridge are determined. e Number of edges in the fully determined
energy ridge. f Lowest edge barrier of the energy ridge, in kcal/mol
relative to the reactant.

Figure 10. Two-dimensional representation of the potential
energy surface of Ras p21. The horizontal axis measures the
orientation of Tyr32 on the switch I loop (R ) dihedral angle
Pâ,C32,N32,OH32, in degrees). The vertical axis measures the
helicity of switch II (number of R-helical H-bonds). The contour
levels show the energy of the TN vertices (dark gray ) 0-10
kcal/mol, light gray > 60 kcal/mol). Reactant and product
structures are labeled as ‘R’ and ‘P’. The best transition
pathway is shown in white, and the next-best transition
pathways (with a rate-limiting step up to 10 kcal/mol higher
than the white) in yellow, red, magenta, and cyan. Triangles
mark the rate-limiting transition state of the switch I rear-
rangement (corresponding to the lowest-energy points shown
in Figure 11b,c) and belong to ridge 1 (see section 4.3). Ridge
1 can be split into two energy ridges: one along R ≈ 30°
(where Tyr32 passes underneath the backbone, Figure 11b)
and another along R ≈ 150° (where Tyr32 passes through
the solvent, Figure 11c). The best path with Tyr32 moving
through the solvent is shown in dark blue.
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rearrangement) was determined. Tyr32 passes from an
orientation where its side chain points toward GDP and-30°
< R < -10°, to an orientation where 60° < R < 110°. R is
an artificial dihedral angle, defined over atoms Pâ,C32,N32,-
OH32 (Pâ is the â-phosphorus of GDP). Ridge 1 was
computed with∆Esure ) 30 kcal/mol and using safe values
for the barrier bounds (see section 3.3). The resulting energy
ridge consists of 92 transition states. In 11 of them, Tyr32
goes through the solvent, and the associated barrier is at least
40 kcal/mol, clearly indicating that passage underneath the
backbone is the preferred mechanism. In Figure 10, ridge 1
appears split in two regions.

To visualize the two energy ridges, Figure 11 shows a
two-dimensional projection of the transition states contained

in ridge 1 and ridge 2. Ridge 1 was split into two sets: one
set containing the transition states that involve the passage
of Tyr32 underneath the backbone and the other set contain-
ing the transition states having Tyr32 passing through the
solvent. In the case where passage of Tyr32 is underneath
the backbone, there are 7 different transition states in ridge
1 up to 10 kcal/mol above the lowest transition state in ridge
1. These differ considerably in the amount of unfolding of
the switch II helix: some still form a perfect helix, while in
others the helix is fully unfolded (see Figure 11b). In the
unfavorable case that Tyr32 passes through the solvent the
conformation of the partially unfolded switch II helix is well
defined, as can be seen from its similar structure in all next-
higher transition states (Figure 11c).

Figure 11. Two-dimensional projection of the energy ridges of the Ras p21 transition. Three major ridges were identified: two
for the switch I rearrangement (both belonging to ridge 1) and one for the switch II rearrangement (ridge 2). Transition states
from each ridge were projected on their two first principal components (computed from the CR-coordinates). Each panel (b,c,d)
shows one ridge and the corresponding conformation of the switch I loop (box in top right corner of each panel). The projected
points cluster (ellipsoids) according to their different switch II conformations (typical backbone conformation shown for each
cluster). The energy of each transition state is coded by color. (a) Reactant state: switch I has Tyr32 pointing to the ‘right’,
switch II is a helix. From here, the conformational change proceeds through panels b or c. (b) Energy ridge of the switch I-transition
(ridge 1), with Tyr32 passing underneath the backbone. There is a large variety of alternative switch II-conformations at this
step of the transition. (c) Ridge 1 with Tyr32 moving through the solvent. (d) Energy ridge of the switch II-transition (ridge 2),
which is globally rate-limiting. The transition of switch I is already completed and Tyr32 is pointing to the ‘left’. Various isoenergetic
ways for the switch II rearrangement coexist. (e) Product state: switch I is pointing to the ‘left’ and switch II helix has fully
unfolded.
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After the switch I rearrangement has completed, the
transition pathways must cross ridge 2, which contains the
globally rate-limiting transition states. Ridge 2 contains 14
transition states within 10 kcal/mol above the lowest transi-
tion state in ridge 2 (which here is identical to the highest
transition state in the lowest best path). These alternative
transition states are highly scattered in Figure 11d, showing
that the structure of switch II varies considerably. Thus, there
are many different ways in which switch II can rearrange
toward the product structure, and the coupling between
switch I and II is weak enough to allow for many different
orders of the conformational events in both switch regions.
This means that the Ras p21 conformational switch is highly
degenerate, thus confirming a significant entropic contribu-
tion to the free energy profile of the conformational switch.13

5. Conclusions
We have introduced here an efficient method for mapping
the low-energy minima involved in a complex conforma-
tional transition in a protein. The method was shown to be
effective in identifying minima belonging to very different
conformational pathways. Furthermore, the resulting set of
minima is dense in the low-energy regions.

A transition network is constructed to connect the available
set of low-energy minima. The graph-theoretical methods
have allowed to determine global properties of the network
while only requiring computation of a small subset of the
subtransition barriers in the network. When applied to the
conformational switch of Ras p21, the globally best pathway
connecting the transition end states and the energy ridge
separating them could be determined while computing less
than 5% of the total number of subtransitions in the network.

The energetically best pathway and the two main energy
ridges of the Ras p21 switch give insight in the mechanism
of the transition and provide answers to the three questions
asked in the Introduction: (1) The rearrangement of switch
I always occurs such that Tyr32 is threaded underneath the
protein backbone. (2) This rearrangement of switch I must
be finished before the rate-limiting rearrangement of switch
II can start. (3) The order of conformational events in either
switch I or II and the details of rearrangement in switch II
vary substantially. This confirms that complex conforma-
tional transitions in proteins such as Ras may occur via
multiple pathways.

The methodological advances presented here allow com-
prehensive analysis of the mechanism of complex transitions
in proteins. To allow for comparison with certain experi-
ments, it will be desirable to obtain free energy TN that allow
calculation of thermodynamic and kinetic properties. This
might be achieved by estimating vibrational free energies
for the TN states42,43 and merging vertices which are
separated by low-energy barriers so as to account for
intrastate configurational entropy.32,42,43
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Appendices: A. Checking Conformers for
Steric Collisions
During the sampling procedures described in section 3.1.3,
new conformers are validated by checking that they do not
produce very high potential energies, mostly due to atom
collisions (see Figure 5c). For each pair of atomsi, j, the
criterion used is that the combined Lennard-Jones and
Coulomb interaction energy should not exceed a tolerance
valueEtol (Etol ) 20 kcal mol-1 in this study). This check
needs to be repeated so often that it is a computational
bottleneck for the sampling method. Therefore, to avoid
computing all pairwise interaction energies for each con-
former, we first precompute the minimum distance,di,j

min

allowed for each atom pair. This is obtained as the solution
of

whereεw is the van der Waals well depth,σij is the effective
van der Waals radius for atomsi and j, qi and qj are the
partial charges of atomsi and j, and εrε0 is the dielectric
constant. The above equation is solved fordi,j

min with
Newton’s root-finding method. For theEtol used in this study,
there was always a unique solution fordi,j

min. If smaller Etol

are used, eq 10 may have two solutions, in which case, the
smaller solution must be used so as to ensure thatdi,j

min

reflects the repulsive interaction. The resultingdi,j
min values

are stored. A given conformation is treated as valid if all
nonbonded atom distances,di,j (excluding 1-4 pairs) fulfill
the criteriondi,j

min e di,j. The number of distance computa-
tions is kept small by embedding the protein coordinates in
a lattice and computing distances only between atoms which
have been changed in a given sampling step and atoms which
are in the same or adjacent lattice cells.

B. Efficient Side-Chain Sampling Method
Given a set of backbone conformations that is uniformly
distributed inφ/ψ-torsional space, a uniformly distributed
set of full (backbone and side chain) conformations can be
build by repeating following steps: (1) randomly selecting
a backbone conformation, (2) building all side chains on this
backbone conformation, using random torsion angles, and
(3) accepting the conformation if it does not produce
collisions. This trivial method is not very efficient in practice,
first because some backbone conformers may never allow a
given side chain to be built without collisions, and second
because for a given backbone conformer it is unlikely that
placing all side chains at once produces a conformation
without collisions. Here, a more efficient method is used that
consists of the following steps: (1) For each backbone
conformationc, a weightwc is computed which is equal to
the probability that a set of noncolliding side chains can be
built on this backbone, when a uniform distribution of side
chain torsion angles is used. (2) A random backbone
conformation is selected according to the probabilitypc )
wc/∑kwk. (3) Onto the selected backbone, each side chain is
build by itself in a number of conformations that do not
produce collisions with the backbone and the nonsampled

εw[( σij

di,j
min)12

- ( σij

di,j
min)6] +

qiqj

4πεrε0di,j
min

- Etol ) 0 (10)
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regions of the protein. (4) Side-chain conformations from
step 3 are combined randomly to form a fully build protein
conformation, which is accepted if is does not have any
collisions. Steps 2-4 are repeated until a desired number of
conformations have been generated.

The weightwc is computed as follows: For each backbone
conformationc, an acceptance probabilitypc,i for each side
chaini is calculated by generating a large number of random
rotamers for that side chain (in the absence of the other side
chains of the S region) and counting the number of
noncolliding rotamers. If anypc,i ) 0 (i.e. some side chain
cannot be placed at all without producing collisions), then
backbone conformationc is permanently rejected andwc )
0. Otherwise, the probabilityqc to find a noncolliding
combination of the individually valid side-chain conforma-
tions is computed. This is done by generating a large number
Nc of random combinations of valid side-chain rotamers and
counting the numbernc of noncolliding combinations,qc )
nc/Nc. The weightwc is obtained aswc ) qc∏ipc,i.

C. Efficient Method for Early Rejection of
High-Energy Minima
This describes a method for the early rejection of energy
minima with U(x) > Etol during the minimization. Early
rejection is based on statistics that are collected during a
number of preliminary full minimizations, correlating the
energy difference between partially minimized and final
structures with the gradient of the partially minimized
structure.

For Ras p21, 100 samples were retrieved from the sample
repository and minimized to a gradient RMS of 10-5 kcal
mol-1 Å-1. Each of these minimization trajectories delivered
a series of gradients (g0,g1,...,gn) and associated potential
energies (U0, U1,...,Un), where the pair (gn, Un) corresponds
to the fully minimized structure. All pairs (gi, Ui) from all
100 minimization trajectories were used to derive correlation
statistics betweengi and ∆U ) Ui - Un, i.e., the energy
difference from the fully minimized structure. These statis-
tics, shown in Figure 12, were used to obtain for each range
of gradient a corresponding value of∆U that was higher
than 90% of the∆U’s in that range. This yields an upper
estimate of∆U, given a certain gradientg. This estimate
was used to reject structures during minimizations if their
minimum energy, predicted from this upper estimate, con-
siderably exceeded an energy tolerance threshold:U(x) -
∆U > E0 + Elow + 10 kcal mol-1. E0 is the minimized
reactant energy, andElow was set to 40 kcal mol-1 (see Table
2).

D. Barrier Estimation. A method is given for the
statistical estimation of lower and upper bounds for the
energy barriers of subtransitions. For this, one correlates
available information on the edgese ) (u, V), such as
distance between its verticesδuV ) |xu - xV|, with the
computed energy barriersBuV ) EuV

TS - max{Eu
S, EV

S}. Using
a certain confidence interval, one obtains upper and lower
estimates,BuV

min(δuV) andBuV
max(δuV), which are used to replace

the strict edge-weight bounds by max{Eu
S, EV

S} + BuV
min(δuV)

and max{Eu, EV} + BuV
max(δuV).

For Ras p21, after computing the first∼2000 energy
barriers, these barriers were correlated with the distance
between the corresponding minima so as to yield a distance-
dependent barrier estimate. Figure 13 shows a plot the first
∼2000 barriers against three different distance measures. The
average value and the boundaries of a 90% confidence
interval are given. Clearly, theφ/ψ-RMSD is not a useful
measure here as it is not correlated with the energy barrier.
The Cartesian RMSD gives a better correlation, while the
charge-weighted RMSD,dC(x,y), defined as

whereN is the number of atoms andqi is the charge on atom
i, here gives the best correlation of the three distance
measures. The 90% confidence interval was used to derive
BuV

min(δuV) andBuV
min(δuV).

Figure 12. Using the gradient during minimizations to predict
the expected energy at the minimum. Based on the minimiza-
tions of 100 different conformers, each minimization going
through a series of intermediates with gradients (g0,...,gn) and
energies (U0,..., Un), the difference between the energy of an
intermediate and the final (minimum) energy, Ui - Un is plotted
against the current gradient g i. 90% of the points are below
the dashed line, which can be used to estimate how much
more the energy may decrease during a minimization, based
on the current gradient value, thus allowing nonpromising
minimizations to be stopped early.

Figure 13. Predicting lower and upper bounds to the energy
barrier of subtransitions. The energy barrier is plotted versus
the distance between the end states of a given subtransition
in Ras p21, using different distance metrics: (A) RMSD in
φ/ψ-dihedral space of the S-regions, (B) all-atom RMSD in
Cartesian space, and (C) same, but with each atomic distance
weighted by the absolute atomic charge. Solid line: average
barrier. 90% of the points lie below the upper dashed line,
10% below the lower dashed line. These were used as lower
and upper estimates for the estimation of optimistic and
pessimistic best paths (see Figure 9).

dC(x,y) ) x∑
i)1

N

(xi - yi)
2qi

2

N
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Abstract: Structural and mechanistic studies of the hairpin ribozyme have been actively pursued

over the last two decades to understand its catalytic strategy for RNA hydrolysis. Based on

molecular dynamics simulations with the newly developed force field parameters for a vanadium-
oxygen complex, we investigate the dynamic properties of the hairpin ribozyme in complex with

a transition state analogue for the phosphodiester cleavage. The results indicate that the three

nucleobases of the hairpin ribozyme (G8, A9, and A38) stabilize the negatively charged oxygen

atoms in the transition state through the formation of five hydrogen bonds, which is consistent

with the X-ray crystallographic data. In addition to the three catalytic nucleobases, several solvent

molecules are also found to contribute to the catalytic action of the hairpin ribozyme by hydrogen

bond stabilization of the negatively charged oxygens as well as by optimally positioning the

catalytic nucleobases in the active site.

Introduction
The hairpin ribozyme catalyzes the reversible and sequence-
specific cleavage of phosphodiester backbone of an RNA
substrate.1 This catalytic transesterification reaction is fa-
cilitated by the intramolecular attack of the neighboring 2′-
hydroxy moiety on the phosphorus atom, leading to the
formation of a cyclic phosphorane intermediate or transition
state that precedes 2′,3′-cyclic phosphate and 5′-hydroxyl
termini (Figure 1). In the past two decades, numerous studies
with a variety of model systems have been carried out to
clarify the underlying chemical principles of the catalytic
cleavage of RNA.2 It was suggested that although divalent
metal ions, Mg2+ in particular, stabilize the structure of the
hairpin ribozyme in a functionally active form, they are
known to be nonessential in the catalytic mechanism,
contributing at most a 10-20-fold to rate enhancement.3-5

This indicates that the major role in the catalytic mechanism

of the hairpin ribozyme should be played by the nucleobases
themselves, possibly involving the general acid-base mech-
anism6 to stabilize the unfavorable charges developing in
the transition state.

A few years ago, high-resolution X-ray crystal structures
of the hairpin ribozyme were reported in complex with a
noncleavable substrate analogue or a transition state mimic
including a pentavalent vanadium ion.7 These structures
suggested a model for ribozyme catalysis in which the
nucleobases of G8, A9, and A38 serve as the electrophilic
catalysts that stabilize the transition state by donating multiple
hydrogen bonds. The crystal structures also revealed that A38
acts as a hydrogen bond donor to the leaving O5′ atom in
its protonated form at N1 position. However, recent kinetic
studies disproved the critical roles of the nucleobases,
especially with regards to G8 in general acid-general base
catalysis of the hairpin ribozyme.8,9 Although the involve-
ment of water molecule(s) in the catalytic mechanism of
ribozymes has been proposed,10,11no ordered water molecule
was detected near the active site of hairpin ribozyme in the
X-ray crystal structures. Therefore, the precise role of water
molecule(s) in the catalytic mechanism of the hairpin
ribozyme still remains unclear.
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+82-2-3408-3766. Fax:+82-2-3408-3334. E-mail: hspark@
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In this paper, we report the dynamic properties of the
hairpin ribozyme in complex with the vanadate transition
state analogue based on molecular dynamics (MD) simulation
in aqueous solution. We focus our interest on clarifying the
roles of solvent molecules in maintaining the structure of
the hairpin ribozyme and in stabilizing the transition state.
Also presented are the potential parameters for the vanadium-
oxygen complex mimicking the transition state of the
phosphodiester cleavage, which are unavailable in the current
force field database. The detailed structural and dynamic
features found in this MD study are expected to provide new
insight into the catalytic mechanism of the hairpin ribozyme.

Computational Methods
A. Force Field Design for the Vanadium-Oxygen Com-
plex. To obtain the missing force field parameters, we used
a simplified structural model for the hairpin ribozyme in
complex with the transition state mimic. This model structure
includes the two riboses of (A- 1) and (G+ 1) residues
and the bridging vanadium ion whose coordinates were
extracted from the original X-ray structure. The two nucleo-
bases were omitted for simplicity. We adopted the bonded
approach proposed by Hoops et al.12 to introduce explicit
bonds between the central pentavalent vanadium ion and its
oxygen ligands. In the derivation of the missing force field
parameters, we followed the procedure suggested by Fox and
Kollman13 to be consistent with the standard AMBER force
field.14 The equilibrium bond lengths and bond angles
involving the pentavalent vanadium ion were computed using
the optimized structure of the vanadium-oxygen complex
mimicking the transition state of the phosphodiester cleavage.
For the force constant parameters associated with the
vanadium ion, we used those for the sugar-phosphate
backbone of RNA or DNA that are available in the force
field database. The Lennard-Jones parameters of the back-
bone phosphorus atom were used for the vanadium ion.
Geometry optimization of the vanadium-oxygen complex
was performed at the B3LYP/6-31G* level of theory with
the Gaussian98 program. Using the energy-minimized struc-
ture, atomic partial charges for the transition state mimic
were also calculated at the RHF/6-31G* level of theory
through the RESP method15 to be consistent with the standard
AMBER force field. We computed the potential parameters

for the protonated adenine at N1 position by following the
same procedure as for the vanadium-oxygen complex,
which involves geometry optimization and charge fitting with
the RESP method.

B. MD Simulations. As a starting structure of MD
simulation with the AMBER7 program,16 we used the X-ray
crystal structure of the hairpin ribozyme in complex with a
vanadate transition state analogue (PDB entry: 1M5O). In
addition to the 37 Ca2+ ions in the original X-ray structure,
29 Na+ ions were added to neutralize the negative charges
of the system. The all-atom model for the complex was then
immersed in a rectangular box containing 11 891 TIP3P17

water molecules. After 1000 cycles of energy minimization
(500 steps for solvent molecules only followed by 500 steps
for the entire system with no restraints) to remove bad steric
contacts, we equilibrated the ribozyme-transition state mimic
complex beginning with 20 ps equilibration dynamics of the
solvent molecules at 300 K. The next step involved equili-
bration of the solute with a fixed configuration of the solvent
molecules for 10 ps at 10, 50, 100, 150, 200, 250, and 300
K. These partial equilibrations were used to ensure the
stability of the entire system although the full equilibration
had been more conventional.18 Then, the equilibration
dynamics of the entire system was performed at 300 K for
100 ps. Following the equilibration procedure, 1.8 ns MD
simulations were carried out with a periodic boundary
condition in the NPT ensemble at 300 K using Berendsen
temperature coupling19 and constant pressure (1 atm) with
isotropic molecule-based scaling. The SHAKE algorithm,20

with a tolerance of 10-6, was applied to fix all bond lengths
involving hydrogen atom. We used a time step of 1.0 fs and
a nonbond-interaction cutoff radius of 12 Å; the trajectory
was sampled every 0.2 ps (200 step intervals) for analysis.

Results and Discussion
To extend the AMBER force field for modeling the
vanadium-oxygen complex that mimics the transition state
of the phosphodiester cleavage, we used the standard
procedure that starts with the geometry optimization of the
complex at the B3LYP/6-31G* level of theory. Figure 2
displays the structure of a local energy minimum whose input
structure was extracted from the X-ray crystal structure of
the hairpin ribozyme in complex with the vanadate transition

Figure 1. (A) Crystal structure of the hairpin ribozyme. Indicated by a yellow arrow is the catalytic site in which a substrate RNA
is hydrolyzed. (B) Schematic of the reversible transesterification reaction of a substrate RNA catalyzed by the hairpin ribozyme.
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state mimic.8 Also presented are the calculated RESP atomic
charges and the coordination distances between the vanadium
ion and its oxygen ligands. Consistent with the crystal
structure, the five oxygen ligands are coordinated to the
central vanadium ion to form a distorted trigonal bipyramidal
geometry. The interatomic distances associated with the
V-O coordination compare reasonably well with those in
the crystal structure with a difference of 0.028 Å on average.

In Figure 2, it is noted that the RESP atomic charge of
the pentavalent vanadium ion decreases from+5.000 e in
the free state to+1.216 e in the coordination complex. On
the other hand, the atomic charges of oxygen ligands become
less negative by 0.145-0.271 e when compared to those in
the absence of the vanadium ion. These changes reflect the
redistribution of charges between the vanadium ion and its
oxygen ligands upon the formation of the complex. We used
these newly obtained atomic charges in the subsequent MD
simulation of the hairpin ribozyme in complex with the
transition state mimic because it is well-attested that the Mn+

model for a metal ion is inadequate for maintaining the actual
coordination geometry of a transition metal complex con-
tained in biomolecules.21

We checked the reliability of current MD simulation by
examining whether the structure of the hairpin ribozyme was
maintained stable under the simulation condition described
in the previous section. For this purpose, we calculated the
root-mean-square-deviations from starting structure (RMS-
Dinit) for all backbone heavy atoms of the hairpin ribozyme
and for all heavy atoms of the transition state mimic as a
function of simulation time, which are compared in Figure
3. The computed RMSDinit values for the hairpin ribozyme
remain within 2.5 Å, indicating that the conformation of
hairpin ribozyme is maintained stable during the entire course
of simulation. The RMSDinit values of the transition state
mimic fall into 1.5 Å and remain lower than those of the
backbone atoms of the hairpin ribozyme. Judging from this
difference in dynamic behavior, the movement of the
transition state mimic around the active site seems to be
insignificant when compared to the conformational change
of the hairpin ribozyme.

Shown in Figure 4 is the representative MD trajectory
snapshot of the hairpin ribozyme in complex with the
transition state mimic. As in the crystal structure reported
by Rupert et al.,8 the nucleophilic 2′OH at the cleavage site

(A - 1) of the transition state mimic, vanadium ion, and
the 5′ oxygen of the leaving group (G+ 1) reside in nearly
optimal positions for an in-line SN2-type reaction mechanism.
It is also consistent with the X-ray structure that the three
nucleobases of the hairpin ribozyme (G8, A9, and A38)
donate five hydrogen bonds to stabilize the oxygen atoms
coordinated to the vanadium ion. In this solution-phase
structure, O2′ and O3′ atoms of the (A- 1) residue and
O2P atoms of the (G+ 1) residue are further stabilized by
forming three hydrogen bonds with the water molecules that
diffuse into the active site of the hairpin ribozyme from bulk
solvent. This is a structural feature inconsistent with the
X-ray crystal structure in which no ordered water molecule
was found within the distance of 10 Å from the vanadium
ion although the transition state mimic occupies a small
portion of the active site volume and leaves sufficient space
for additional molecules to get into the active site. Related
with such a discrepancy, it can be argued that the access of
water molecules to the active site may depend on the
crystallization procedure. The presence of a hydrogen bond
between the deprotonated O2′ atom of the (A- 1) residue
and a water molecule supports the possibility that the role
of proton acceptor for the nucleophilic oxygen of an RNA

Figure 2. Optimized structure of the vanadium-oxygen
complex mimicking the transition state of the phosphodiester
cleavage. The calculated RESP atomic charges and the V-O
coordination distances are given in e and Å, respectively. All
hydrogen atoms bonded to carbon atoms are omitted for
simplicity.

Figure 3. Comparative view of the time evolutions of the root-
mean-square deviations for backbone heavy atoms of the
hairpin ribozyme (red) and all heavy atoms of the transition
state mimic (blue).

Figure 4. Representative MD trajectory snapshot of the
hairpin ribozyme in complex with the vanadate transition state
mimic including the water molecules found near the active
site. Carbon atoms of the hairpin ribozyme and the transition
state mimic are indicated in green and cyan, respectively.
Each dotted line indicates a hydrogen bond.
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substrate should be played by water in the catalytic mech-
anism of the hairpin ribozyme.

To provide further evidence for strong interactions between
the transition state mimic and the catalytic nucleobases and
solvent molecules, we calculate the interaction energy per
residue for the average structure of the complex. As indicated
in Figure 5, the most significant contributions to the
stabilization of the complex seem to come from the interac-
tion between (A- 1) and (G+ 1) residues of the transition
state mimic and the catalytic nucleobases including G8, A9,
C25, A24, C25, A26, C27, G36, U37, A38, U39, and A40.
However, no solvent molecule is found that can stabilize
the transition state mimic as comparable to the catalytic
nucleobases. Possible reasons for this may include the small
size of water molecule and the exchange of the water
molecules donating hydrogen bonds to the transition state
mimic.

To estimate dynamic stabilities of the hydrogen bonds
relevant to the stabilization of the transition state mimic, we
have calculated time evolutions of the associated interatomic

distances, which are plotted in Figure 6. We note that the
hydrogen bondings of the catalytic nucleobases to the
transition state mimic are maintained stable during the entire
course of simulation with 95% of residence time on average.
Similarly, all three hydrogen bonds established between water
molecules and the transition state mimic are maintained for
more than 80% of simulation time if the distance limit for
the O‚‚‚H hydrogen bond is assumed to be 2.2 Å as suggested
by Jeffrey.22 In contrast to the obvious dynamic stabilities
of the hydrogen bondings to the transition state mimic by
the three catalytic nucleobases, however, we find that there
are exchanges of the water molecules that act as a hydrogen
bond donor with respect to the transition state mimic. This
indicates the involvement of complex solvent dynamics in
an optimal stabilization of the transition state by the hairpin
ribozyme. It is noteworthy that as shown in Figure 7, the
three O‚‚‚H-O hydrogen bond angles between water mol-
ecules and the transition state mimic are also maintained
stable during the entire course of simulation. This implies
that a complex solvent dynamics would have an insignificant
effect on the strengths of the three hydrogen bonds. Thus,
the structural and dynamical features found in this MD study
support the hypothesis that the hairpin ribozyme has evolved
to maximize its hydrogen bonding interactions with the
trigonal bipyramidal transition state.

Conclusions
We have developed the force field parameters appropriate
for modeling the vanadate transition state mimic for the
phosphodiester cleavage by the hairpin ribozyme. The hairpin
ribozyme in complex with the transition state mimic shows
a dynamic stability in aqueous solution, maintaining a square
bipyramidal coordination geometry at the reaction center
including the nucleophilic 2′OH at the cleavage site (A-
1), vanadium ion, and the 5′ oxygen of the leaving group
(G + 1). This supports the SN2-type reaction mechanism of
the hairpin ribozyme. As in the crystal structure, the three
nucleobases of the hairpin ribozyme (G8, A9, and A38)
stabilize the negatively charged oxygen atoms in the transi-
tion state mimic through the formation of five hydrogen

Figure 5. Interaction energy per residue for the average
structure of the hairpin ribozyme in complex with the transition
state mimic. Residues 1-21, 22-113, and 114-220 cor-
respond to the transition state mimic, the hairpin ribozyme,
and the solvent molecules found within 5 Å around the
transition state mimic, respectively.

Figure 6. Time evolutions of the interatomic distances associated with hydrogen-bond interactions (a) between catalytic
nucleobases of hairpin ribozyme and vanadate transition state mimic and (b) between solvent molecules and the transition state
mimic.
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bonds. Several solvent molecules are also found to contribute
to the catalytic action of the hairpin ribozyme by hydrogen
bond stabilization of the negatively charged oxygens and by
optimally positioning the catalytic nucleobases in the active
site. The presence of a hydrogen bond between the depro-
tonated O2′ atom at the (A- 1) site and a solvent molecule
supports the possibility that the nucleophilic oxygen of an
RNA substrate would be deprotonated by water in bulk
solvent during the catalytic action of the hairpin ribozyme.
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Abstract: Hydrogen bond is an important type of interaction between drug molecules and their

receptors. We present here a computational method for accurately predicting the hydrogen-

bonding strength for different acceptors with respect to a given donor or vice versa. The method

is based on quantum chemistry DFT calculation of the interaction energy between hydrogen

bond donors and acceptors. An excellent linear correlation is observed between the calculated

hydrogen-bonding energies and the experimentally measured hydrogen-bonding constants log

Kâ on a variety of known hydrogen bond acceptors and donors. These results not only indicate

the predictive power of this method but also shed light on factors that determine the magnitude

of experimentally measured hydrogen-bonding constants for different acceptors with respect to

a given donor, suggesting a primarily enthalpic contribution from hydrogen-bonding energy. The

method can be used for evaluating the effects of steric interference and inhibitor binding geometry

on hydrogen-bonding strength in drug design.

Introduction
The importance of the hydrogen bond to drug design is well
recognized. Hydrogen bonds are not only crucial in dictating
the orientation of an inhibitor binding in the receptor but
also contribute importantly to binding affinity. Hydrogen
bond capacity is an essential factor in the strategy of
bioisosterism for drug design and optimization. When a
bioisostere is used to replace an existing moiety of a
compound, the replacement has to match the hydrogen-
bonding characteristics of the parent and would preferably
further improve upon compound properties including binding
potency. There is strong evidence indicating that the strength
of different hydrogen bond donors and/or acceptors varies
significantly. The hydrogen-bonding constants of commonly
encountered hydrogen-bonding groups have been measured
to vary over more than 3 orders of magnitudes.1 Furthermore,
in the drug optimization process, it is often observed that
electron-withdrawing or donating substituents have opposite

effects on the activity of the compounds. Some of the
underlying causes of such structure-activity relationships
(SAR) could be traced to a modulation of the hydrogen-
bonding interaction of the inhibitor with the receptor.2

Clearly, the variations in hydrogen bond strength could be
utilized in drug design. A fundamental understanding of
hydrogen bond interactions will greatly facilitate such efforts.

In a comprehensive monograph on the subject,3 Jeffrey
and Saenger summarized the known characteristics of
hydrogen bonds, some of which are particularly instructive
to a theoretical investigation: (1) hydrogen bonds are not
properties of atom pairs but are dependent on the pair of
atom groups that forms the extensive donor and acceptor
subunits;3,1 (2) the major component of hydrogen-bonding
interaction is electrostatic;3-5 and (3) hydrogen bonds are
soft interactions, and hydrogen bond lengths and angles
fluctuate according to local environments.3,6,7Because of the
importance of hydrogen bonds to drug design, much work
has been done in the past on the theoretical modeling of
hydrogen bonds for QSAR studies. The approaches span
from simple indicator methods8,9 to parametrization ap-
proaches using theoretically calculated properties, such as
atomic charges,10 molecular electrostatic potential,11 LUMO
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and HOMO properties,10,12 atom polarizability,13 and super-
delocalizability,14,15 to model hydrogen bond strength. How-
ever, due to the character of being the property of a group
of atoms and the susceptibility to local environments,
hydrogen bonds could not be modeled accurately by a general
semiempirical or rule-based method because there are many
exceptions, such as steric factors, to be accommodated by a
finite set of rules. To treat complicated systems such as
hydrogen bonding, the ab initio quantum chemistry method
is an ideal approach since all electronic and steric effects
are fully taken into account in such a treatment. Over the
past decade, much work has been published on the ab initio
study of hydrogen bonds.16-30 However, few ab initio
calculations have been carried out on hydrogen bond systems
that are directly related to medicinal chemistry in drug design.
Hydrogen bond systems encountered in drug design involve
relatively large organic molecules that interact with protein
targets. We explore here the application of ab initio calcula-
tions to problems of hydrogen bonding relevant to drug
design.

In this work, an ab initio procedure for calculating the
hydrogen bond strengths for molecules of interest to me-
dicinal chemistry was investigated. The fundamental quantum
chemistry theory for calculation of the interaction energy
between two molecular species has been well established.20,31

However, there are practical issues as to the accuracy of the
calculations on specific systems and the relevance of the
calculated properties to a practical process. The ab initio
calculation directly yields the binding energy for the
hydrogen-bonding interaction, but the strength of the hy-
drogen bond is determined by its free energy change.
Furthermore, hydrogen bond strength, as a function of free
energy, will also be influenced by the interaction of the
inhibitor with water solvent. These are clearly complicated
systems. However, experimental observations help to sim-
plify the perspective considerably. There had been histori-
cally the postulation of a linear relationship between
hydrogen bond free energy and enthalpy.32,33 Abraham el
al. provided clear experimental evidence supporting such a
relationship.1 They observed a linear correlation between
hydrogen-bonding energy, measured by spectroscopic wave-
length shift, and hydrogen bond free energy measured by
the equilibrium constant of hydrogen bond formation for
many hydrogen bond donors and acceptors. On the basis of
these observations and being concerned with only the relative
hydrogen bond strength among different acceptors with
respect to a given donor, it is possible that the ab initio
calculated bonding energy can yield information, even though
indirectly, for hydrogen-bonding free energy. In this paper,
the term hydrogen-bonding strength will be used to refer to
either the thermodynamic stability or the interaction energy
of a hydrogen bond in a different context, even though the
term is strictly speaking only a function of the free energy.

The paper is organized as follows: the basic computational
method is presented first, followed by an investigation into
the sensitivity of the calculated results on hydrogen bond
geometry such as separation and orientation. The main results
of this work are the calculations of the energy for a variety
of hydrogen bond acceptors with respect to a given donor

and the subsequent comparison of these calculated results
with experimental determined hydrogen-bonding constants
that provide a validation of the present approach. Additional
issues such as secondary interactions and effects of different
donors are further investigated. In the Discussion section,
comparison of the accuracy of the present method with earlier
approaches will be made. Insights gained from this study
will also be elaborated on.

Theory and Method
All quantum chemical calculations in this work were carried
out with the program package Jaguar from Schrodinger, Inc.34

The standard energy difference method20,31 was used to
calculate the energy of the hydrogen-bonding interaction
between a donor and acceptor

where∆EHB is the energy of bonding interaction, R is the
set coordinates that define the structure of the hydrogen-
bonding complex,EAD(R) is the total energy of the complex,
andEA andED are the individual energies of the donor and
the acceptor, respectively. Because the calculations involve
a complex system on one hand and two subunits on the other
hand, the standard molecular orbital method will use different
basis functions for the complex and for the subunits,
respectively, thus incurring a basis set superimposition error
(BSSE)20,31 in calculating the energy difference. To correct
for the BSSE, the counterpoise procedure31 was applied in
the calculation ofEA andED in which the virtual orbitals of
the other subunit were included in the basis functions for
the subunit that is to be calculated. Two quantum chemistry
methods were used in this work. The majority of the
calculations were carried out using density function theory
(DFT) with the B3LYP procedure and a large 6-31++G**
basis set. A subset of the calculations was carried out with
both DFT and the MP2 procedures to evaluate the effects of
the computational methods on the calculated hydrogen bond
energy. In the MP2 calculations, the 6-31G** basis set was
used.

One of the major technical issues encountered in this work
was to find a proper procedure for geometry optimization.
For simpler hydrogen bond systems, such as when one
subunit is a water molecule, a single constraint on the
hydrogen bond angle would be sufficient to keep the donor
and the acceptor in a proper geometry through the geometry
optimization process.35 However, for calculations involving
relatively large donors and acceptors in which only one or
two internal variable constraints were applied, geometry
optimization by energy minimization often results in struc-
tures that are substantially different from the desired
hydrogen bond conformation. The reason for such an
outcome is that, when two relatively large molecules are free
to move, energy minimization always brings secondary
interactions, in addition to hydrogen bonding, into the total
energy. The secondary interactions not only perturb the
hydrogen bond geometry but also cause difficulty in separat-
ing hydrogen-bonding energy from other nonbonded con-
tributions. In a realistic and complete inhibitor-receptor
complex, the hydrogen bond interactions between the donor

∆EHB (R) ) EAD(R) - EA - ED (1)
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and the acceptor are not totally free to reach an absolute
energy minimum but are subjected to numerous additional
constraints at the binding site such as tethering from the
protein structure. As a result, the hydrogen bond geometry
in inhibitor-receptor complexes can be quite different from
that produced from energy minimization of free subunits.
We desired a procedure that computes hydrogen-bonding
interaction at a specified geometry and can control the effects
of secondary interaction contributions to hydrogen-bonding
energy.

We devised a constrained energy minimization scheme for
the calculation of hydrogen bond energy. The donor and the
acceptor were first energy minimized separately with full
geometry optimization. They were then brought together into
a complex structure defined by one distance variable and
three orientation variables. Figure 1 shows the definition of
the separation variable,δ, and angular orientation variables,
θ1, θ2, andΦ, used in this work. Without loss of generality,
the donor is assumed to be fixed, and then the hydrogen
bond geometry is specified by translation and rotation of the
acceptor with respect to the donor. The separation between
the donor and the acceptor is defined by the distance between
the heavy atoms in the hydrogen bond. The orientation
variableΦ describes the rotation of the acceptor around the
N-O line (Figure 1) drawn between the heavy atoms of the
donor and the acceptor;θ1 defines the rotation of the acceptor
away from the N-O line, with the rotation center being the
heavy atom of the acceptor;θ2 defines the rotation of the
acceptor away from the N-O line, with the rotation center
being the heavy atom of the donor. At a specified geometry,
three atoms from the acceptor and three atoms from the donor
are frozen during the geometry optimization process. These
constrained atoms do not include the atoms that directly
participate in the hydrogen bond. In this manner, geometry
optimization can eliminate nonobvious steric problems in the
system but will retain the specified hydrogen-bonding
geometry. After the structure of the complex is geometrically
optimized, the total energy of the complex system is first
calculated, and then the energies of the donor and the
acceptor are calculated at the optimized complex geometry,
including the BSSE correction. To determine the energy
minimum for a hydrogen bonding complex, we scanned over
the separation and orientation variable space. The setup of
different geometries for a given hydrogen bond system was
done with a script program; the ab initio calculations on

multiple conformations were processed in parallel on a Linux
cluster. A constrained geometry optimization job with the
DFT method, run on one CPU of a Linux PC, took from 1
to 10 h, depending on the difficulty of the geometry
optimization. A single point DFT calculation took less than
20 min on a Linux PC. MP2 calculations with geometry
optimization would take a longer time.

Results
The most important hydrogen-bonding interactions to drug
design are those between ligand and protein. We used an
amide group to mimic the peptide hydrogen bond donor or
acceptor. Hydroxyl, imidazole, and indole groups were used
as surrogates for hydrogen-bonding donors from the protein
side chains. Figure 2 shows a partial list of the chemical
structures of the donors and acceptors studied in this work.
The hydrogen bond donor and acceptor atoms are shown in
blue and red colors, respectively. The labels for the different
molecules will be used subsequently in describing the
calculation results. We first focused on the dependency and
sensitivity of the calculated hydrogen-bonding energy on the
geometry of the hydrogen bond, using the amide-D (Figure
2) as donor and amide-A, imidazole-A, ketone-A, and furan-
A, defined in Figure 2, as acceptors.

1. Hydrogen-Bonding Energy as a Function of Separa-
tion between Donor and Acceptor.Figure 3 shows the
interaction energy, calculated with the DFT procedure, of
four hydrogen bond complexes as a function of the separa-
tion. By definition, a larger negative energy indicates a
stronger hydrogen-bonding interaction. Results presented in
Figure 3 show that, for all four complexes, there is a sharp
energy minimum at a separation of 3.0 Å. At larger
separations, the interaction energy for all four complexes
decays slowly, at a rate proportional to the inverse distance,
resembling the behavior of electrostatic interactions. There
are large differences in the interaction energy among the four
hydrogen bond complexes: ranging from-6.53 kcal/mol
for the imidazole acceptor to-2.13 kcal/mol for the furan
acceptor. The minimum interaction energy for the amide and
ketone acceptors is-5.44 and-4.06 kcal/mol, respectively.
The order of hydrogen-bonding strength for these four
acceptors by this calculation is imidazole> amide> ketone

Figure 1. Variables used to define the hydrogen bond
geometry between a donor and an acceptor. A: The separa-
tion between the donor and the acceptor. B: The variables
defining the orientation of the acceptor with respect to the
donor.

Figure 2. Chemical structures of the first group of donors
and acceptors studied in this work. Donor atoms are labeled
by blue color and acceptor atoms by red color.
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> furan. Despite the large difference in the interaction
energy, there is little difference in the energy-minimum
distance between the four complexes. It was noticed that the
energy-minimum distances of the hydrogen bonding calcu-
lated here appear slightly longer than the average hydrogen
bond length observed from neutron diffraction measurements
[Chapter 7 of ref 3]. However, they are within the range of
calculated hydrogen bond lengths using different ab initio
methods [Table 4.3 of ref 3, Chapter 2 of ref 20].

Quantitatively similar results for the interaction energy of
the four hydrogen-bonding complexes were obtained from
calculations with the MP2 method. Figure 4 shows the MP2
results. The minimum energy values calculated by the MP2
method are-6.51,-5.26,-4.15, and-2.76 kcal/mol for
imidazole-A, amide-A, ketone-A, and furan-A, respectively.
The order of hydrogen bond strengths for the four acceptors
calculated by DFT and MP2 methods are identical. The
calculated energy-minimum distances by the two methods
are also similar. However, for furan-A, the weakest hydrogen
bond acceptor of the four molecules, the minimum energy
calculated by the MP2 method, is lower by 0.63 kcal/mol
than that obtained by the DFT method. We observed that
the MP2 method yielded, in our calculations, somewhat
larger interaction energies for weaker hydrogen bond ac-

ceptors (such as the CH- - -O hydrogen bond) than the DFT
method. However, MP2 calculations were considerably more
time-consuming in geometry optimization on large complex
systems. Since the calculation results with the two methods
are similar for most common hydrogen bond acceptors, we
chose to use the DFT method on all subsequent calculations
in this work for convenience and consistency.

2. Directionality of Hydrogen-Bonding Interaction.
Moving onto the directional properties of hydrogen bonds,
we calculated the interaction energy for acceptors in different
orientations with respect to the donor. Figure 5 shows sets
of orientations between the imidazole acceptor and the amide
donor generated by systematic variation of the variables of
θ1, θ2, andΦ at a fixed separation of 3 Å between the two
subunits. Figure 6 shows the hydrogen-bonding energy of
these structures, where curvea, b, andc correspond to the
geometric series shown in Figure 5, parts a-c, respectively.
These results indicate that the directional property of a
hydrogen-bonding interaction is anisotropic. Using the
structure of the donor amide as the reference frame, i.e.,
fixing the position of amide donor, the orientation of the
hydrogen bond of this system can vary in two orthogonal
directions: i.e., the acceptor imidazole ring swings either
within the plane or perpendicular to the plane of the amide
structure. The ensemble of structures in Figure 5a is
generated as a result of the imidazole ring swinging in the
direction perpendicular to the structural plane of the amide
donor. Curvea in Figure 6 shows the variation of the
hydrogen-bonding energy as a function of such an orienta-
tional change. In this direction, the acceptor imidazole can
rotate by (45° from the normal direction, while the
hydrogen-bonding energy changes by less than 0.5 kcal/mol.
In contrast, when the imidazole ring swings within the
structural plane of amide around angleθ1, with the resulting
conformations shown in Figure 5c, the hydrogen-bonding
interaction weakens rapidly as shown by curve c of Figure
6. The directional dependency of the hydrogen bond energy
as a function of angleθ2, i.e., another orientational variation
within the structural plane of the amide donor, and the
changes of hydrogen bond energy are between the above
two extremes, see the energy curveb of Figure 6 and in
reference to the ensemble of structures shown in Figure 5b.

Figure 7 shows structural variations between the amide
donor and the amide acceptor resulting from rotation of the
acceptor around the angleΦ, with the angleθ1 fixed at 0°
andθ2 at 15° and 30°, respectively. The separation between
the donor and the acceptor was fixed at 3.0 Å. Figure 8 shows
the calculated hydrogen-bonding energy for the two structural
series of Figure 7. The peaks in the energy plots in Figure
8 correspond to structures in which the amide acceptor orients
toward the right-hand side methyl group of the amide donor
seen from the front of Figure 7. Significantly, as the acceptor
tilts closer to the donor, i.e., whenθ2 changes from 15° to
30°, the energy peak increases quickly, as can be seen from
a comparison of curvesa and b of Figure 8. This result
suggests that the primary reason for the weakening of the
hydrogen-bonding interaction in these directions is steric
interference between the donor and the acceptor.

Figure 3. The interaction energy of a hydrogen bond as a
function of the separation between the donor and the acceptor
calculated with the DFT/B3LYP (6-31++G**) method. The
donor is amide-D; the colored coded curves in blue, black,
green, and red are for imidazole-A, amide-A, ketone-A, and
furan-A as the acceptor, respectively. The molecular structures
are given in Figure 2.

Figure 4. Hydrogen bond energy as a function of the
separation between the donor and the acceptor calculated
with the MP2 method. The labeling of the curves is identical
to that of Figure 3.
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Combining the results from Figures 6 and 8, we observed
that the hydrogen-bonding energy is rather insensitive to the
orientation between the donor and the acceptor. There are
rather broad ranges of directions in which acceptor (or donor)
can tilt away from the normal direction of the hydrogen bond,
by up to(45°, while the energy changes less than 0.5 kcal/
mol. However, the hydrogen-bonding energy could quickly
deteriorate when steric interference arises between the donor

and the acceptor. The directional anisotropy is determined
by the specific chemical structure of the donor and the
acceptor and has to be dealt with on a case-by-case basis. In
contrast, hydrogen-bonding energy is much more sensitive
to the separation between the donor and the acceptor: a 0.2
Å shift in separation can cause over a 1 kcal/mol change in
energy. Based on these observations, in our subsequent
calculations of hydrogen-bonding energies for different
molecules, the initial geometry of the hydrogen bond was
set up based on templates of analogous systems from X-ray
crystal structures of inhibitor-protein complexes. The
orientation between the donor and the acceptor was checked
sparsely to ensure no steric interference. The separation was
systematically scanned to locate the energy minimum of the
hydrogen-bonding interaction.

3. Comparison of the Hydrogen-Binding Energy of
Different Acceptors. Having investigated the calculation
procedure, we turned to the validation of the computational
procedure by comparison of the calculation results with
experimental data. Abraham et al.1 determined the hydrogen-
bonding constants for a large number of donors and accep-
tors. Hydrogen bond donors are generally confined only to
a few types of NH or OH groups. In contrast, there is a large

Figure 5. Different orientations between the imidazole acceptor and the amide donor at a fixed separation of 3 Å. a:
Conformations generated from varying angle θ2 with Φ ) 90° and θ1 ) 0. b: Conformations generated from varying angle θ2

with Φ ) 0 and θ1 ) 0. c: Conformations from a variation of angle θ1 with Φ ) 0 and θ2 ) 0.

Figure 6. Hydrogen-bonding energy between the amide
donor and the imidazole acceptor as a function of orientational
variables. Curve a is for the conformational series of Figure
5a with the variable X ) θ2. Curve b is for the conformational
series of Figure 5b with the variable X ) θ2. Curve c is for
the conformational series of Figure 5c with the variable X )
θ1.

Figure 7. Orientation of the hydrogen bond between the
amide donor and the amide acceptor at a constant separation
of 3 Å. The conformations are generated by varying angle Φ
with θ1 ) 0 and θ2 ) 15° and 30°, respectively.

Figure 8. Interaction energy between the amide donor and
the amide acceptor as a function of the hydrogen bond
orientation at a constant separation of 3 Å. The hydrogen bond
conformations are shown in Figure 7. The variable angle-X
is Φ angle. Curves a and b correspond to angle θ2 ) 15° and
30°, respectively, while angle θ1 is fixed at 0° and θ2 ) 30°.
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variety of hydrogen bond acceptors, comprising sp2 and sp3

oxygen atoms and sp1, sp2, and some sp3 nitrogen atoms from
a large number of functional groups and heterocycles. It has
been reported that theoretical modeling of hydrogen bond
acceptors is more difficult than modeling hydrogen bond
donors.15 In this work, we selected 16 molecules that cover
the major categories of acceptors in the list of Abraham et
al.1 In their experiment, the hydrogen-bonding constants for
these acceptors were measured against a common hydrogen
bond donor, 4-nitrophenol dissolved in 1,1,1-trichloroethane
(TCE), which has a dielectric constant of 7.53. To avoid self-
interference in the experiment, all hydrogen donors in an
acceptor molecule have to be blocked. As a result, only a
limited number of acceptors could be measured in such an
experiment. The structures of our selected acceptors are
shown in Figure 9. We calculated the interaction energies
for these acceptors with the amide hydrogen bond donor
(shown in Figure 2). In our calculations, the acceptors and
donor were arranged in a fixed orientation based on the
procedure described in the previous subsection. Energy
calculations were carried out on each structure at 5 different
donor-acceptor separations, from 2.8 to 3.2 Å at 0.1 Å
intervals. Geometric optimization was done for each structure
with constrained energy minimization previously described
in the theory section. The lowest energy found from the 5
structures was used as the hydrogen-bonding energy for a
given acceptor.

The computational results are collected in Table 1. Column
1 of the table is the label of the acceptor; column 2 contains
the calculated hydrogen-bonding energy from this work; and
column 3 shows the logarithm of experimental hydrogen-
bonding constants, log Kâ. The spreading scope of the
calculated hydrogen bond energy and log Kâ are not the
same; and, physically, the first value is energy, while the
second number corresponds to free energy. However, an
excellent linear correlation exists between the two sets of
values. Figure 10 shows the plot of the calculated∆EHB

against experimental log Kâ. The following relationship and
statistics were found:

It is observed that the correlation obtained from this method

is significantly better than that obtained by Gancia et al.15

Those authors modeled hydrogen bond strength based on a
parametrization of log Kâ with respect to quantum-chemistry
calculated properties of atomic electrophilic superdelocal-
izability (SE). The regression model between SE and log
Kâ has larger errors withR2 in the range of 0.59-0.75.
Moreover, in the parametrization approach, different types
of acceptors, such as nitrogen and oxygen acceptors, have
to be modeled with separated QSAR equations. In our present
approach, all acceptors follow the same relationship between
the calculated interaction energies and the logarithm of
experimental hydrogen-bonding constants. This is consistent
with a common physical process for the hydrogen bonding
between the pairs of donors and acceptors.

The ab initio calculation results provide insights into the
dominant factor for hydrogen-binding strength. While the
hydrogen-bonding constant is determined by the binding free
energy, the fact that there is an excellent linear correlation
between the hydrogen-binding interaction energy and the
binding constant suggests that the logarithm of binding
constants for different acceptors with respect to given donors
are largely determined by an enthalpic factor arising from
the interaction energy between the donor and the acceptor.
The entropic contribution to the hydrogen-bonding constant
would then amount to a constant for all the acceptors. A
constant entropic component is not a universal phenomenon;

Figure 9. The structures of the hydrogen bond acceptors
studied in this work. The atom in red color is the hydrogen
bond acceptor.

log Kâ ) -0.892∆EΗΒ - 2.630 (2)

N ) 16,R2 ) 0.94,F ) 229

Table 1. Hydrogen-Bonding Energies of Different
Acceptors with Respect to an Amide Donor

acceptora ∆EHB
b log Kâ

c acceptora ∆EHB
b log Kâ

c

1 -6.78 3.54 9 -4.76 1.90
2 -6.73 3.68 10 -4.72 1.67
3 -6.20 3.06 11 -4.60 1.06
4 -5.95 2.87 12 -4.39 1.61
5 -5.84 3.12 13 -4.27 1.50
6 -5.37 2.81 14 -4.06 1.43
7 -5.36 2.52 15 -4.03 1.28
8 -5.10 2.22 16 -2.96 0.30

a The numerical labels of the acceptors correspond to those defined
in Figure 9. b ∆EHB, in units of kcal/mol, was defined by eq 1 and
calculated with the DFT/B3LYP (6-31++G**) method including BSSE
correction. c log Kâ values adopted from Table 3 of ref 1, also listed
in Figures 3 and 4 of ref 15.

Figure 10. Correlation plot between theoretically calculated
hydrogen-bonding energies (H-bond energy) and the loga-
rithm of experimentally measured hydrogen-bonding constants
(log Kâ). The two sets of values fit the following relationship:
log Κâ ) -0.892E - 2.36 with N ) 16, R2 ) 0.94, F )229.

868 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Hao



very different entropic contributions have been observed in
ITC experiments on ligands bound to a given receptor.36 An
alternative plausible explanation to the linear correlation
between the hydrogen-binding energy and the logarithm of
the hydrogen-binding constant could be that the entropy
varies linearly with enthalpy. Further investigation will be
needed to resolve these two possibilities.

There are interesting individual cases among the set of
16 acceptors. The oxazole molecule, #10 in Figure 9, has
two hydrogen bond acceptors: a nitrogen and an oxygen
atom. Because only one hydrogen-binding constant was
reported for this molecule,1 it was not clear whether the
nitrogen or the oxygen is the actual acceptor in oxazole. Our
calculation indicated that the hydrogen-bonding energy for
the nitrogen and oxygen atoms in oxazole are-4.72 and
-1.23 kcal/mol, respectively. Based on the strong statistic
from eq 2, we can confidently predict that the nitrogen atom
of the oxazole is the acceptor, whereas the oxygen atom has
virtually no acceptor capacity in this particular molecule. A
simple explanation of the difference between the hydrogen
bond strength of nitrogen and oxygen atoms in oxazole is
that the nitrogen atom is more basic than oxygen hence a
better hydrogen bond acceptor. Another interesting case is
sulfur containing acceptors. As shown in Table 1, sulfoxide
is a stronger hydrogen bond acceptor than sulfone, and our
calculation indicates that sulfonamide, with a calculated
hydrogen-bonding energy of-3.87 kcal/mol, is an even
weaker hydrogen bond acceptor than sulfone.

The hydrogen-bonding strength of an acceptor can be
easily modified by chemical substitutions on the acceptor’s
structure. Attesting to this point are the three pyridine
derivatives, #1, 4, and 7, shown in Figure 9 and Table 1.
The calculated hydrogen-bonding energy of simple pyridine
is -5.36 kcal/mol. Substitution on the para position with
electron-donating groups such as methoxyl or dimethylamine
gives molecules #1 and 4, which have larger hydrogen-
bonding energies,-5.95 and-6.78 kcal/mol, respectively.
Because dimethylamine is a stronger electron donating group
than methoxyl, the former induces a larger increase in the
hydrogen-bonding strength for pyridine. Following this line
of reasoning, if electron-withdrawing groups are substituted
on the pyridine, the hydrogen-bonding strength of the
resulting molecules should be smaller than that of pyridine.
Indeed, our calculations indicated that the hydrogen-bonding
energy of pyridine para-substituted with nitro (-NO2), nitrile
(-CtN), and-CF3 groups are-3.17,-4.27, and-4.26
kcal/mol, respectively. In general, substitution with an
electron-withdrawing group will decrease the hydrogen bond
strength of an acceptor but will increase the strength of a
hydrogen-bonding donor. Electron-donating groups have
opposite effects. The electronic effects can be transmitted
effectively through conjugated systems. Modulating the
hydrogen-bonding strength with proper substituents on a
hydrogen donor and/or acceptor can be a very useful strategy
in drug optimization and has been utilized in the drug
optimization process.2

4. Effects of Hydrogen Bond Donors.One assumption
in the previous subsection was that theorderof the hydrogen-
bonding energy for different acceptors should be generally

the same regardless which donor was used in the calculation.
The same assumption also holds for the experimentally
measured hydrogen-bonding constants for acceptors,1 which
are transferable across different donors. We verified this
assumption by calculating the interaction energy of the four
acceptors shown in Figure 2 with the five donors shown in
the same figure. Table 2 shows the hydrogen-bonding
energies for these molecules: the columns correspond to the
donors, while the rows correspond to acceptors. Crossing
the columns, it is observed that the hydrogen-bonding
strength of the donor is in the order of imidazole> indole
> amide> hydroxyl. Crossing the rows, it is observed that
the order of acceptor strength is as imidazole> amide>
ketone> furan. As expected, the same order of hydrogen-
bonding strength for the acceptor series holds across the
different donors. In the other direction, the same order of
hydrogen-bonding strength for the donor series holds across
different acceptors.

The case of alanine dipeptide as donor warrants further
discussion. While we have been largely concerned so far
with small donors such as amide and hydroxyl, the hydrogen-
bonding groups of a receptor interacting with drug molecules
are parts of the protein. It is of interest to know how a
hydrogen bond donor from a larger structure interacts with
a small acceptor or vice versa. Figure 11 shows the
conformation of hydrogen-bonding interaction between a
ketone acceptor and an alanine dipeptide donor. Compared
to the amide donor shown in Figures 5 and 7, the alanine
dipeptide clearly has more structural mass that is not directly
involved in hydrogen bonding with the acceptor. Our

Table 2. Hydrogen-Bonding Energy between Acceptors
and Donorsa

amide-
D

hydroxyl-
D

indole-
D

imidazole-
D

alanine
dipeptide-

D

imidazole-A -6.55 -6.24 -7.11 -7.96 -8.03
amide-A -5.44 -4.51 -6.27 -6.92 -6.94
ketone-A -4.06 -3.54 -5.12 -5.78 -5.52
furan-A -2.13 -2.22 -2.47 -2.75 -3.01

a The hydrogen-bonding energy is in units of kcal/mol. The
chemical structures of the donors (top row) and acceptors (first
column) are shown in Figure 2. The energy values were calculated
by the DFT/B3LYP(6-31++G**) method with BSSE correction.

Figure 11. The conformation used in calculating the hydrogen-
bonding energy for a ketone donor and an alanine dipeptide
donor.
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computational result has indicated that the amide donor is
not the strongest in the set of five donors. Nonetheless, as
shown in Table 2, the calculated interaction energy for all
the acceptors with the alanine dipeptide donor is larger than
with other donors. Clearly, there are secondary interactions
other than hydrogen bonding that contributed to the calcu-
lated total interaction energy between the alanine dipeptide
and the acceptors. This result suggests that, to obtain an
accurate estimate for the hydrogen-bonding interaction in a
given binding site of the receptor, secondary interactions have
to be taken into account in the total energy calculation. It is
likely that secondary interactions will vary in different
binding sites and have to be dealt with on an individual basis.
The constrained energy minimization procedure designed
here could be used to calculate more complicated systems
with a specified geometry. One difficulty in extending the
present calculation to the protein binding site was that there
is no experimental hydrogen bond parameter that can be
compared with, thereby validate, theoretically calculated
values.

Discussion
A key result to this work is the observation that ab initio
calculated hydrogen-bonding energy linearly correlates with
the logarithm of experimentally measured hydrogen-bonding
constants. This provides a basis for theoretical prediction of
hydrogen-bonding strength for drug design by ab initio
calculations. The results presented here were obtained from
DFT/B3LYP calculations with the 6-31++G** basis set. We
had found that calculations at the MP2/6-31G** level gave
quantitatively similar results. The MP2 calculations seemed
to produce larger interaction energies for weaker hydrogen-
bonding acceptors or donors, but the DFT/B3LYP calculation
is faster and can provide consistent and satisfactory informa-
tion.

It should be emphasized again that the calculated property
here is the hydrogen-bonding energy. Since it is the free
energy change from solvent to a receptor binding site that
ultimately determines the hydrogen-bonding constant, it was
not obvious that the interaction energy alone can explain the
variations in hydrogen-binding strength from one acceptor
to another. However, the excellent linear relationship between
the calculated interaction energies at ab initio quantum level
and logarithm of hydrogen-bonding constants for a variety
of acceptors gives support to the theory that the enthalpic
contribution from the hydrogen-bonding energy determines
whether one hydrogen bond is stronger than another.
Plausibly, entropic factors make only a constant contribution
to the free energy change when different acceptors bind to
a given donor. It is likely that a similar relationship also
holds in the case of ligands binding to a receptor, at least
for a series of compounds adopting the same binding mode.
Another plausible explanation is that the entropic component
varies proportionally with enthalpy in these systems.

Predicting the hydrogen-bonding strength by ab initio
quantum chemical calculations has considerable advantages
over semiempirical parametrization approaches.8-15 First, the
correlation between the ab initio calculated energies and
experimental hydrogen-binding constants is much better than

that from a parametrization approach.15 Second, all different
acceptors or donors can be evaluated by the same compu-
tational procedure in a unified correlation equation with the
ab initio method. In contrast, with the parametrization
approach, multiple equations would be needed for different
types of donors or acceptors. For traditional QSAR models,
the application range of a given model is even narrower.
Third, the ab initio method can handle steric factors in a
hydrogen bond system in a straightforward manner since ab
initio calculation takes all electronic and steric factors of the
system into account. Steric effects have been a major problem
for the transferability of parametrization-based hydrogen
bond models because, in such models, only one subunit of
the donor-acceptor pair in a hydrogen bond is considered.
A major drawback of the ab initio method is the high demand
on computational resources. When fast Linux clusters
become readily available, multiple ab initio calculations
involved in distance scans can be carried out in parallel such
that results for a handful of molecules typically encountered
in an SAR study can be obtained overnight. Therefore, the
computational demand of the ab initio method is not presently
a major obstacle.

The directional properties of hydrogen bonds are important
to both computational studies and practical applications. A
survey of X-ray and neutron diffraction structures of organic
and biological molecules3 had found that the directional
dependency of hydrogen bonds is weak: the distribution of
hydrogen-bonding orientation almost evenly spreads over a
broad band of(50° from the normal direction for donor
and/or acceptor. Our calculations also indicated that, at the
normal hydrogen-bond distance, the interaction energy is not
very sensitive to angular variations up to(45° in certain
directions. This property of the hydrogen bonds simplifies
the task of calculating the minimum energy of hydrogen-
bonding interaction. The orientation of the system needs only
to be sparsely checked to ensure that there is no major steric
problem. However, because of the sensitivity of the interac-
tion energy to donor-acceptor separation, a scan over the
distance variable would be required to identify the accurate
energy minimum. Ireta et al.26 reported that the accuracy of
the DFT calculated hydrogen-bonding energy depends on
the bond directionality. When the hydrogen bond deviates
from linearity, the discrepancy between the DFT energy and
the values calculated by the MP2 method37,38 increases. The
reason for the somewhat different observations between Ireta
et al. and the present work is not clear.

Another interesting result of the present work is that the
directionality of the hydrogen bond is not isotropic. While
the statistics for a large number of hydrogen-bonding
structures from X-ray data shows a nearly uniform distribu-
tion of hydrogen bond orientation over a broad range,
individual molecules have different structures and steric
characteristics. At the individual molecule level, hydrogen-
bonding energy can deteriorate quickly in some directions.
Using analogous X-ray structures as templates is a reasonable
approach for setting up the geometry of a hydrogen bond
system for energy calculation. When steric problems occur,
the orientation of the hydrogen bond has to be adjusted to
obtain a correct hydrogen-bonding energy.
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Secondary interactions will be a complicating factor for
an accurate estimate of the hydrogen-bonding interaction for
ligand binding to a protein receptor. In an earlier study by
Scheiner et al.,35 it was reported that when the donor
molecule increases in size from one to two amino acid units,
the hydrogen-bonding energy of the water with the peptides
changes only by∼10%. It is possible that a water molecule
is a very small and simple system which would experience
less secondary interactions with the donor molecules. For
larger acceptors such as drug molecules interacting with
protein receptors, secondary interactions accompanying the
hydrogen-bonding interaction could be considerably large.
To accurately estimate the strength for larger hydrogen bond
donors or acceptors interacting with specific protein recep-
tors, secondary interactions have to be dealt with adequately.

The usefulness of theoretically calculated hydrogen bond
energies to drug design has been demonstrated by Bingham
et al.2 In their work, the SAR of a series of analogous
molecules bound to the protein kinase IKK can be accounted
for by the hydrogen bond strength of these compounds. That
result was one of the motivations of the present study. With
a more accurate and comprehensive calculation scheme, the
present method can be used for problems involving hydrogen
bond bioisostere in drug design; a comparison of the
hydrogen-bonding energies of the bioisostere provides a more
rational basis for the bioisostere approach. The calculated
hydrogen-bonding energy by the present method can also
be used in the refinement of force field parameters for
molecular modeling simulation. Based on the author’s
experience, currently used force fields were not parameter-
ized to reproduce the difference of the experimentally
measured hydrogen bond strengths among different donors
and acceptors.

Conclusion
We demonstrated in this work that ab initio calculated
hydrogen-binding energy has an excellent linear correlation
with logarithm of experimental hydrogen-bonding constants.
This provides a basis for the theoretical prediction of
hydrogen-bonding strength for a series of acceptors (or
donors) with respect to a given donor (or acceptor). The ab
initio approach advances the level of sophistication of
theoretical modeling of hydrogen bonds and may provide
deeper insights to the mechanism of hydrogen-bonding
interactions. The method also provides a tool for handling
steric effects, conformational properties, and secondary
interactions of specific systems in predicting hydrogen bond
strengths. These effects were traditionally not treated in
empirical and parametrization approaches for hydrogen
bonds. We believe that the method developed here is helpful
in dealing with hydrogen bond related SAR problems in drug
design.
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Abstract: We developed a new amino acid specific method for the computation of spatial

fluctuations of proteins around their native structures. We show the consistency with experimental

values and the increased performance in comparison to an established model, based on statistical

estimates for a set of test proteins. We apply the new method to HIV-1 protease in its wild-type

form and to a V82F-I84V mutant that shows resistance to protease inhibitors. We further show

how the method can be successfully used to explain the molecular biophysics of drug resistance

of the mutant.

1. Introduction
Fluctuations of biomolecular complexes around their native
states are of great importance in functional studies in
molecular biophysics. One can deduce several features such
as entropy changes upon binding,1 probable binding sites for
drugs,2 or the overall stability and function of complexes3

from the detailed analysis of those fluctuations.
Traditional normal-mode analysis (NMA)4-6 utilizes the

carefully developed force fields of molecular dynamics (MD)
packages. Here, one minimizes the energy of the structure
and diagonalizes the Hessian of the energy function in the
minimum to obtain normal modes. One has, however, to bear
in mind two shortcomings: first, NMA requires a lot of
computational time in the minimization step, and second,
the MD force fields are optimized to mimic several static
and dynamical properties at the same time and, therefore,
are not necessarily optimal for low-energy fluctuations
around the native state.7

To tackle the first problem, one-parameter potentials were
introduced: the Tirion potential8 and the related Gaussian
network model (GNM).9 The sole parameter is here adjusted

to reproduce experimental B factors, and one starts from an
experimental protein structure without any minimization. The
anisotropic network model (ANM)10 and the GNM were
thoroughly investigated with respect to molecular dynamics
simulation11 and proved to be in good agreement despite their
simplicity.

NMA, GNM, and ANM were successfully applied to a
variety of molecules such as tRNAs,12 tryptophan synthase,13

cowpea chlorotic mottle virus,14 and tubulin.3

The success of the Tirion potential and the GNM stems
from the observation that the large number of atomic contacts
distributed in the protein makes the central limit theorem
validsleading to the mean strengthγ in, for example, the
Tirion potential V ) ∑(ij )C (γ/2)(sij - sij

o)2 with sij ) |rbij|,
where rbij is the distance vector between the CR atoms of
contacting residuesi andj. Members of the set of contacting
residues are defined byC ) {(i, j)|sij

o < Rc} with some
givenRc, and the superscript o indicates the native conforma-
tion of theN residues throughout this paper. These methods
were extended in several aspects: larger systems,15,16 ani-
sotropy,10 or side-chain geometries (âGM).17 Additionally,
investigations, for example, ref 18, included anharmonic
effects.

These methods, however, still lacksbecause of the in-
trinsic averaging proceduresthe ability to incorporate the
chemical nature of the residues constituting the protein.
Therefore, there is a gap between NMA based on empirical
MD force fields, which provide for specificity, and the one-
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parameter models that provide for fast computations and,
therefore, large-scale screening capabilities important for
studies of stability and function as well as drug design. We
fill this gap with the proposed method.

2. The Model
Let the potential consist of two terms: a Hookean pairwise
potential for covalent bonds (K/2)∑i(si,i+1 - si,i+1

o )2 and a
contact potential that assigns to contacting residuesi and j
an amino acid type-specific energyκij in the native structure,
which is at the same time assumed to be the global minimum.
Fluctuations can break contacts if they get larger than some
valuea. These constraints can be modeled (see ref 19 for a
similar approach) by a harmonic term inside a well with
width a: (κij/a2)[((sij - sij

o)2 - a2)Θ(a2 - (sij - sij
o)2)], where

Θ(x) is the step function [Θ(x) ) 1 for x g 0 and is 0
otherwise].

In the native configurationsbij
o, this results in the valueκij.

We will use this particular property later on.
If the typical displacement is smaller than the well’s width,

we can omit the step function and obtain

where we dropped an unimportant constant and introduced
the scaling factorR to fit experimental B factors later on.
Here,C ′ ) C \{(i, j)||i - j| ) 1} is the set of noncovalent-
bonded contacts.

We note in passing that starting with the bond-breaking
model and deriving eq 1 makes the whole approach
consistent with the ANM and the knowledge-based potentials
we will use later on to parametrizeκij: the prefactorRa-2 is
an overall fit parameter that the ANM chooses so that the
average B factor equals the one of the experiment and the
variousκij ’s weightthe different contacts against each other,
while we do not have to demand that theκij ’s are exact
energy values (an overall scaling factor might be included).

Because we are interested in fluctuations, we developV
to the second order around the native state, which is the
global minimum of eq 1 generically. The constant and the
linear term vanish, and we obtainV ≈ 1/2∆RBTH∆RB, where
∆RB is the 3N-dimensional displacement vector of all residues.
The matrixH is the Hessian of eq 1 with respect to all 3N
coordinates. We omit the somewhat clumsy expressions20

for brevity here.
By means of singular value decomposition,21 we obtain

the eigenvaluesλk and the eigendirectionsubk of the move-
ments. We effectively extend the anisotropic network model10

to describe amino acid specific interactions. We refer to this
method as extended ANM (EANM) in this paper because
we would regain the ANM potential by setting uniformly
(2Rκij/a2) ) RK ) γ. Spatial fluctuations can afterward be
computed from the inverse ofH by

for R ) x, y, and z, and the B factor of residuei can be
computed fromBi ) (8π2/3)∑R)x,y,z〈(Ri

R)2〉.
Here, we weight the interactionsκij inside one protein

(hereafter called “intrachain”) according to the absolute value
of the established contact potential of Miyazawa and Jerni-
gan,22 while theκij ’s for interchain contact between residues
in multiple-chain proteins (see below for the HIV-1 protease)
are taken as the absolute values as suggested by Keskin et
al.23 The rationale behind this is the property of our model
(see above) that, in the native state, the potential is just the
sum of the contact energiesκij of all the contacts of the native
state. The intra- and interchain contacts are weighted
differently because there are subtle differences in the contact
potentials for these two classes of contacts. The major
physical difference between the two types of contacts is
illustrated: (a) The packing density inside a single protein
is higher; therefore, the statistics of contacts is different. (b)
The “hydrophobic force” acts differently on residues of one
chain during folding and residues in protein-protein-binding
events.

The values of these knowledge-based potentials take
various effects into account that are responsible for the
observed frequencies of contacts: electrostatics, solvent
effects, hydrogen bonds, and so on. Although, this choice
of κij is strictly valid only for ensembles in the Bethe
approximation in which the formation of pair contacts is
thought to be equivalent by a chemical reaction and thus
governed by a reaction law for the association/dissociation
of pairs of residues individually. The underlying principles
of minimal frustration and self-averaging were first discussed
in the works of Wolynes and others and Onuchic and
others.24,25 It turns out that this approximation is precise
enough for our purposes (see section “Performance” below
for a justification).

The hard-core repulsion of Miyazawa and Jernigan’s
contact potential22 is not taken into account as we are dealing
with the native fold of the protein that cannot show any
clashes. This proved to be a reasonable choice in other
applications of the contact potential values,22 too.26 The low-
frequency movements we are interested in are also the ones
with large-scale changes in the structure, thus tending to
involve solvent effects that are included inκij. The strength
along the peptide bondK is a fitting parameter, while we
adjustRa-2 to agree with experimental B factors in the spirit
of the GNM. The fitting allows one to fix the energy scale,
avoiding the setting of a “folding” temperature a priori as
was discussed to be crucial for contact potentials.22,27

Additionally, we compensate with the fittedK for the various
temperatures used in experiments and the unknown well
width a.

Because we start with an experimental structure and the
κij ’s were derived also from those structures, we are
consistent. Because of the experimental structure, we also
do not have to worry about finding a “problematic” minimum
as might happen in NMA. The necessary structure minimiza-
tion step in NMA might lead to different configurations for
different mutantssmaking the comparison of eigenvectors
and the implied principal directions of motion difficult or
impossible.

V ) Ra-2[a2K

2
∑

i

(si,i+1 - si,i+1
o )2 + ∑

(i,j)∈C ′
κij(sij - sij

o)2] (1)

〈(Ri
R)2〉 ) 3kBT∑

k

[ubkubk
T] ii

RR

λk

(2)
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3. Performance
We applied EANM to 84 proteins28 taken from the PDB
database and set the contact defining distance toRc ) 13 Å.
To reproduce the experimental B factors, we scanned forK
of eq 1 in steps of five for every protein individually. We
optimized the linear correlation between the experimental
values and the computed ones.

In a recent coarse-grained study, a value of 83.333 RT/
Å2 was derived for the peptide bond.29 In another study30 on
allostery of trypsiogen, Wall and Ming foundK ) 53.4 kcal/
(mole Å2) ) 89 RT/Å2 to be optimal. The obtained bestK
values here were found to be 82( 2.86 RT/a2.

Because the all-atom average B factor of the proteins is
18.8 Å2 (17.5 Å2 for the CR alone), an average displacement/
resolution of 0.85 Å results. TheK value and the displace-
ment are both consistent with the above-mentioned value of
Trylska et al. and Wall and Ming fora ≈ 1 Å. The small
standard deviation ofK is in accordance with the small
temperature range of experimental B factors.

The quality of every computation is measured by the linear
correlationR, Spearman’srs, and Kendel’sτ21 between the
predicted and the experimental B factors. In Figure 1, we

plotted for every protein the performance of the bestK
EANM computation in thex direction and the respective
ANM result in the y direction.31 Note that EANM is
variational in the sense that increasing the accuracy of the
K scan can only decrease the error with respect to the
experimental values. Therefore, the results become, in
general, better for smaller∆K values, and EANM will
perform even better than ANM.

Figure 2 shows the B factors for three arbitrarily chosen
proteins from the test set. Even under this crudeK scan, not
only is the agreement better but, additionally, structural
features are reproduced in more detail with EANM.20

On the basis of the top two proteins of Figure 2, one might
be tempted to attribute the increased performance of EANM
most of all to lowering excessively highB values. To account
for this, we first note that the ranking measure by Kendel
and Spearman does not take into the account the overall
magnitude of theB values, only their respective rankings
therefore, neglecting the order of magnitude of the values.
Nevertheless, the performance of EANM is much better,
giving evidence of the fact that EANM is indeed capable of
giving a higher level of detail of theshapeof the B values
of the molecular system. A potential lowering of theB values
can only result from the strengthening of the covalent bonds
by largerK values (an order of magnitude larger than theκij

values). To test whether the increased performance of the
EANM can be attributed to the largerK values alone, we
repeated the computation in the test set with the bestKbest)
82RTand a uniform contact interactionκij

uniform ) 3.563RT,
which is the average of the contact potential by Miyazawa

Figure 1. Graphs comparing the performance of EANM and
ANM with respect to the set of test proteins. For every point,
we computed the B factors and measured the agreement with
three different data analysis methods. The upper graph shows
the linear regression coefficient of the predicted vs the
experimental values, while the lower uses two ranking
measures. The crosses and the asterisk indicate the average
over the set. The dashed lines are guides to the eye to
distinguish the “winning method”. The data points, for which
ANM was better than EANM, are close to this linesindicating
that EANM is even then not much off.

Figure 2. B factors for three proteins. Upper part: Note the
failure of ANM for residues 162-168 and 68; both the
experimental and the EANM values are much smaller. This
is not just a common factor between those values and ANM,
as can be seen from the areas around 20-35, 120-140, and
175-200. Middle: the ANM magnitudes are, at certain
locations, good (e.g., 1-45 and 66). EANM is, however,
capable of giving more-detailed insight over the whole range
of the backbone. Lower part: EANM is not just lowering
excessively high B factors but also reflects more of the
underlying topology.
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and Jernigan.22 We found that, under all three approaches
to measure the performance (linear correlation coefficient,
Spearman’srs, and Kendel’sτ), the results were worse than
those with the amino acid specificκij. We thus conclude that
the increased performance cannot be attributed to the
lowering of excessively highB values or the stronger
covalent bond alone.

4. Application to HIV-1 Protease
HIV-1 protease32 is a crucial protein during HIV infection.
Protease inhibitors bind to a “pocket” of this dimer and
prevent further activity, thus reducing the spread of HIV
viruses in an organism.

GNM was used by Kurt et al.33 to investigate the effect
of a ligand bound to the protein complex. Because the effects
are only due to the change of the contact map for the complex
upon binding the ligands, no amino acid specificity could
be investigated.

Drug resistance due to mutation of the protease has,
however, become a major problem34 and prompts for
sequence-specific studies. The dissociation rate of protease
inhibitors is greatly influenced by the dynamics of the flaps
of the pocket. A recent and comprehensive investigation35

on several mutants of HIV-1 protease used normal-mode
analysis. This, however, involves time-consuming minimiza-
tion, energy function evaluation, and so forth, as discussed
in the Introduction.

We want to show here how our model closes the gap
between traditional NMA and GNM/ANM/âGM for this
molecular complex. We used the experimentally determined
wild-type structure32 and applied the mutations V82F and
I84V to be able to focus on those residues solely. We set
the distance for which contacts are obtained toRc ) 20 Å
because we found a more pronounced effect for this value.

Our setting is justified by the fact that, in the pocket, the
small number of water molecules eventually bridges the
spatial gap of size∼22 Å, extending the range of interaction
partially throughout the pocket of HIV-1 protease as a water-
molecule network, as recently discussed by Papoian et al.36

Our choice ofRc ) 20 Å, therefore, does not introduce
contacts between the mutation sites and the flaps. All of the
influence of the mutations is therefore carried by a mechan-
ical mechanism encoded in the structure of the HIV-1
protease homodimer (see below for results on the mecha-
nism). To confirm our choice further, we note that thisRc

leads to the correct shape of the frequency distribution. The
frequency distribution of a general protein motif was first
obtained by Elber and Karplus38 with the effective medium
approximation. For the particular case of the HIV-1 protease,
Zoete et al.35 showed the contribution to the RMSD, which
is, by means of eq 2, proportional to the square of the
frequencysour results are in agreement with these RMSD
contributions.

Our main results are depicted in Figures 3 and 4. The
mutation of just two residues in each molecule of the protease
dimer results in an increased movement of the flaps.

One can now use the eigenvectors to investigate the change
in the motion of the residues upon mutation. One approachs
the one we pursue in the followingsis to look for orthogo-

nality between modes in the different mutants for particular
residues of interest. This allows an investigation of whether
some residues are subject to larger effects than others.

The residues 43-58 constitute the flaps in the homodimer
of HIV-1 protease. Analyzing the overlap of all 594 obtained
modes in the subspace of those residues between the wild-
type and the mutant, we found that the 21st modes are the
slowest mutual orthogonal ones.

These modes are∼x4.1 faster than the overall slowest
mode. The small ratio guarantees that this mode is substan-
tially realized.39 From eq 2, we can immediately conclude
that the contribution of this mode to the overall B factor is
≈1/4.1≈ 24% of the first mode. The mode provides for the
curling of the tips as a precursor of opening.20 The curling
was observed to be a prerequisite to opening the flaps.37

To elucidate the mechanism that results in increased
floppiness of the flaps, we performed some thousand
mutations studies: we changed the interaction strength
between the contacts of residues 82 and 84 pairwise while
leaving the rest alone. We therefore computed a “hybrid”

Figure 3. Structures of HIV-1 protease, its mutant, and the
respective B factors. Overlaying the predicted B factors onto
the structure of HIV-1 protease shows the increased flexibility
of the “flaps”. While the base of the pocket shows small
fluctuations (blue), the mutant provides for the possibility of
larger movements (red) of the “flaps”. Note that the mutation
occurs on the base of the pocket.

Figure 4. Anisotropic fluctuations for the HIV-1 protease in
the directions indicated by the arrows. The mutation causes
larger movements to open/curl the flaps, while the other two
spatial directions are not affected on a larger scale (red, higher
fluctuations; blue, lower fluctuations).
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system, which contained the original contacts of residues 82
and 84 in the wild type to most of their contacting neighbors
while changingκij to the mutant values for pairs of contacting
residues. This allows for a systematic investigation of the
origin of the effect of the mutation. Aglobalmeasure of the
influence of such a hybrid mutation is the difference in the
spectrum of the eigenvalues induced by the mutation. We
extracted up to a noticeable gap in the above-mentioned
difference the top of these pairs, which consisted remarkably
of the same residues in different combinations. The results
are shown in Figure 5.

We clearly see that the mutation stiffens the base while at
the same time loosening its grip on the “anchors” of the flaps
through which the loosened stiffness is then transferred to
the flaps through the connections of contacts between
residues in the anchor and the flaps. Note that the stiffening
of the base occurs because of interaction between the two
chains in the homodimer, while the weakening occurs in each
monomer alone. Note also that this finding explains why
our choice ofRc ) 20 Å is sound here: the most important

residues, D30 and R87, are farther apart than the generic
distance ofRc ) 13 Å.

In patients, the V82F-I84V mutant shows some additional
mutations that seem, on the basis of our investigation, not
necessary for the adaptation/evolution of HIV toward pro-
tease inhibitor resistance. They might, however, be necessary
for protein stability or folding dynamics, issues that are
beyond the scope of the present study.

5. Conclusions
In this study, we extended the widely used ANM method to
allow for amino acid specificity. We justified the extended
model, discussed its parametrization, and showed its superior
performance on a set of proteins in comparison to the ANM.
After fitting appropriate couplings for the bonded interac-
tions, we applied the method to a problem most relevant to
pharmacology and molecular biology: the drug resistance
of a V82F-I84V mutant of HIV-1 protease. We showed the
effect of this mutation on the movements of the “flaps” of
this dimer. Time-consuming molecular dynamics were
employed to reveal this mechanism in other studies,37 while
our approach for the protease took merely an hour of CPU
time, including the refinement ofK. We hope that our work
facilitates further investigations into the molecular biophysics
of HIV and other pharmacological problems.
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Abstract: N-halamine chemistry has been a research topic of considerable importance in these

laboratories for over two decades. N-halamine compounds are useful in preparing biocidal

materials. There are three N-Cl moieties available in cyclic N-halamine compounds: imide,

amide, and amine. The stabilities toward the release of free halogen have been experimentally

shown to decrease in the order amine > amide > imide. In this work, this generalization has

been tested theoretically at the level of B3LYP/6-31+G(d) and using the conductor-like polarizable

continuum aqueous solvation model with UAKS cavities. Excellent accord was observed between

theory and experiment. It was also found that the imide and amide N-halamine stabilities on

hydantoin rings could be reversed with substitution patterns at the 5 position.

Introduction
Compounds containing nitrogen-halogen (N-halamine) bonds
have been shown to be excellent biocides.1 N-halamines act
as sources of free halogens, which are potent oxidizing
agents.2 The oxidations in a cellular system lead to the
destruction of microorganisms in a direct contact mechanism.1b

Numerous N-halamine compounds have been synthesized
in these laboratories over the past 25 years.3 These com-
pounds have been incorporated into macromolecules (e.g.,
polymers) and surfaces (e.g., textiles).4 The goal of the work
has been to develop stable biocidal compounds which do
not lose their oxidative chlorine contents readily in the
presence of water and organics.3b

In principle, there are three types of N-halamine structures
possible: imide, amide, and amine. The stabilities of these
to hydrolysis and reactions with organic receptors vary.5 The
reaction of a general N-halamine with water to give the
amine, amide, or imide and hypochlorous acid is given in
eq 1.

The dissociation constants for different N-halamine func-
tionalities are given in Table 1.6 The table shows that the

stabilities toward dissociation of the N-Cl moieties are in
the order amine> amide> imide halamine.

As previously mentioned, Worley and co-workers have
demonstrated that many examples of N-halamine compounds
are efficient biocides. The kinetics of inactivation of the
bacteria depend on the nature of the N-Cl moiety. The
higher the dissociation constant, the more rapid is the biocidal
action. For example, an N-halamine containing an imide
N-Cl functionality kills bacteria more rapidly than the one
which has an amide N-Cl functionality.7 However, the
stability (i.e., the persistence) of the N-halamine is important
because the presence of the N-halamine is necessary for
preventing the re-establishment of the microbes.

Some examples of the potential precursor N-halamine
compounds synthesized and studied in these laboratories are
5,5-dimethylhydantoin (DMH) derivatives,8 2,2,5,5-tetra-
methylimidazolidinone (TMIO),9 and 7,7,9,9-tetramethyl-
1,3,8-triazaspiro[4.5]decane-2,4-dione (TTDD).10 As seen
from the structures in Figure 1, DMH has an imide and an

* Corresponding authors. Phone: (334) 844-6953; e-mail:
mckee@chem.auburn.edu (M.L.M.). Phone: (334) 844-6944;
e-mail: worlesd@auburn.edu (S.D.W.).

R2N-Cl + H2O f R2NH + HOCl (1)

Table 1. N-Halamine Dissociation Constants in Aqueous
Solution

nature of
N-halamine

dissociation
constant

imide <10-4

amide <10-9

amine <10-12
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amide functionality, TMIO has an amide and an amine func-
tionality, and TTDD has an imide, an amide, and an amine
functionality. All of the above compounds, when chlorinated,
gave N-halamine compounds which acted as excellent
biocides.

In this study, we seek to determine natures of the effects
which are playing an important role in N-halamine stabilities.
The chlorinated forms of DMH and TMIO were first
subjected to the high-level calculations in order to see if the
theoretical results were in accord with the experimental ones.
Then, TTDD (B) and its five-membered (A) and seven-
membered (C) ring analogues were subjected to the high-
level calculations to examine the effect of ring size on
chlorine stability. This study may lead to new classes of more
effective N-halamine compounds.

Computational Details
All calculations were performed with Gaussian 03.11 The
structures were optimized at the B3LYP/3-21G level initially,
and then, optimized structures were subjected to reopti-
mization at the B3LYP/6-31+G(d) level. The zero-point
and thermal corrections were calculated at the B3LYP/
6-31+G(d) level. Natural bond order (NBO) analyses were
performed on the geometry obtained at the B3LYP/6-31+G-
(d) level forH4 andT4. Solvation effects were included in
the geometry obtained at the B3LYP/6-31+G(d) level with
the conductor-like polarizable continuum model (CPCM)
using UAKS cavities.12 The free energy of the reaction was
computed using eq 2:

A 1.9 kcal/mol correction was included in the calculation
due to the fact that the molecules are changing in state from

an ideal gas (1 mol/22.4 L at 298 K) to an ideal solution (1
mol/L).13 A correction factor of 2.4 kcal/mol was also applied
due to the fact that the water molarity is 55.56.13 All of the
results are tabulated in Table 2. In ordered to check the
reliability of the DFT relative energies, calculations were
also carried out at the MP4SDQT/6-31+G(d)//B3LYP/6-
31+G(d) level forH1-H4. Free energies of reactions using
MP4SDQT/6-31+G(d) energies are reported in Table 3 for
reactions involvingH1-H4 with HOCl and H2O.

Results and Discussion
5,5-Dimethylhydantoin (DMH). 5,5-Dimethylhydantoin
contains two nitrogen atoms, which can be halogenated to
give two different N-halamine moieties. Experimentally, it
was shown that an imide halamine is more labile than an
amide one.14 Theoretically, the same pattern was observed
(see Table 2). The calculations showed that the bond length
for the imide N-halamine is shorter than that for the amide

Figure 1. Structures of the compounds under study.

Table 2. Total Energies, Enthalpies, and Free Energies
for H, T, A, B, and C Seriesa

compound
H(298 K)
(Hartree)

G(g)
(Hartree)

∆G(sol)
(kcal/mol)

H1 -455.223 389 -455.264 681 -16.75
H2 -914.776 951 -914.823 284 -9.88
H3 -914.775 843 -914.820 889 -11.04
H4 -1374.328 763 -1374.378 716 -2.30
T1 -459.720 398 -459.767 615 -10.71
T2 -919.282 827 -919.333 251 -7.56
T3 -919.279 877 -919.330 134 -4.94
T4 -1378.838 750 -1378.893 926 -0.33
A1 -705.785 633 -705.841 811 -16.60
A2 -1165.351 218 -1165.409 885 -13.72
A3 -1165.332 984 -1165.392 420 -12.11
A4 -1165.338 243 -1165.397 807 -10.43
A5 -1624.898 869 -1624.961 326 -8.36
A6 -1624.903 655 -1624.966 109 -7.11
A7 -1624.884 749 -1624.948 239 -4.45
A8 -2084.450 284 -2084.516 704 -0.41
A3-i -1165.332 954 -1165.392 008 -11.97
B1 -745.068 831 -745.125 335 -18.53
B2 -1204.631 788 -1204.691 205 -16.92
B3 -1204.611 948 -1204.673 655 -13.31
B4 -1204.621 193 -1204.681 226 -12.47
B5 -1664.173 875 -1664.238 753 -11.20
B6 -1664.183 867 -1664.247 180 -10.62
B7 -1664.163 577 -1664.228 836 -5.96
B8 -2123.725 767 -2123.792 423 -4.40
B3-i -1204.618 544 -1204.677 658 -11.22
C1 -784.345 708 -784.406 077 -16.71
C2 -1243.898 694 -1243.962 430 -15.68
C3 -1243.889 753 -1243.953 061 -11.45
C4 -1243.898 666 -1243.962 906 -10.48
C5 -1703.444 025 -1703.510 128 -10.28
C6 -1703.451 343 -1703.519 069 -9.31
C7 -1703.441 668 -1703.508 536 -4.03
C8 -2162.995 817 -2163.065 856 -2.67
C3-i -1243.891 450 -1243.953 361 -11.13

a Total energies are at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d)
level; thermal corrections are made at the B3LYP/6-31+G(d) level,
and solvation corrections are made at the CPCM/B3LYP/6-31+G(d)
level.

∆G(solution phase)) ∆G(gas phase)-
∆G(solvation of products)+ ∆G(solvation of reactants)

(2)
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N-halamine (1.70 and 1.72 Å, respectively) in both isolated
systems (H2 andH3) and the combined system (H4). The
experimental value for the N-Cl bond length in N-chloro-
succinimide is 1.69 Å, and an amide N-halamine N-Cl bond
length is 1.71 Å in N-chloroazasteroids,15 in excellent accord
with the computations. Although the N-Cl bond length for
the imide is, in fact, shorter than that for the amide, the amide
N-Cl bond is clearly stronger, as evidenced by both
experimental and computational data. This could be due to
the increased polarity of the imide N-Cl bond over the
amide one, leading to more-ionic character in the former and
more-rapid dissociation by hydrolysis.

When H1 is subjected to a reaction with hypochlorous
acid in water, the formation ofH2 is more spontaneous and
exothermic than is the formation ofH3. To test the idea that
the imide N-halamine chlorine is first to dissociate, the
reaction ofH4 with water was treated computationally. It
was found that forming the amide N-halamineH2 is more
favorable than forming imide N-halamineH3 (eqs 3-6). The
order of N-halamine stability in the gas phase and in solution
(water as solvent) did not change. However, the Gibbs free
energy differences between reaction 3 and reaction 4
decreased by 1.16 kcal/mol when solvation was included.
This decrease arises from the solvation differences ofH1
and H2. Thus, the computational methods were in accord
with experimental observations for the hydantoin derivatives
in that the formation ofH2 was predicted to occur more
spontaneously than that ofH3.

2,2,5,5-Tetramethylimidazolidin-4-one (TMIO).TMIO
has a hindered secondary amine and an amide functional
group, and when chlorinated, both functional groups have
been shown experimentally to bind chlorine more tightly than
does DMH.16 It was demonstrated that the amine N-halamine
group bound chlorine more strongly than did the amide

N-halamine group (Table 2). Moreover, experiments showed
that the monohalogenation of the title compound produced
the amide N-halamine as the kinetically controlled product,
which rearranges to the thermodynamically controlled prod-
uct of the amine N-halamine over time.17 Surprisingly, the
N-Cl bond lengths calculated for the amide and the amine
were 1.73 and 1.77 Å, respectively.

As seen in Table 2, the amide N-chloramineT3 was
predicted to be higher in energy than the amineT2. The
reactions examined in eqs 7-10 show that the reaction
forming T2 is more favored than the one formingT3
thermodynamically and that the order did not change with
the addition of solvation.

The free energy of solvation forT2 andT3 shows a 2.62
kcal/mol difference. This difference is due to the fact that
the amide is more polarized than the amine.

The Spiro Systems (A, B, C). 6,6,8,8-Tetramethyl-1,3,7-
triazaspiro[4.4]nonane-2,4-dione. On the basis of the
experimental and the theoretical results for DMH and TMIO,
similar results were expected for the order of stabilities for
N-halamines of theA structure. However, Table 2 shows
that the order is amine> imide> amide N-halamine in terms
of stability. The reversal between amide and imide has been
a focal point of the analysis. As seen in Figure 2, steric
interaction between methyl groups and chlorine seems to
affect the stability of an amide N-halamine group. The
distances between the chlorine and hydrogens on the methyl
group are the reason for this steric hindrance. It was expected
that changingA3 to A3-i (the conformation has been
changed, see Figure 2) would alter the N-halamine stability
order. But, it was observed that the stability order did not
change. Furthermore, inverting the pyrolidine ring with
respect to the hydantoin ring caused a negligible increase in
energy, enthalpy, and free energy (A3 f A3-i).

Table 3. Free Energies (kcal/mol) in the Gas Phase and in Solution for Selected Reactions at the B3LYP/6-31+G(d) Level

B3LYP/6-31+G(d)//B3LYP/6-31+G(d)a MP4SDQT/6-31+G(d)//B3LYP/6-31+G(d)a

eq reaction ∆G(gas) ∆G(aq) ∆G(gas) ∆G(aq)

3 H1 + HOCl f H2 + H2O -9.71 -2.16 -14.39 -6.84
4 H1 + HOCl f H3 + H2O -8.21 -1.82 -11.67 -5.28
5 H4 + H2O f H2 + HOCl 7.72 -0.54 11.56 3.30
6 H4 + H2O f H3 + HOCl 9.23 -0.19 14.28 4.86
7 T1 + HOCl f T2 + H2O -14.35 -10.52
8 T1 + HOCl f T3 + H2O -12.17 -5.72
9 T4 + H2O f T2 + HOCl 11.01 3.10

10 T4 + H2O f T3 + HOCl 12.97 7.68
11 A1 + HOCl f A3 + H2O -4.70 0.47
12 A1 + HOCl f A4 + H2O -8.08 -1.23
13 A2 + HOCl f A5 + H2O -5.22 0.82
14 A2 + HOCl f A6 + H2O -8.22 -0.93
15 B1 + HOCl f B3 + H2O -3.26 2.64
16 B1 + HOCl f B4 + H2O -8.01 -1.27
17 B2 + HOCl f B5 + H2O -2.78 3.62
18 B2 + HOCl f B6 + H2O -8.06 -1.08
19 C1 + HOCl f C3 + H2O -2.42 3.52
20 C1 + HOCl f C4 + H2O -8.60 -1.69
21 C2 + HOCl f C5 + H2O -2.87 3.21
22 C2 + HOCl f C6 + H2O -8.48 -1.43
a Zero-point energy, heat capacity, and entropy corrections to 298 K were made at the B3LYP/6-31+G(d) level. Solvation effects in water

were determined at the CPCM/B3LYP/6-31+G(d) level with UAKS cavities at B3LYP/6-31+G(d) optimized geometries.
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The N-Cl bond lengths are similar to those for DMH and
TMIO. The amine has the longest bond length at 1.77 Å,
then the amide at 1.71 Å, and then the imide at 1.70 Å. Thus,
as discussed earlier, the N-Cl bond length becomes shorter
as the bond polarity increases.

The energy difference betweenA3 and A4 is 3.34
kcal/mol and that forA5 and A6 is 2.94 kcal/mol. The
chlorination reaction thermodynamics showed the same
pattern in gas and aqueous solution (eqs 11-14).

7,7,9,9-Tetramethyl-1,3,8-triaza-spiro[4.5]decane-2,4-
dione. From an energetic point of view, the order of
N-halamine stability is the same as that for theA series:
amine> imide > amide. This order was largely affected by
the steric interactions between chlorine connected to the
amide nitrogen and the methyl groups (see Figure 3). The
distance between chlorine and the methyl groups for theB
series is even smaller than that for theA and is within the
range of 2.62-2.72 Å. These shorter distances can be
rationalized from 1 to 3 diaxial interactions (six-membered
ring in the chair conformation).

The B3 was inverted toB3-i (see Figure 3); that is, the
amide functionality was brought to the equatorial posi-
tion. It was seen that 1-3 diaxial interaction between
methyl groups and chlorine has diminished because of the
chair conformation of the piperidine moiety. Although the
amide N-halamine stability has been affected by steric
interaction with the methyl group, the energy was not low

enough to be more stable than the imide N-halamine. Be-
cause the amide N-halamine chlorine is above the ring,
inevitable steric interactions with hydrogens on the axial
position occur.

The analysis of data for theB series (see Table 2) showed
the same pattern as that for theA series.B4 is thermody-
namically more stable thanB3, and similarly,B6 is more
stable thanB5. Furthermore, the reactions ofB1 andB2 with
hypochlorous acid showed that the imide N-halamine is
formed more spontaneously than is the amide N-halamine,
both in the gas phase and in water (eqs 15-18).

7,7,9,9-Tetramethyl-1,3,8-triaza-spiro[4.6]undecane-
2,4-dione.The same pattern was observed for theC series
as in the cases of theA and B series (see Table 2). The
reason for the amide N-halamine being less stable than the
imide N-halamine appears to be due to steric hindrance in
the case of theC series overall. The distance between the
amine chlorine and one methyl group was observed to be
within the range of 2.67-2.69 Å. Even though the methyl
group for one side (methyl on the 7 position) is far enough
away to not have significant steric interactions, it was seen
that the chlorine is too close to a hydrogen on the ring
(distance is changing from 2.70 to 2.73 Å), as in Figure 4.
Therefore, the same procedure was followed as above;
the ring was inverted. The inversion process caused the
energy to become lower, but not enough to be lower than
that for C4.

Figure 2. Minimized structures at the B3LYP/6-31+G(d) level of A3 and A3-i .

Figure 3. Minimized structures at the B3LYP/6-31+G(d) level of B3 and B3-i .
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It was expected that, by relaxing the ring (larger ring
systems), the steric effect would decrease. Thus, the amide
N-halamine could become more stable than the imide
N-halamine. To test this hypothesis, a seven-membered ring
has been attached to the 5 position of the hydantoin. Despite
the initial expectations, it was shown that imide N-halamine
is still more stable than the amide N-halamine (Table 2).
The reactions for theC series showed the same order as that
in cases of theA andB series in terms of spontaneity, both
in the gas and solution phases (eqs 19-22).

As seen for the cases ofA, B, and C, the N-halamine
stability is not only determined by the electronic effects but
is also determined by the substituents at the 5 position of
the hydantoin ring. The effect of the substituents seems to
be steric, with electronic effects being less important. The
conformation of the cyclic systems at the 5 position affects
the stability of the amide N-halamine from a steric point of
view.

As alluded to earlier, the N-Cl bond lengths for the
N-halamines showed an interesting pattern: amine(N-Cl)
> amide(N-Cl) > imide(N-Cl). The NBO analysis forH4
andT4 showed that the hybridization of the nitrogen atom
remains the same in all nitrogen cases. However, the natural
population charges differ. ForH4, the imide nitrogen has a
charge of-0.54 (the Cl bonded to this nitrogen has a charge
of 0.23) and the amide nitrogen has a charge of-0.52 (the
Cl has a charge of 0.18). ForT4, the amide nitrogen has a
charge of-0.51 (for Cl, it is 0.18) and the amine nitrogen
has a charge of-0.50 (Cl has 0.08). This polarization agrees
with a literature report.18 Moreover, the Wiberg bond orders
are consistent with the bond lengths. As a result, the imide
bond is more polarized than the amide, which is more
polarized than the amine. The higher bond polarization causes
the shorter bond length because of Coulombic attraction.

Conclusions
In this study, N-halamines were investigated theoretically.
It was shown that the experimental stability order could be
reproduced with high-level calculations both in the gas phase
and in solution. However, the polar N-Cl bonds have the
higher solvation energy.

The calculated N-Cl bond length was surprising in that
the strongest bond as evidenced by ease of hydrolytic
dissociations, amine(N-Cl) > amide(N-Cl) > imide(N-

Cl), was the longest bond. It could be concluded that the
greater the ionic character of the bond, the shorter was the
bond length.

The steric effect of cyclic moieties at the 5 position of
the hydantoin ring causes the amide N-halamine moiety to
be more labile than the imide N-halamine one for theA, B,
andC series. Varying the ring sizes does not affect the amine
N-halamine stability in the ranking.
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Abstract: A theoretical study of the different isomers of neutral VCn (n ) 1-8) clusters has

been carried out. Predictions for their electronic energies, rotational constants, dipole moments,

and vibrational frequencies have been made using the B3LYP method with different basis sets.

For linear and cyclic VCn clusters, the lowest-lying states correspond to quartet states, with the

only exception being VC, which has a 2∆ ground state. In the fan-type structures, the electronic

ground state is found to be a quartet state for even n values, whereas for odd n values, the

ground state is a doublet for VC3 and VC5 and a quartet for VC7. From the incremental binding

energies, we can deduce an even-odd parity effect, with n-even clusters being more stable

than n-odd ones in the linear and fan clusters. It was also found that neutral VCn clusters with

n e 6 prefer fan structures over linear and cyclic isomers, whereas cyclic ground states are

predicted for the clusters with n > 6.

Introduction
The inclusion of metal atoms in pure carbon clusters provides
a way to modify their properties and generate new materials.
A wide variety of materials can be formed from the
interaction of carbon with transition metals.Networked
metallofullerenes1 can be originated when transition metals
are incorporated into carbon cages, whereas some rare-earth
elements can be trapped inside fullerene cages to form
endohedral metallofullerenes.2 On the other hand, late
transition metals have interesting properties as catalysts for
carbon nanotube formation.3 Finally, early transition metals
have been found to form stable gas-phase metal-carbon
clusters, known as metallocarbohedrenes, “met-car”,4-7 with
a M8C12 stoichiometry; observed examples are Ti8C12

8 and
V8C12.9

Because of the presence of transition-metal atoms, the
interpretation of experimental information is rather difficult.
In particular, the prediction of the ground-state structures is
complicated because of the large number of local minima
on their potential energy surfaces, related to the presence of
nd shells in the transition-metal atom. However, the deter-

mination of geometry is one of the fundamental problems
in clusters research because it may affect chemical properties,
and therefore, accurate theoretical information on the struc-
tures of transition metal carbides is desirable. In addition,
theoretical studies of small carbon clusters containing transi-
tion metals provide a way to obtain a detailed description of
the metal-carbon interactions and are very useful to
understand the growth mechanism of the various metal-
carbon nanomaterials. In fact, the type of structure formed
depends essentially on the nature of these interactions.
Obviously, the study of the structures and reactivity of metal
carbides are also important in other areas, such as surface
chemistry, combustion chemistry, or astrochemistry.

The competition between different isomers on small first-
row transition-metal carbides has recently been the subject
of some theoretical studies. In the case of dicarbide com-
pounds (MC2), linear and cyclic structures have been
characterized on ScC2,10-12 VC2,13 FeC2,14,15 and CoC2.16 In
all cases, cyclic ground states are predicted. Whereas
systematic studies as a function of the size of the clusters
on heteroatom-doped carbon clusters containing first- and
second-row elements have been extensively carried out by
theoretical methods, only a few works are devoted to the
study of first-row transition-metal-doped carbon clusters. In

* Corresponding author fax: 34-983-423013; e-mail: predondo@
qf.uva.es.

885J. Chem. Theory Comput.2006,2, 885-893

10.1021/ct060033q CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/31/2006



the past few years, different theoretical approaches have been
applied to the study of systems such as CrCn (n ) 1-8),17

TiCn (n ) 2-4),18,19FeCn (n ) 1-4),20 NiCn,21-23 and ScCn
(n ) 1-8).24,25 In all cases, it is shown that different
geometrical configurations can be reached for this type of
system.

Vanadium is one of the transition metals that has been
shown to form stable “met-car”.9 However, to the best of
our knowledge, theoretical studies of vanadium carbide
compounds have only been performed, at different levels of
theory, for VC,26-29 VC2,13,30and V2C2

30 systems. In addition,
there are some experimental studies reporting the photoelec-
tron spectra of first-row transition-metal carbides (MC2 and
MC3).31,32 In the present work, we have carried out a
theoretical study of the VCn (with n ranging from 1 to 8)
systems taking into account different geometrical conforma-
tions. We analyze the relative stability of the different
structures as a function ofn, and for the most stable isomers,
we report their equilibrium structures and some spectroscopic
data that could be helpful for their eventual experimental
detection. In addition, the knowledge about the behavior of
vanadium-doped carbon clusters as a function of the size of
the cluster will allow the identification of possible systematic
trends, which could help to understand the structure of these
systems and could be useful to make extrapolation for some
properties and, therefore, predictions for larger clusters.

Computational Methods
We have employed the same theoretical approach as that in
our previous studies on ScCn systems.24,25 Therefore, all of
our calculations have been made using density functional
theory (DFT), in particular, employing the B3LYP exchange-
correlation functional.33,34 This consists of the Lee-Yang-
Parr35 correlation functional in conjunction with a hybrid
exchange functional first proposed by Becke.36 The latter is
a linear combination of local density approximation, Becke’s
gradient correction,37 and the Hartree-Fock exchange energy
based on Kohn-Sham orbitals.38 As is known, The DFT/
B3LYP method has been widely applied to the study of many
medium-sized heteroatom-doped carbon clusters, providing
structures in good agreement with the experimental results.
In addition, previous studies on vanadium carbide systems,
such as the works on VC26,29 and VC2,13 have shown that
the B3LYP method is in reasonable agreement with multi-
configurational approaches predicting similar ground states
and lowest-lying excited states. These facts suggest that the
B3LYP method can be applied in the study of these
compounds.

Computations have been performed using the 6-311+G-
(d) basis set that includes diffuse functions and is constructed
employing the triple split-valence 6-311G39 for carbon atoms
and the Wachters40 and Hay41 basis set with the scaling factor
of Ragavachari and Trucks42 for vanadium atoms. The use
of effective core potential methods for the description of
clusters reduces significantly the computational time. In
particular, we have also employed a mixed basis set formed
by Los Alamos ECP plus DZ, LanL2DZ,43-45 for vanadium
atoms in conjunction with the 6-311+G(d) basis set for
carbon atoms, denoted as LAN-6+(d). In our previous study

on the ScCn system,24 we analyzed the behavior of different
basis sets, showing that the 6-311+G(d) and LAN-6+(d)
basis sets give the most reliable results.

Harmonic vibrational frequencies were computed from
analytical gradient techniques. This allows an estimate of
the zero-point vibrational energy (ZPVE) correction for each
structure, as well as an assessment of the nature of the
stationary points and, therefore, a characterization of whether
they are true minima on the respective potential surface.

All calculations reported in this work were carried out with
the Gaussian 98 program package.46

Results and Discussion
We have carried out a study of the neutral VCn (n ) 1-8)
system, on the doublet, quartet, and sextuplet potential energy
surfaces. In this work, we will only present the three most
stable conformations on each potential energy surface: a
linear structure with the vanadium atom sited at the end
position, a cyclic isomer where the vanadium atom is bonded
to the two terminal carbon atoms of the chain, and finally a
fan-type structure where the vanadium atom interacts with
the whole carbon chain. Other isomers, such as a linear
isomer with the vanadium atom in an intermediate position
or a cyclic isomer with an exocyclic vanadium atom, have
been studied, but they are not presented here because they
lie higher in energy.

We will present the results for each type of structure
separately in order to analyze systematic trends in their
properties with the size of the clusters. After this, the relative
stability of the three structures along the series was discussed.
It should be pointed out that, for some structures reported
in this work, for example, those with4Φ or 6Φ electronic
states, the B3LYP method, as well as single-reference-based
methods such as HF, MP2, QCISD, and so forth, provides
nondegenerateπ frequencies. On the other hand, for the states
of Σ and∆ symmetry studied in this work, it is possible to
obtain degenerate frequencies, and they are denoted in Table
S1 (Supporting Information) as (2).

VCn Linear Clusters. We present in Table 1 some
properties, such as absolute and relative electronic energies,
〈S2〉 expectation values, dipole moments, or binding energies,
at the B3LYP/6-311+G(d) and B3LYP/LAN-6+(d) levels
of theory, for the lowest-lying open-chain VCn species on
the doublet, quartet, and sextuplet potential surfaces. Their
corresponding harmonic vibrational frequencies and rota-
tional constants are given as Supporting Information in Table
S1. Forn-even clusters, we have included results for two
quartet states (4Σ and 4Φ) because they are very close in
energy and, in all cases, are more stable than the corre-
sponding lowest-lying doublet and sextuplet states. These
molecular properties might be helpful in an experimental
search for these species. In addition, the optimized geometries
at the B3LYP/6-311+G(d) and B3LYP/LAN-6+(d) levels
of theory for the most stable structures are shown in Figure
1.

In general, it can be seen that the two basis sets considered
here lead to very close results for equilibrium geometries
and other properties such as dipole moments, vibrational
frequencies, or relative energies. Therefore, it can be

886 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Redondo et al.



concluded that, for linear VCn clusters, the employment of
effective core potentials (in particular, LanL2DZ) for the
vanadium atom gives similar results to those obtained with
6-311+G(d).

Before discussing our results, we are going to compare
them with the previous results that have been reported for
VC and VC2 isomers. The first member of the series,
vanadium carbide VC, has been studied both theoretically26-29

and experimentally,47-49 and it is well-established that the
lowest-lying state corresponds to a2∆ symmetry. The most
complete study of this species was carried out recently by
Kalemos et al.,29 where they explored 29 states of VC using
MRCI methods with large atomic natural orbital basis sets.
From this study, they concluded that the ground state is of
2∆ symmetry, with the first two excited states,4∆ and 2Σ,
located 4.16 and 6.95 kcal/mol, respectively, above the
fundamental state. The MRCI(+Q) binding energy of2∆ is
estimated to be 88.5 (89.3) kcal/mol, and after some
corrections (BSSE, ZPVE, relativistic effects, and 3s23p6

semicore), they obtained a value of 95.3 kcal/mol, in good
agreement with the experimental one of 100.1( 5.7 kcal/
mol.48 As can be seen in Table 1, we also found2∆ and4∆
as the ground and first excited states, respectively, and the
relative energy (4.73 and 5.35 kcal/mol, obtained with
6-311+G(d) and LAN-6+(d), respectively) is very similar
to that obtained at the MRCI(+Q) level. We have also
characterized a2Σ state lying 15.57 kcal/mol above the
ground state. As in the study of Kalemos et al., this state is
more stable than the lowest-lying sextuplet state,6Σ. In

Table 1. Electronic Energies, 〈S2〉 Values, Binding
Energies (for the Ground States), Dipole Moments, and
Relative Energies for Linear VCn Clusters with the B3LYP/
6-311+G(d) (First Line) and B3LYP/LAN-6+(d) (Second
Line) Methods

isomer state
-E
(au) 〈S2〉

BE
(eV)

µ
(D)

∆E
(kcal mol-1)

VC 2∆ 981.893063 1.1532 3.84 6.02 0.00
109.224179 1.2432 3.84 6.04 0.00

4∆ 981.885398 3.8785 2.84 4.73
109.215534 3.9237 2.86 5.35

6Σ 981.861752 8.7990 3.93 19.28
109.191867 8.8047 3.93 19.95

VC2
2∆ 1019.960382 0.9400 6.46 30.33

147.289287 0.9520 6.55 31.43
4Σ 1020.008738 3.9190 10.78 8.72 0.00

147.339374 3.9339 10.76 8.79 0.00
4Φ 1020.002094 3.9137 9.42 4.31

147.333478 3.9328 9.55 3.77
6∆ 1019.983546 8.7947 4.51 16.19

147.316392 8.7972 4.76 14.82
VC3

2∆ 1058.052393 1.5419 13.65 19.16
185.385069 1.5021 13.42 18.22

4Φ 1058.081416 4.4493 8.99 0.64
185.414436 4.4665 9.10 -0.40

6Σ 1058.082820 8.7844 16.54 8.63 0.00
185.414098 8.7853 16.54 8.79 0.00

VC4
2∆ 1096.141157 1.3277 8.02 28.68

223.471035 1.3233 8.15 29.57
4Σ 1096.186952 4.0768 23.11 12.22 0.00

223.518281 4.0900 23.10 12.38 0.00
4Φ 1096.183059 4.3260 12.00 2.20

223.515642 4.3793 11.96 1.44
6Φ 1096.167774 8.7654 10.03 11.54

223.501194 8.7659 10.35 10.31
VC5

2∆ 1134.233757 1.7721 18.03 21.39
261.566333 1.7326 18.13 21.64

4Φ 1134.267174 4.5837 29.06 11.70 0.00
261.600513 4.5971 29.11 11.87 0.00

6Σ 1134.264878 8.8132 11.53 1.82
261.596343 8.8145 11.76 2.92

VC6
2∆ 1172.318571 1.5493 9.30 28.75

299.648651 1.5519 9.37 30.57
4Σ 1172.363472 4.1751 15.13 0.55

299.694901 4.1870 15.36 1.48
4Φ 1172.363720 4.5184 35.40 14.02 0.00

299.696815 4.5544 35.45 14.07 0.00
6Φ 1172.353181 8.7709 12.43 6.48

299.686707 8.7714 12.78 6.22
VC7

2∆ 1210.413532 1.9346 22.49 22.94
337.745953 1.8984 22.64 22.39

4Φ 1210.449339 4.6735 41.48 14.14 0.00
337.782777 4.6856 41.54 14.35 0.00

6Σ 1210.444147 8.8435 14.35 3.69
337.775620 8.8452 14.65 4.54

VC8
2∆ 1248.496004 1.7095 10.55 30.66

375.826217 1.7206 10.54 32.44
4Σ 1248.540325 4.2539 17.96 2.71

375.871820 4.2641 18.26 3.47
4Φ 1248.543919 4.6246 47.76 16.10 0.00

375.877237 4.6493 47.82 16.23 0.00
6Φ 1248.535968 8.7757 14.63 4.89

375.869529 8.7763 15.00 4.62

Figure 1. Equilibrium geometries of VCn linear clusters at
the B3LYP/6-311+G(d) and B3LYP/LAN-6+(d) (in parenthe-
ses) levels of theory. Distances are given in angstroms.
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addition, our results for the binding energy of2∆ are very
close to those obtained at the MRCI(+Q) level by Kalemos
et al.

Theoretical information for the VC2 system has been
reported by Majumdar et al.13 using DFT and MRSDCI levels
with relativistic effective core potentials (RECPs) for vana-
dium and carbon atoms. In contrast with our results shown
in Table 1, they report6Σ and4Σ (lying about 4.61 kcal/mol
above the6Σ state at the MRSDCI+Q level) states as the
most stable linear isomers. We have found a4Σ state as the
lowest-lying state. This isomer has two imaginaryπ-type
frequencies (as can be seen in Table S1) and corresponds to
the transition state for the rearrangement of the cyclic isomer
(4A1). In addition, we have located another4Σ state that
corresponds to a true minimum and is located above the6Σ
isomer. However, we have characterized4Φ and 6∆ states
(included in Table 1), both lower in energy than the6Σ isomer
(about 23.92 and 12.03 kcal/mol below the6Σ isomer,
respectively), reported by Majumdar et al. as the lowest-
lying linear one.

It is readily seen in Table 1 that all linear VCn clusters
present quartet ground states, with the only exception being
VC, where the scheme is different because the carbon is only
bonded to vanadium and presents a2∆ ground state. Linear
clusters withn-odd values have a4Φ ground state, and the
first excited state corresponds to a6Σ symmetry. In the case
of VC3, the B3LYP results show that both states are virtually
isoenergetic (∆E is less than 1.00 kcal/mol). The quartet-
sextuplet energy differences slightly increase along the series
for n-odd clusters, being 3.69 kcal/mol for the VC7 isomer,
so both states are interesting from an experimental point of
view. The stability of the different states can be explained
in terms of their electronic configurations. Vanadium-doped
carbon clusters, VCn, present 4n + 5 valence electrons, and
the corresponding electronic configuration for the4Φ state
is

The lowest-lying sextuplet state is obtained upon a [(n +
1)/2]π3 f 1δ promotion. Both orbitals are mainly located
at the vanadium atom, and the energy difference between
the σ1π3δ1 and σ1π2δ2 configurations is very small. The
lowest-lying doublet state corresponds to aπ4δ1 configuration
and is located higher in energy (about 20.00 kcal/mol).

On the other hand,n-even linear VCn clusters present two
quartet states that are very close in energy,4Σ and 4Φ,
corresponding to the following electronic configurations:

For the smaller members of the series (n ) 2, 4), the
ground state is found to be4Σ, whereas for clusters withn
) 6 and 8, the4Φ state is more favorable. The similar energy
of the two quartet states can be related to the fact that the

[(n + 2)/2]π and the 1δ molecular orbitals are mainly located
at the vanadium atom. The lowest-lying sextuplet state,6Φ,
is obtained from the4Φ state upon (n/2)π f [(n + 2)/2]π
promotion. As can be seen in Table 1, the quartet-sextuplet
energy difference decreases asn increases forn-even linear
clusters. As in the case ofn-odd isomers, the lowest-lying
doublet state,2∆, corresponding to a ...(n + 2)σ2(n/2)π41δ1

electronic configuration, is located higher in energy than
quartet and sextuplet ones.

By looking at Figure 1, it can be seen that the C-C bond
distances are all in the range 1.24-1.32 Å and, therefore,
can be assimilated to moderately strong and typical double
bonds, characteristic of cumulenic structures:

On the other hand, a clear alternation in the C-C bond
distances can be observed, Codd-Ceven being shorter than
Ceven-Codd. This fact suggests that there is some polyacety-
lenic character with alternate triple C-C bonds starting in
the C1-C2 bond:

It can also be observed that4Φ states present bigger V-C
bond distances (ranging from 1.859 Å for VC2 to 1.953 Å
for VC8) than those of4Σ states (1.842 Å for VC2 to 1.883
Å for VC8). Consequently, the contribution of polyacetylenic-
type structures is higher for4Φ states than for the4Σ ones,
where the cumulenic-type structure is dominant.

Dipole moments are, in all cases, quite high, reflecting a
significant charge transfer from the vanadium atom to the
Cn unit. Furthermore, the dipole moment increases regularly
with the number of carbon atoms for bothn-odd andn-even
clusters, being higher forn-even members.

As in our previous studies on carbon-doped clusters,24,25

the relative stability of linear VCn compounds will be
discussed following the suggestion by Pascoli and Lavendy,50

in terms of the incremental binding energies.51 The incre-
mental binding energy can be defined as the change in energy
accompanying the process

and can be computed as the consecutive binding energy
differences between adjacent VCn and VCn-1 clusters.

The incremental binding energy for the different linear
VCn clusters as a function of the number of carbon atoms is
shown in Figure 2. From this figure, it can be observed that
a clear even-odd alternation in stability exists for linear
clusters, with theirn-even members being more stable than
the correspondingn - 1 andn + 1 ones. The difference in
stability betweenn-odd andn-even clusters is attenuated for
the last members of the series. This parity effect can be
attributed to the electron number inπ-type andδ-type highest
occupied molecular orbitals. In the case of the smaller
clusters of the series, a ground state corresponding to aδ2

electronic configuration (n-even) is energetically more favor-

{core}1σ2...1π4....(n + 2)σ1(n + 1
2 )π31δ1 n-odd clusters

{core}1σ2...1π4....(n + 2)σ1(n2)π41δ2 4Σ n-even clusters

{core}1σ2...1π4....(n + 2)σ1(n + 2
2 )π11δ1

4Φ n-even clusters

VCn f VCn-1 + C (1)
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able than aπ3δ1 one (n-odd). On the other hand, linear VCn

clusters withn ) 6 and 8 have ground states resulting from
an electronic configuration ofπ1δ1, which is only slightly
more stable than the correspondingπ3δ1 for n-odd clusters.

VCn “Fan ” Clusters.The molecular properties (absolute
and relative energies,S2 expectation values, and dipole
moments) for the lowest-lying doublet, quartet, and sextuplet
states for fan-type VCn clusters are given in Table 2, whereas
the corresponding vibrational frequencies and rotational
constants are included as Supporting Information in Table
S2. In addition, in Figure 3, the geometrical parameters for
the ground states are shown. In general, all of the structures
reported in Figure 3 are true minima on their respective
potential energy surfaces, with the only exception being the
4B2 state of VC7 at the B3LYP/LAN-6+(d) level. The doublet
state of VC6 also presented an imaginary frequency when
the LAN-6+(d) basis set was employed (as can be seen in
Table S2). In both cases, all of our attempts to find a true
minimum failed. For the4B state of VC8, we only reached
the fan structure with the 6-311+G(d) basis set; all of our
attempts to obtain this structure with the LAN-6+(d) basis
set led to the cyclic conformation, which is lower in energy.
As in the case of linear isomers, the inclusion of effective
core potentials in the basis set of the vanadium atom does
not seem relevant for the description of fan VCn isomers,
because not only are the geometrical parameters obtained
with both basis sets, 6-311+G(d) and LAN-6+(d), very
coincident (see Figure 3) but also all other properties are
very close (see Tables 2 and S2).

There are only available theoretical results for the first
member of the series, VC2.13,30Majumdar el al.13 have studied
the different states of the VC2 system inC2V symmetry. As
in the case of linear structures, they employed MRSDCI and
DFT/B3LYP methods with a RECPs basis set for vanadium
and carbon atoms. They found that, in general, the geometries
and the energy separations of the reported electronic states
at the DFT level are similar to the MRSDCI data for most
of the states. An2A2 symmetry and an6A1 state are reported
as the lowest-lying doublet and sextuplet states, which are
located about 27.90 and 28.59 kcal/mol, respectively, above
the4B1 ground state at the MRCISD+Q level. We also found
2A′′ (corresponding to an2A2) and 6A1 states with energy
differences respective to the4B1 state very similar to that

estimated by Majumdar et al. (27.08 and 34.14 kcal/mol,
respectively; see Table 2).

As can be seen in Table 2, alln-even fan VCn clusters
have quartet ground states, and the quartet-doublet energy
difference has a tendency to decrease as the number of carbon
atoms increases, obtaining an energy difference of only 2.53
kcal/mol forn ) 8. Forn-odd clusters, doublet and quartet
states are close in energy, and we have found that for VC3

and VC5 isomers the ground state corresponds to2A1 (2A′),
whereas in the case of VC7, a 4B2 state is predicted to lie
lower in energy than the corresponding doublet one. Along
all of the series, the sextuplet states are the most unstable

Figure 2. Incremental binding energies (eV) for the VCn

linear, fan, and cyclic clusters vs the number of carbon atoms
at the B3LYP/6-311+G(d) level.

Table 2. Electronic Energies, 〈S2〉 Values, Binding
Energies (for the Ground States), Dipole Moments, and
Relative Energies for Fan VCn Clusters with the B3LYP/
6-311+G(d) (First Line) and B3LYP/LAN-6+(d) (Second
Line) Methods

isomer state
-E
(au) 〈S2〉

BE
(eV)

µ
(D)

∆E
(kcal mol-1)

VC2
2A′′ 1019.995993 0.7753 6.41 27.08

147.326054 0.7789 6.48 27.01
4B1 1020.039824 3.7897 11.78 6.77 0.00

147.370027 3.7906 11.75 6.80 0.00
6A1 1019.985001 8.7680 4.28 34.14

147.314893 8.7691 4.66 34.29
VC3

2A1 1058.109391 0.8748 17.56 5.34 0.00
185.436671 0.8909 17.44 5.28 0.00

4B2 1058.100062 3.8157 5.32 5.23
185.427137 3.8256 5.47 5.31

6A1 1058.081370 8.7977 5.02 16.57
185.409567 8.7994 5.24 15.94

VC4
2B1 1096.209770 1.6403 3.67 8.35

223.534658 1.6368 3.68 9.11
4B1 1096.223033 3.7891 24.53 3.96 0.00

223.549048 3.7910 24.39 4.01 0.00
6B1 1096.150580 8.7721 3.61 44.25

223.479310 8.7707 4.07 42.52
VC5

2A′ 1134.287688 1.6061 30.18 2.32 0.00
261.609891 1.6533 29.92 2.29 0.00

4A′ 1134.281289 3.8096 1.86 3.71
261.603569 3.8195 1.83 3.31

6B2 1134.250284 8.8448 1.98 22.78
261.575483 8.8449 2.14 20.81

VC6
2A′ 1172.361429 0.8137 3.77 14.81

299.681196 0.8324 3.82 16.23
4A2 1172.385474 3.7883 36.72 0.84 0.00

299.708020 3.7892 36.48 0.74 0.00
6B1 1172.316781 8.7860 0.58 41.62

299.642708 8.7864 0.23 39.66
VC7

2A 1210.445070 1.6656 3.12 5.29
2A1 337.764383 1.7390 3.21 5.16
4B2 1210.453569 3.8122 42.46 3.28 0.00

337.772336 3.8278 42.11 3.35 0.00
6A′ 1210.438130 8.8444 1.43 9.52

337.763581 8.8460 1.34 5.61
VC8

2A′′ 1248.531749 1.7721 3.30 2.53
375.841624 1.7449 3.42

4B 1248.535327 3.7743 48.57 4.24 0.00
6B1 1248.496690 8.8059 1.38 23.70

375.824748 8.8095 1.26
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ones, with an energy difference respective to the quartet states
that is lower forn-odd clusters. In general, we can see that
in fan type structures there is a stabilization of doublet states
with respect to the linear ones, whereas sextuplet states
increase their energy relative to quartet ones.

There are some interesting features of the geometrical
parameters for fan VCn clusters. It can be seen, in Figure 3,
that the V-C distances for fan structures are, in general,
longer than in the case of linear isomers. An analysis of the
V-C bond distances shows that there is aπ-type interaction
between the vanadium atom and the entire carbon unit, and
consequently, all of the V-C distances are very close. As
an example, V-C1, V-C2, V-C3, and V-C4 are respec-
tively 2.165, 2.122, 2.186, and 2.160 Å for VC7, suggesting
that, in fact, there is a similar interaction between the
vanadium and each of the carbon atoms. On the other hand,
V-C bond lengths are higher forn-even clusters, and in both
cases (n-even andn-odd), these distances are systematically
longer asn increases, showing a lower degree of participation
of the vanadium atom in each bonding when the number of
carbon atoms in the Cn unit is higher. The C-C bond
distances are within the range 1.25-1.37 Å, following a
pattern that resembles the behavior found for linear isomers,
with a clear alternation of C-C distances (Codd-Ceven

distances shorter than Ceven-Codd ones).

It is also worth mentioning that the dipole moment
decreases whenn increases for small fan clusters, but an
inversion in the trend is observed fromn ) 6. This change
can be related with the fact that the vanadium atom tends to
be included into the Cn unit for larger fan structures. As
expected, the dipole moments of fan clusters are lower than
the corresponding ones of linear species.

In Figure 2, the incremental binding energies for the fan
VCn clusters are also represented. It can be readily seen that
incremental binding energies for fan clusters follow the same
general pattern as their linear analogues. Again,n-even
clusters are more stable thann-odd ones, and the difference
in stability betweenn-odd andn-even clusters is attenuated
whenn increases. But now, the incremental binding energies
vary more drastically for consecutive members in the series
than for linear clusters.

VCn “Cyclic” Clusters. Cyclic structure where the
vanadium atom is bonded to the two terminal carbon atoms
of the Cn unit are only reached forn ) 6, 7, and 8 (in the
case ofn ) 5, a cyclic structure was located, but we have
not included it because it is lying very high in energy). All
of our attempts to obtain this rearrangement forn < 5
collapsed to the fan-type structure with the two basis sets
employed in this work. The main properties for the lowest-
lying doublet, quartet, and sextuplet states of cyclic VCn

clusters are given in Table 3, whereas geometries for the
ground states are shown in Figure 4. As in previous sections,
the vibrational frequencies and rotational constants for the
lowest-lying doublet, quartet, and sextuplet states of cyclic
clusters are given as Supporting Information in Table S3.
As in the case of linear and fan clusters, the effect of
employing effective core potentials to describe the vanadium

Figure 3. Equilibrium geometries of VCn fan clusters at the
B3LYP/6-311+G(d) and B3LYP/LAN-6+(d) (in parentheses)
levels of theory. Distances are given in angstroms.

Table 3. Electronic Energies, 〈S2〉 Values, Binding
Energies (for the Ground States), Dipole Moments, and
Relative Energies for Cyclic VCn Clusters with the B3LYP/
6-311+G(d) (First Line) and B3LYP/LAN-6+(d) (Second
Line) Methods

isomer state
-E
(au) 〈S2〉

BE
(eV)

µ
(D)

∆E
(kcal mol-1)

VC6
2A2 1172.333646 1.7228 3.99 21.11

299.661755 1.7121 4.69 20.49
4A′′ 1172.365666 3.8083 36.18 5.14 0.00

299.694943 3.8144 36.12 5.21 0.00
6A1 1172.332800 8.7985 3.07 20.28

299.655621 8.8017 3.29 24.26
VC7

2B1 1210.465646 1.1611 4.48 0.24
337.793869 1.2476 4.27 -0.34

2A1 1210.463828 1.1736 4.44 1.32
337.792043 1.2732 4.19 0.76

4B2 1210.465486 3.8578 42.78 3.44 0.00
337.792814 3.8880 42.67 3.29 0.00

6A1 1210.448359 8.8787 0.20 9.68
337.776627 8.8811 0.47 9.12

VC8
2B1 1248.543512 1.5622 0.26 14.51

375.870105 1.6257 0.24 15.26
4A′′ 1248.566679 3.7820 49.42 0.12 0.00
4B1 375.894644 3.7880 49.33 0.05 0.00
6A2 1248.510595 8.8032 0.25 34.25

375.838716 8.8108 0.42 34.10
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atom on the geometrical parameters, harmonic frequencies,
dipole moments, and energies is not particularly important.
All of the isomers included in Table 3 are true minima on
their respective potential energy surfaces, except the2A2 state
of VC6, which has an imaginary frequency at the B3LYP/
LAN-6+(d) level. All of our attempts to find a true minimum
at this level inCs symmetry failed.

From Table 3, it is readily seen that cyclic clusters have
quartet ground states. However, in the case of the VC7

cluster, there are two doublet states,2B2 and 2A1, that are
very close in energy to the4B2 ground state (energy
differences between the three states are about 1.00 kcal/mol),
and therefore, the three states could be accessible to
experimental detection. The lowest-lying sextuplet state of
VC7, 6A1, is only located about 9.68 kcal/mol above the
ground state. The doublet-quartet, and sextuplet-quartet
energy differences are larger forn-even clusters than for VC7.
In the case ofn-even, it seems that the doublet states tend
to be more stable whenn increases, whereas the energy
differences for sextuplet ones increase when going from VC6

to VC8 clusters.
Concerning the geometrical parameters, it can be seen in

Figure 4 that V-C bond distances in cyclic systems are
between those found for linear and fan isomers, according
to the fact that the vanadium atom is bonded to the two
terminal carbon atoms. On the other hand, the C-C bond
distances exhibit a behavior quite similar to that found in
the linear and fan isomers, with an alternation of C-C bond
distances (Codd-Ceven distances being shorter than Ceven-
Codd ones). In cyclic isomers, the dipole moments are
relatively high but decrease significantly for VC8.

Incremental binding energies for cyclic VCn clusters can
only be calculated forn ) 7 and 8. As can be seen in Figure
2, the incremental binding energies for cyclic VC7 and VC8

are very similar, the VC8 cluster being only slightly more
stable. Therefore, the parity effect for cyclic systems seems
to be lower than that in linear and fan structures.

Linear-Fan-Cyclic Stability. The energy differences
between linear, fan, and cyclic structures for VCn clusters
are shown in Figure 5 as a function of the number of carbon
atoms. We have represented the relative energies of fan and
cyclic structures with respect to the linear ones, and a
negative value means that the fan or the cyclic structure is
more stable than the corresponding linear one. In general,
we can see that the results obtained with the LAN-6+(d)
basis set show similar trends to those obtained with the
6-311+G(d) basis set. Nevertheless, it can be seen that the
LAN-6+(d) basis set slightly favors the linear isomer
compared to the 6-311+G(d) basis set. This effect is larger
for the last members of the series.

From Figure 5, we can seen that forn e 6, VCn clusters
are predicted to prefer fan structures, and it seems that fan
isomers could be the most favorable to be characterized in
experimental studies. There is also a clear even-odd
alternation,n-even fan clusters being comparatively more
stable thann-odd ones. This alternation can be related to
the fact that fan structures have higher incremental binding
energies forn-even clusters than do linear ones, whereas for
n-odd the incremental binding energy is smaller than that of
the corresponding linear isomers. On the other hand, when
n > 6, the trend is to favor linear structures, and forn ) 8,
the linear isomer is even more stable than the fan structure.
However, the behavior of the cyclic-linear energy differ-
ences is the opposite. Forn ) 6, linear and cyclic isomers
are nearly isoenergetic, and the differences decrease almost
linearly when going from VC6 to VC8. This fact results in
the prediction that cyclic structures are the most stable VCn

isomers withn > 6.
Finally, as it can be seen in Figure 5, although the LAN-

6+(d) basis set favors linear structures over fan and cyclic
ones, both basis sets predict that, forn e 6, the most stable
isomer is the fan structure and, forn > 6, the cyclic one is.

Conclusions
A theoretical study using the B3LYP method with the
6-311+G(d) and LAN-6+(d) basis sets has been carried out
for the most stable isomers (linear, fan, and cyclic) of VCn

(n ) 1-8) neutral clusters. Predictions for their geometrical
parameters and other properties that could be useful for an
eventual experimental characterization have been provided.

Figure 4. Equilibrium geometries of VCn cyclic clusters at
the B3LYP/6-311+G(d) and B3LYP/LAN-6+(d) (in parenthe-
ses) levels of theory. Distances are given in angstroms.

Figure 5. Relative energies (kcal/mol) of linear, fan, and cyclic
VCn clusters vs the number of carbon atoms.
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According to our calculations, linear VCn clusters have
quartet lowest-lying states, with the only exception being
VC, which has a2∆ ground state.n-odd clusters have a4Φ
ground state, and the lowest-lying sextuplet,6Σ, is very close
in energy, whereas forn-even, the4Σ and4Φ states are very
close in energy. The4Σ state is the most stable for clusters
with n ) 2 and 4, whereas VC6 and VC8 have a4Φ ground
state. In the case of fan VCn clusters,n-even species have
quartet ground states. Forn-odd clusters, doublet states are
favored for the first members of the series (n ) 3, 5), whereas
quartet ground states are found for the VC7 isomer. The three
cyclic VCn clusters characterized have quartet lowest-lying
states.

The stability of linear and fan clusters as a function of
the size has been discussed in terms of the incremental
binding energies. For both linear and fan structures, a clear
even-odd alternation in stability is found,n-even clusters
being more stable thann-odd ones. It is also found that this
parity effect decreases along the series.

Concerning a possible experimental work on this system,
one of the most interesting results of the present work refers
to the competition between linear, fan, and cyclic structures.
Our results suggest that forn e 6 there is a preference for
fan structures over linear ones, especially for lown values.
A parity effect is also observed, fan isomers being more
stable forn-even clusters. For larger clusters (n ) 7 and 8),
the cyclic structure is the most stable. The linear structure
is the least stable structure considered in this work for neutral
VCn clusters, only for VC8, the linear structure is slightly
more stable than the fan isomer.

Finally, the results obtained with both basis sets for the
descriptions of geometrical parameters, energies, and other
properties are very close. Therefore, the employ of effective
core potentials for the description of the vanadium atom can
be useful in the study of large vanadium-carbon clusters.
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